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INTRODUCTION

Several ectosymbioses of marine protists and inver-
tebrates with chemolithoautotrophic sulfur-oxidizing
(thiotrophic) bacteria have been described so far. Rep-
resentatives are Kentrophoros spp. (Karyorelictea, Cil-
iophora; Fenchel & Finley 1989), Zoothamnium niveum
(Oligohymenophora, Ciliophora; Bauer-Nebelsick et
al. 1996a,b, Ott et al. 1998), Stilbonematinae (Desmo-
doridae, Nematoda; Ott & Novak 1989, Ott et al. 1991),
Alvinella pompejana (Alvinellidae, Polychaeta; Cary &
Stein 1998), Halicryptus spinulosus (Priapulida;
Oeschger & Schmaljohann 1988) and Rimicaris exo-
culata (Bresiliidae, Crustacea; Polz & Cavanaugh
1995). Except for Z. niveum, none of the thiotrophic

ectosymbioses could be cultivated so far. Moreover,
aposymbiotic cultivation of either partner has not been
achieved up to now. 

All representatives of the marine free-living Stil-
bonematinae form specific associations with their ecto-
symbionts, displaying characteristic adhesion patterns
(Polz et al. 1992, 2000, Ott 1996). Typically, a microbial
consortium is present with the dominance of 1 symbi-
otic morphotype, as in representatives of Stilbonema.
For some species, like Eubostrichus dianae, it has been
proven that several phylotypes are consistently pre-
sent on the host surface (Polz et al. 1999). In Laxus spp.,
only 1 morphotype was found (Polz et al. 1992), which
proved to be a single phylotype of γ-proteobacterium
(Polz et al. 1994). The associations were stable over
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time despite 4 successive molts, during which the bac-
teria are shed with the old exuvia. Furthermore, as no
vertical transmission of symbionts from one to the next
host generation has been observed, the uptake is envi-
ronmental. The specific and consistent adhesion pat-
tern and the stable association over time requires a
precise recognition mechanism for the acquisition and
maintenance of the symbionts.

In their natural environment almost all bacteria
produce an extracellular matrix (ECM) consisting of
tangled sugar fibers, which act as the functional sur-
face of the microbe itself (Sutherland 1977, Costerton
et al. 1978). The surface coat (SC) of nematodes is
described as a mucopolysaccharide-rich layer with
occasionally occurring glycoproteins (Zuckerman et al.
1979, Spiegel et al. 1982, Bird & Zuckerman 1989, Page
et al. 1992). Hirabayashi et al. (1992) found the first
invertebrate galectin (β-galactoside-binding lectin) in
the cuticle of Caenorhabditis elegans. The ECM and
the SC, respectively, represent a primary mechanism
by which microbial cells and nematodes communicate
with their environment (Decho 1990, Brandley 1991,
Sharon & Lis 1993). However, very little is known
about the particular function of the nematode’s SC,
although for the parasitic species mediation of host
contact and immune evasion was suggested (Bird et al.
1989, Blaxter et al. 1992, Maizels 1993).

In contrast, the chemistry and function of bacterial
ECM (synonyms: glycocalix, capsule, slime) is much
better understood, especially in pathogens. Carbohy-
drates have an immense potential for diversity com-
pared with linear nucleic acids and proteins. Recogni-
tion of oligosaccharides within the ECM forms the
basis of many important examples of viral and bacter-
ial attachment to host cells in the course of infections.
The information carried in the ECM is decoded
by lectins (Arason 1996). Such carbohydrate–lectin
interactions have been described for pathogens
(Venkataraman et al. 1997, Ewart et al. 1999, Wang &
Leung 2000, Zamze et al. 2002). For symbiotic bacteria,
similar mechanisms have been proposed. In some rep-
resentatives of the Rhizobium–legume symbiosis, host-
specificity is mediated via lectins interacting with
exopolysaccharide components of the rhizobial cell
surface (Kijne et al. 1988, Diaz et al. 1995, van Rhijn et
al. 1998, Hirsch 1999, Price 1999, Fraysse et al. 2003).
For the Vibrio–squid symbiosis, a lectin–carbohy-
drate-based recognition/acquisition mechanism has
been suggested (McFall-Ngai 1994, McFall-Ngai &
Ruby 2000, Nyholm et al. 2002).

The observed high specificity of Stilbonematinae/
bacteria associations render unspecific adherence
mechanisms such as net surface charge, hydrophobic
or lipophilic forces (Beuth & Uhlenbruck 1995) unlikely
and suggest a carbohydrate–lectin interaction. 

We hypothesize that incubation in monosaccharide
solutions result in detachment of the symbionts due to
saturation of lectin carbohydrate recognition domains.
Ewart et al. (1999) demonstrated effective displace-
ment of lectins bound to the surfaces of Aeromonas
salmonicida and Vibrio anguillarum by incubation
with mannose solutions and suggested that these
results point to a lectin binding to mannose on the
bacterial surface.

We used representatives of the 3 basic types of
epigrowth: a multilayer of cocci (as in Stilbonema
maium), a monolayer of rods (in Laxus cosmopolitus
and L. oneistus) and a coat of non-septate filaments (in
Eubostrichus topiarius and E. dianae). 

The presence of carbohydrates on the surfaces of the
worms and/or the bacteria was investigated by fluores-
cein isothiocyanate (FITC)-labeled lectins using in vivo
incubations; their precise location was determined by
in vitro incubations on ultrathin sections with gold-
conjugated lectins. 

MATERIALS AND METHODS

Worm collection. Stilbonema maium, Laxus oneistus
and Eubostrichus dianae were collected in 0.5 m depth
from a back-reef sandbar at Carrie Bow Cay, Belize
Barrier Reef (Caribbean Sea; Ott & Novak 1989); L.
cosmopolitus and E. topiarius were collected in 3 m
depth from calcareous sand in Vestar Bay, Rovinj,
Croatia (Mediterranean Sea; Ott & Novak 1989). Sand
from each area was transported to Vienna, and kept in
buckets at 25 and 15 to 25°C, respectively. The worms
were extracted by gently shaking 200 ml portions of
sediment in artificial seawater (35) and pouring the
supernatant through a 63 µm mesh screen; they were
then picked by hand under a dissecting microscope.
Only freshly extracted individuals were used for the
experiments.

In vivo sugar incubations. Specimens of the 5 differ-
ent species were incubated in 0.2 µm-filtered artificial
seawater (35) with 10 different monosaccharides,
respectively, at various concentrations for 90 h at room
temperature (Table 1). We transferred 2 to 11 repli-
cates, consisting of a minimum of 2 to a maximum of
44 worms of the same species, into glass staining
blocks completely filled with approx. 2 ml sugar solu-
tion and covered these with glass lids to keep salinity
constant (±1). During the whole incubation time, the
staining block was shaken gently on a rocking table. A
control incubation in artificial seawater without added
sugar was carried out alongside each incubation.

The condition of the worms as well as the bacterial
coverage were checked under a Nikon SMZ-U stereo-
microscope at 100× magnification approximately every
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12 h. At the same time, the salinity of each solution was
measured. Bacterial detachment was scored only for
live individuals.

To ensure that the detachment of the symbionts was
not due to osmotic stress leading to disintegration of
the bacterial membrane, we measured the osmolarity
of the control and the sugar solutions with a 3MO
PLUS Advanced™ freezing-point osmometer. The
osmolarity of the respective sugar solutions differed
only slightly from 1074 mOsmol in the 0.1 M to 1098
mOsmol in the 0.7 M solutions. The mean osmolarity of
the artificial seawater (control) was 1081 mOsmol.
Additionally, we examined the integrity of the bacter-
ial membrane with the LIVE/DEAD® BacLight™ via-
bility kit (Molecular Probes). After each treatment, we
incubated the worms with attached bacteria and the
filtered detached bacteria in a component A:B ratio of
1:3, diluted 100-fold, for 15 min in the dark and viewed
them on a Reichert Polyvar I epifluorescence micro-
scope. As it is known that the LIVE/DEAD® kit does
not work reliably for all bacterial species, we tested the
assay beforehand. Dead and live symbionts were well
discriminated by their different color—green for living
and red for dead bacteria—and the best results were
obtained with the above concentrations.

In vivo incubation with FITC-labeled lectins. Laxus
cosmopolitus specimens with attached symbionts were
incubated in 0.15 M phosphate buffered saline (PBS),
pH 7.2, containing the following FITC-labeled lectins
each: concanavalin agglutinin (ConA), specificity = α-
D-mannose/α-D-glucose; peanut agglutinin (PNA),
specificity = α-D-galactose; soybean agglutinin (SBA),
specificity = N-acetyl-D-galactosamine, wheat germ
agglutinin (WGA), specificity = N-acetyl-D-gluco-
samine (SIGMA). The worms were rinsed 3 times for

5 min in 0.15 M PBS, pH 7.2, incubated in the same
buffer containing 100 µg ml–1 lectins in the dark for
30 min, rinsed again in 0.15 M PBS 3 × 5 min, and
observed immediately on a Reichert Polyvar I epifluo-
rescence microscope and photographed.

Post-embedding lectin ultracytochemistry. Several
Laxus cosmopolitus specimens were fixed in 4%
paraformaldehyde in 0.15 M PBS, pH 7.2, for several
hours, dehydrated in a series of ethanol, and embed-
ded in unicryl™ (British BioCell International). Ultra-
thin sections were made with a Reichert Ultracut S and
mounted on Formvar-coated nickel grids. Due to the
use of a hydrophilic resin, no etching procedure was
necessary prior to lectin incubation (Roth 1978, Herken
& Manshausen 1998).

Narcissus pseudonarcissus agglutinin (NPA) is spe-
cific for alpha-linked mannose (terminal and internal
residues) and prefers polymannose structures contain-
ing α-1, 6 linkages (Kaku et al. 1990). The biotinylated
NPA (Vector Laboratories, Burlingame, California) was
diluted to 20 µg ml–1 in 10 mM HEPES buffer, pH 7.5,
containing 0.15 M NaCl, and 0.08% sodium azide.
Gold-conjugated streptavidin (EM grade 5 nm, Zymed
Laboratories, San Francisco) provided in 20 mM Tris,
pH 8.2, 225 mM NaCl containing 1% bovine serum
albumin, 100-fold diluted in 50 mM Tris buffer, was
used as an electron-dense marker. For better localiza-
tion on the ultrathin sections, the gold particles were
enhanced with silver (silver enhancement kit, British
BioCell International).

Labeling with the lectin conjugates was performed
as a 2-step technique. The grids were incubated in
bovine serum albumin (BSA 1% in 50 mM Tris, pH 7.4)
for 20 min to prevent unspecific binding. Thereafter,
they were placed on a 100 µl drop of the NPA solution
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Treatment Conc. (mol l–1) L. cosmopolitus L. oneistus E. topiarius E. dianae S. maium

Control – 96.2 100 100 100 42.4
D(+)-mannose 0.1 100 100 66.6 100 0
D(+)-mannose 0.3 84.6 72 – – –
D(+)-mannose 0.5 81.8 78.9 75 100 0
D(+)-mannose 0.7 50 40 – – –
L-rhamnose 0.1 85.7 87.5 100 80 0
L-rhamnose 0.5 80 81.8 – – –
D(–)-fucose 0.1 91.6 75 100 75 100
D(–)-fucose 0.5 92.3 – – – –
D(+)-galactose 0.1 100 100 100 66.6 44.4
D(+)-glucose 0.1 100 100 100 66.6 42.9
N-acetyl-gal 0.1 42.9 55 50 71.4 89.5
N-acetyl-gal 0.5 30 50 – – –
N-acetyl-glu 0.1 16.7 62.5 40 60 9.1
N-acetyl-glu 0.5 20 40 – – –

Table 1. Laxus cosmopolitus, L. oneistus, Eubostrichus topiarius, E. dianae and Stilbonema maium. Survival rate (percentage of
total incubated individuals of each species per treatment) after incubation in different monosaccharide solutions and in artificial 

seawater (Control) for 90 h. N-acetyl-gal: N-acetyl-galactosamine, N-acetyl-glu: N-acetyl-glucosamine, –: not tested
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and incubated in a humidity chamber at room temper-
ature for 60 min. After 5 washing steps with 50 mM
Tris, pH 7.4, the grids were transferred onto a droplet
of the streptavidin–gold complex and incubated in a
humidity chamber at room temperature for 60 min.
Following 5 washing steps with 50 mM Tris, the sec-
tions were postfixed in 1% glutaralde-
hyde for 10 min and again washed
thoroughly with aqua bidestillata.
Subsequently, the grids were quickly
dried with filter paper and incubated
on drops of silver enhancement solu-
tion, following manufacturer’s instruc-
tions, for 3 min. After several rinses
with aqua bidestillata, the grids were
air-dried, stained with uranyl acetate
and lead citrate using a Reichert ultra-
stainer, and observed with a Zeiss EM
902 transmission electron microscope.

We ran 2 types of controls alongside
the incubations: (1) The specificity of
the lectin binding was checked by
competitive inhibition with D-mannose
(SIGMA), dissolved in the same buffer.
The NPA-biotin conjugate and a man-

nose solution (0.6 M) were mixed 1:1 (resulting sugar
concentration of 0.3 M) and incubated on a rocking
table at room temperature for 10 min. The grids were
then incubated in this lectin–sugar solution parallel to
the pure lectin solution. This and the following steps
were carried out as described above. (2) To screen for
the presence of endogenous biotin, the sections were
incubated as described above, omitting the lectin
incubation step.

Statistical analyses. Scheffé’s test for pairwise
multiple comparison was used to test for significant
differences between the sugar treatments and the con-
trol treatment. Sugar treatments and the control were
used as grouping factor. The following equation was
used to explain the percentage of aposymbiotic worms
(y) by the incubation time (x): y = a × [1–exp(–b × x)].
Regressions were calculated with the whole data set.
The effects of the different sugar concentrations were
tested by Kruskal-Wallis 1-way analysis of variance
using the concentrations as grouping variable. Analy-
ses were carried out with SPSS 10.0, and Sigma Plot
2000 (SPSS).

RESULTS

In vivo sugar incubations

Detachment of symbionts occurred during incuba-
tion of living worms in different monosaccharide solu-
tions as well as in seawater in all tested species,
although to a different extent.

The detachment rate (determined as percentage of
aposymbiotic [bacteria-free] worms after 90 h incuba-
tion) of the control was not significantly different from
the tested sugar solutions in Eubostrichus topiarius, E.
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Fig. 1. Laxus cosmopolitus and L. oneistus. Detachment of
symbionts after 90 h incubation determined as mean (+SD)
percentage of living, aposymbiotic (bacteria-free) worms after
incubation with different sugars and control incubations in
artificial seawater. D-mannose and the L-rhamnose treatments
differed significantly from all other treatments and from the
control. No significant differences were found between
D-mannose and L-rhamnose treatments for either species (see 

p-values in Table 2)

L. cosmopolitus L. oneistus
Mannose Rhamnose Mannose Rhamnose

Mannose – ns – ns
Rhamnose ns – ns –
Fucose <0.001 <0.001 0.001 0.011
Glucose <0.001 <0.001 0.001 0.014
Galactose <0.001 <0.001 0.003 0.028
N-acetyl-galactosamine <0.001 <0.001 <0.001< 0.001
N-acetyl-glucosamine nt nt <0.001< 0.004
Control <0.001 <0.001 <0.001< <0.001<

Table 2. Laxus cosmopolitus and L. oneistus. Results of Scheffé’s test for
pairwise multiple comparison of percentage of aposymbiotic specimens after
incubation in different solutions for 90 h given as p-values. D-mannose and
L-rhamnose treatments differed significantly from all other treatments and from
the control for both species. No significant differences (ns) were found between 
D-mannose and L-rhamnose treatment (p = 0.995 for L. cosmopolitus; p = 0.986 

for L. oneistus). nt: not tested
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dianae and Stilbonema maium (data not
shown).

In contrast, in Laxus cosmopolitus and L.
oneistus, the detachment rate was signifi-
cantly higher after incubation in D-mannose
and L-rhamnose compared to that in all other
sugars and the control (Fig. 1). No significant
differences of detachment rate were found
between D-mannose and L-rhamnose treat-
ments in either species (Fig.1). We tested the
percentages after 90 h incubation with
Scheffé’s test (p-values, Table 2).
Differences in bacterial detachment rates
due to the sugar concentrations used were
tested for both treatments (D-mannose,
L-rhamnose) and for both species (Laxus cos-
mopolitus, L. oneistus) and revealed no sig-
nificant difference (p-values: 0.371 to 0.683,
Kruskal-Wallis 1-way analysis of variance).
Therefore we pooled the incubation samples
for the 0.1, 0.3, 0.5, and 0.7 M D-mannose
solutions and the samples for the 0.1 and
0.5 M L-rhamnose solutions, respectively.

Detachment of symbionts was not ob-
served until after 16 h incubation. In both
species, with both sugars, the percentage of
aposymbiotic worms increased significantly
with increasing incubation time; the time
course (mean ± SD) of incubation in D-
mannose, L-rhamnose and the control is
shown in Fig. 2. Exponential regressions
were fitted to mannose (R2 = 0.55, p <
0.0001) and rhamnose (R2 = 0.80, p < 0.0001)
values in Laxus cosmopolitus and to man-
nose (R2 = 0.61, p < 0.0001) and rhamnose
(R2 = 0.35, p = 0.0005) values in L. oneistus.
The linear regressions of the control values
were significant in L. cosmopolitus (R2 =
0.43, p < 0.0001), but not in L. oneistus (R2 =
0.11, p = 0 .059). However, the mean values
for detachment of symbionts during the
incubation in the control did not exceed
29% in either species (Fig. 2).

The survival rate of the worms was calculated as
the percentage of total incubated individuals of each
species per treatment after 90 h incubation (Table 1).
For Laxus cosmopolitus and L. oneistus the rates
were generally high in all simple 6 carbon sugar solu-
tions with the exception of the 0.7 M mannose solu-
tion, but low in the N-acetyl sugars. Eubostrichus top-
iarius and E. dianae reacted similarly, with lower
survival rates in the N-acetyl sugars compared to the
other sugars. Stilbonema maium showed generally
very low survival rates, with the exception of the
fucose incubation.

Symbionts, whether detached or not, survived all
sugar and control incubations for at least 90 h (data not
shown). Although we used filtered seawater to prepare
the solutions and sealed the staining blocks during
incubation, minor contamination with putative hetero-
trophic bacteria could not be prevented. However,
screening of the detached bacteria and the still
attached symbionts with a biochemical viability test
resulted in green staining only (color for live bacteria)
for all filtered bacteria. Since it was only important to
test whether the symbionts were alive after detach-
ment, it was not relevant to distinguish between
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Fig. 2. (A) Laxus cosmopolitus and (B) L. oneistus. Mean (±SD) percent-
age of aposymbiotic worms during in vivo incubation with D-mannose
(exponential regression, solid line), L-rhamnose (exponential regression,
dashed line) and control incubations in artificial seawater (linear regres-
sion, solid line). (A) L. cosmopolitus: D-mannose (n = 2 to 11, subsample:
mean = 4.3), L-rhamnose (n = 4, subsample: mean = 4.3), control (n = 2 to
9, subsample: mean = 6.4); (B) L. oneistus: D-mannose (n = 2 to 8, sub-
sample: mean = 13.5), L-rhamnose (n = 2 to 4, subsample: mean = 4.8), 

control (n = 2 to 8, subsample: mean = 8.3)

A

B
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symbionts and heterotrophs; in addition one can easily
recognize the symbionts as they are on average bigger
than most known marine heterotrophic bacteria.

In vivo incubation with FITC-labeled lectins

D-mannose/D-glucose and N-acetyl-D-glucosamine
was detected on the symbionts of Laxus cosmopolitus but
not on the host’s cuticle. Only secretions of the amphid
and of the glandular sensory organs, structures known to
secrete mucopolysaccharides (Nebelsick et al. 1992,
Bauer-Nebelsick et al. 1995) were labeled. D-galactose
and N-acetyl-D-galactosamine were found neither on the
bacteria nor on the cuticle of L. cosmopolitus.

Post-embedding lectin ultracytochemistry

Incubation with NPA on ultrathin sections of Laxus
cosmopolitus revealed strong labelling of the bacteria,
no labelling of the worm’s cuticle and virtually no
background labelling. The label was seen very specif-
ically in the periplasmic space, the outer membrane
and the ECM of the symbionts (Fig. 3). Both controls
were negative.

DISCUSSION

A central question for all symbiotic
associations depending on environ-
mental transmission of the symbionts
addresses the mechanism of symbiont
recognition by the host. De novo infec-
tion of each host generation is known
from many well-studied cases, includ-
ing a variety of nitrogen-fixing, bio-
luminescent, and algal-invertebrate
symbioses (Trench 1993, van Rhijn &
Vanderleyden 1995, Hirsch 1999,
McFall-Ngai & Ruby 2000, Nyholm et
al. 2000). The stilbonematins not only
have to acquire their respective sym-
bionts after hatching, but additionally
4 times after each molt. A reliable
mechanism for the recognition of a
specific bacterial phylotype amongst
the diversity of bacteria in the inter-
stitial marine environment is vital for
perpetuity.

Since D-mannose and L-rhamnose
caused significantly higher detach-
ment rates of the symbionts in Laxus
cosmopolitus and L. oneistus than
incubations with seawater and with all
other tested sugars, we assume that

these sugars play a decisive role in the attachment
mechanism between host and symbiont. The time
course of detachment suggests a slow diffusion rate of
the sugars through the mucus matrix in which the
bacteria are embedded and/or a slow disintegration of
the mucus-bound bacterial coat.

None of the sugar solutions or the seawater control
induced significant detachment of the bacterial consor-
tium in Eubostrichus topiarius, E. dianae or Stilbonema
maium. It is possible that attachment in these species is
mediated through sugars other than those tested, or
eventually simultaneous incubation with more than one
sugar could induce detachment of the multilayered
bacterial coverage. However, this study revealed no in-
formation on the binding mechanism in these species.

Since lectin tests found D-mannose to be present only
in the bacterial membrane and not in the host’s cuticle,
the search for the opposite binding molecule, most
probable a lectin, should concentrate on the latter. It
was not possibly to test for the presence of L-rhamnose
in the symbionts, as no rhamnose-specific lectin was
commercially available at the time of the study.

Specificity in carbohydrate–lectin interactions is
achieved in many different ways (see Drickamer &
Taylor 1993, Weis & Drickamer 1996, Brooks et al.
1997). For example, lectins specifically recognize cer-
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Fig. 3. Laxus cosmopolitus. In vitro incubation with gold-labeled Narcissus
pseudonarcissus agglutinin (specificity: α-D-mannose) on ultrathin sections.
(A) Cross-section of symbionts; (B) detail of symbionts in longitudinal section;
asterisk: cuticle of host; arrow: periplasmic space; single arrowhead: extra-
cellular matrix of symbiont; double arrowhead: outer membrane of symbiont
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tain combinations of monomers within oligosaccha-
rides, or specificity is achieved through different orien-
tation of the same monomers (i.e. α1–6 linked mannose
vs α1–3 linked mannose) (Ng et al. 2002).

Zamze et al. (2002) found that the macrophage man-
nose receptor (Ca2+-dependent lectin) bound with the
highest affinity to D-mannose, but also to L-rhamnose
although with a lower affinity. However, the detach-
ment rates of symbionts during our incubations
showed no significant difference between L-mannose
and L-rhamnose. This points to an involvement in the
binding mechanism of both sugars in any combination
as an oligosaccharide. Alternatively, it is possible that
only 1 of these 2 sugars actually mediates the binding.
In such case, L-rhamnose would have competed with
D-mannose bound to a mannose-specific lectin or, vice
versa, D-mannose would have caused detachment by
competing with L-rhamnose bound to a rhamnose-
specific lectin. Theoretically this would be possible,
since the specificity of C-type animal lectins is a series
of cooperative hydrogen bonds involving Hydroxyl
Groups 3 and 4 combined with coordination to a cal-
cium ion. L-rhamnose is a 6-deoxy mannose and differs
only in the substitute on the C6 position (Drickamer
1997, Ng et al. 2002, Zamze et al. 2002). At this point,
we cannot say which of these 2 possibilities is true for
the Laxus sp. Isolation and characterization of the pre-
sumed lectins from the worms will reveal more details
on the binding mechanism.
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