Vertical distributions of nitrogen-fixing phytophases at Stn ALOHA in the oligotrophic North Pacific Ocean

Matthew J. Church¹,³,*, Bethany D. Jenkins¹, David M. Karl², Jonathan P. Zehr¹

¹Ocean Sciences Department, University of California at Santa Cruz, Earth and Marine Sciences Building, Santa Cruz, California 95064, USA
²Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822, USA
³Present address: Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822, USA

ABSTRACT: In large areas of the world's oceans, biological dinitrogen (N₂) fixation supports a significant fraction of ecosystem productivity; to date, however, there is little information on the abundances of specific diazotrophs in the ocean. In this study, the vertical distributions of several different groups of N₂-fixing bacteria were examined using quantitative polymerase chain reaction (QPCR) amplification of group-specific dinitrogenase reductase (nifH) genes from Stn ALOHA in the subtropical North Pacific Ocean. Depth distributions (<200 m) of 3 cyanobacterial nifH and 1 previously uncharacterized Cluster III nifH phylotype were evaluated. The nifH-containing cyanobacteria included sequence-types similar to Trichodesmium spp. and 2 nifH sequences closely related to unicellular cyanobacteria (termed Groups A and B). The Group A cyanobacteria (most closely related to Cyanothece sp.) were the most abundant of all phylotypes examined, comprising 2 × 10⁵ nifH gene copies l⁻¹ in the high-irradiance (>700 µmol quanta m⁻² s⁻¹), nitrate-depleted (<10 nmol l⁻¹) upper-ocean waters. Group B cyanobacterial phylotypes (most closely related to Crocosphaera watsonii) demonstrated a depth distribution similar to Group A, but Group B nifH abundance was considerably lower, averaging 2 × 10³ nifH gene copies l⁻¹ in the upper photic zone. The abundance of Trichodesmium spp. ranged from 1 × 10³ to 7 × 10⁵ nifH gene copies l⁻¹ in the upper ocean, declining to <100 nifH gene copies l⁻¹ below the mixed layer (~82 m). The Cluster III nifH phylotype was the most abundant nifH phylotype in the dimly lit (<12 µmol quanta m⁻² s⁻¹) lower photic zone (>100 m). These results revealed differences in the depth distributions of N₂-fixing plankton at Stn ALOHA, and suggest that unicellular diazotrophs comprise a significant component of plankton biomass in this oligotrophic marine ecosystem.

KEY WORDS: Nitrogen fixation · Bacterial diversity · Quantitative PCR · Hawaii Ocean · Time-series

INTRODUCTION

Ocean biogeochemistry is largely controlled by the metabolic activities of planktonic microorganisms. In many marine ecosystems, the bioavailability of nitrogen (N) regulates plankton production and carbon export (Dugdale & Goering 1967, Eppley & Peterson 1979). In the open ocean, plankton productivity is supported by both new and recycled forms of N (Eppley & Peterson 1979). New N inputs to the upper ocean include nitrate (NO₃⁻) introduced across the thermocline, atmospheric deposition, and biological fixation of dinitrogen (N₂). Direct measurements and biogeochemical proxies suggest that rates of N₂-fixation may account for a significant fraction of the total N flux into open-ocean ecosystems (Michaels et al. 1996, Gruber & Sarmiento 1997, Deutsch et al. 2001, Lee et al. 2002, Montoya et al. 2004).

Biological N₂-fixation is catalyzed by nitrogenase, a metal-cofactor enzyme that consists of 2 highly conserved proteins: an iron (Fe)-containing dinitrogenase reductase (or Fe protein), encoded by the nifH gene; and the molybdenum iron (MoFe) dinitrogenase (or MoFe protein), encoded by the nifDK genes. Nitroge-
nase is widely distributed among diverse Bacteria and Archaea, and evolved relatively early in prokaryote evolution (Zehr & Capone 1996, Falkowski 1997); as a result, the nif genes appear useful for evaluating phylogenetic relationships among prokaryotes (Zehr & Capone 1996, Falkowski 1997, Zehr et al. 2003).

Among the most conspicuous and well-studied of the oceanic N₂-fixers are the filamentous, nonheterocystous cyanobacteria of the genus *Trichodesmium*, which play a globally significant role in ocean biogeochemistry (Carpenter 1983, Capone et al. 1997, Karl et al. 1997). In addition, endosymbiotic N₂-fixing cyanobacteria such as *Richelia intracellularis*, which live in association with marine diatoms, also appear to provide fixed nitrogen to the upper-ocean plankton assemblages (Venrick 1974, Weare et al. 1974, Villareal 1991, Carpenter et al. 1999). Until recently, unicellular cyanobacteria were not considered important contributors to oceanic N₂-fixation; however, recent molecular-based techniques have identified two open-ocean nifH sequence-types (termed Groups A and B) that phylogenetically cluster with unicellular cyanobacteria (Zehr et al. 2001, Falcón et al. 2004), and both of these phylotypes have been found to express nifH, suggesting an active role for these groups in N₂-fixation (Zehr et al. 2001, Falcón et al. 2004).

The nifH DNA sequences of Group A cyanobacteria are loosely related (82% similar) to *Cyanothecae* sp. ATCC51142, while the Group B nifH DNA sequences are 92 to 99% similar to marine *Crococphaera watsonii* WH8501 (AF300829). Both *Cyanothecae* sp. and marine *C. watsonii* are 2 to 10 µm in diameter, unicellular cyanobacteria that contain the accessory photosynthetic pigment phycoerythrin PE (Rippka et al. 2001). Unicellular cyanobacteria of morphology similar to *Cyanothecae* sp. and *C. watsonii* have been observed in the open ocean (Campbell et al. 1997, Neveux et al. 1999, Falcón et al. 2004), and recent studies suggest that they may be important in open-ocean N₂-fixation (Falcón et al. 2004, Montoya et al. 2004).

The subtropical North Pacific Ocean is one of the most expansive ecosystems on Earth (Karl 1999). At Stn ALOHA in the central North Pacific Ocean, surface water concentrations of nitrate and nitrite [NO₃⁻+NO₂⁻] are typically <10 mM. Nitrate input to the upper ocean is largely restricted to diffusion across the nitracline and advective fluxes via Rossby waves and mesoscale eddies (Karl 1999, Letelier et al. 2000, Sakamoto et al. 2004). Despite the paucity of inorganic nutrients to support plankton growth, nitrogen export at Stn ALOHA averages 103 mmol N m⁻² yr⁻¹, with up to one-half of this export supported by N₂-fixation (Dore et al. 2002).

The TaqMan® 5'-fluorogenic exonuclease quantitative polymerase chain reaction (QPCR) assay has been used to assess the abundance and distribution of ecologically relevant marine prokaryotes (Suzuki et al. 2000, 2001, Short et al. 2004). In this study, we developed QPCR primers and probes to determine the abundances and vertical distributions of several nifH phylotypes observed at Stn ALOHA. QPCR primers and probes were developed to target *Trichodesmium* spp., and Group A and B cyanobacterial phylotypes, as well as a novel nifH Cluster III phylotype. Our results indicate that nifH genes are abundant in the upper ocean of the oligotrophic North Pacific Ocean.

MATERIALS AND METHODS

Sample collection, DNA extraction, and degenerate nifH PCR. Sampling for this study was conducted aboard the RV ‘Kilo Moana’ (KM 0210) during a research cruise to Stn ALOHA (22° 45’ N, 158° 00’ W) from December 12 to 16, 2002. Water samples were collected from 9 depths (5, 25, 45, 75, 100, 125, 150, 175, 200 m) in the upper ocean using polyvinyl chloride bottles attached to a conductivity-temperature-depth rosette sampler. Whole seawater was subsampled into 2 l polycarbonate bottles and processed at sea. We sequentially filtered 11 seawater samples from each depth onto in-line 25 mm diameter, 10 µm pore-size Nylon filters, and onto 0.2 µm pore-size Supor® filters (Pall Gelman). Seawater was pumped through the filters using a peristaltic pump and acid-washed silicon tubing. Upon completion of filtration, both the 0.2 and 10 µm filters were removed from the Swinnex® filter holders (Millipore) and placed in 2 ml centrifuge tubes containing 500 µl of Tris-EDTA (TE) (10 mM Tris-HCl, pH 7.4; 2 mM EDTA, pH 8.0) and nucleic acids were extracted from the 0.2 and 10 µm filters using the protocol described by Tillett & Neilan (2000). Briefly, 500 µl of potassium xanthogenate buffer (2% w/v potassium ethyl xanthogenate; 200 mM Tris-HCl, pH 7.4; 2 mM EDTA, pH 8.0; 2% sodium dodecylsulfate; 1.6 M ammonium acetate) was added to centrifuge tubes containing filters and 500 µl TE buffer. Filters were incubated at 70°C for 120 min. After extraction, the buffer containing extracted sample was removed from the tubes and transferred to new 2 ml centrifuge tubes. Samples were vortexed briefly, placed on ice for 30 min, and then centrifuged at room temperature at 10 000 × g for 10 min. The supernatants were transferred into clean 2 ml centrifuge tubes containing 750 µl of isopropanol. Samples were incubated at room temperature for 10 min and the precipitated DNA was pelleted by centrifugation at
10,000 × g for 10 min. The DNA pellets were washed once with 70% ethanol, air-dried, and then resuspended in 100 µl of TE buffer (Tillett & Neilan 2000). Samples were stored at −20°C until analysis. DNA concentrations were quantified by PicoGreen® DNA quantification (Molecular Probes) using a spectral fluorometer following the manufacturer’s specifications.

To assess the diversity of nifH-containing plankton at Stn ALOHA, samples from 9 depths in the upper 200 m were PCR-amplified using degenerate nifH primers (Zehr & Turner 2001, Steward et al. 2004). The resulting PCR products were cloned and sequenced following the protocol described in Zehr & Turner (2001). Briefly, a 2-step, nested PCR strategy was utilized to amplify a 359 bp region of the nifH gene (Zehr & McReynolds 1989). For the first round of the PCR, 2 ng of environmental DNA were added to 50 µl PCR reactions. After 30 cycles of PCR amplification, 2 µl of the first-round PCR products were added to 50 µl second-round PCR reactions and amplified for an additional 30 cycles. The resulting PCR products were visualized on an ethidium bromide-stained 1.2% agarose gel, excised, and purified using a QIAEX II kit (Qiagen). PCR-amplified DNA was cloned into P-GEM T vector (Promega), transformed in Escherichia coli JM109 competent cells, and identified by blue-white screening. Recombinant plasmids were purified using a 96-well Montage miniprep kit (Millipore), and sequenced using Applied Biosystems Big Dye™ chemistry on an ABI 3100 (Applied Biosystems). Representative nifH groups were sequenced on both strands.

QPCR amplification and primer specificity. For development of QPCR probes and primers, we selected 4 representative nifH sequences that were retrieved from the PCR clone libraries. QPCR amplification requires an oligonucleotide probe that contains both a fluorescent reporter and a quenching dye; when the probe is in close proximity to the quenching dye, fluorescence is effectively quenched. For this study, probes were 5'-labeled with the fluorescent reporter FAM (6-carboxyfluorescein) and 3'-labeled with TAMRA (6-carboxytetramethylrhodamine) as a quenching dye. During amplification, the probe is cleaved by the 5'-exonuclease activity of the Taq DNA polymerase, separating the reporter from the quencher and resulting in fluorescence emission. Fluorescence yield in the QPCR reaction is directly proportional to PCR product accumulation, which depends on the amount of the initial product in each reaction.

Primers and probes (Table 1) were designed for 4 different nifH phyatypes, comprising the Group A and Group B unicellular cyanobacteria, *Trichodesmium* spp., and the Cluster III nifH phyotype using Primer Express software (Applied Biosystems). The *Trichodesmium* spp. QPCR primers and probes were designed to target *T. thiebautti*; however, the *nifH* sequences of *Trichodesmium* spp. and *Katagnymene* spp. are closely related (Lundgren et al. 2001), and the *Trichodesmium* spp. QPCR primers and probes used for this study also amplified *nifH* genes from *T. erythraeum* and *T. thiebautti* with equal efficiency (data not shown).

Triplicate 25 µl QPCR reactions were conducted for each environmental DNA sample and for each standard. Reaction mixes contained 1 × TaqMan® PCR buffer (Applied Biosystems), 2.0 mM MgCl₂, 200 µM each of dATP, dGTP, dCTP and 400 µM dUTP, 400 nM each of forward and reverse primer, 200 nM of fluorogenic probe, 0.25 U of AmpErase uracyl N-glycosylase (UNG), 0.625 U AmpliTaq gold DNA polymerase (Applied Biosystems). To each reaction, 2 µl of environmental DNA or plasmid standards were added equivalent to 2–6 ng additions of environmental DNA. A GeneAmp® 5700 (Applied Biosystems) was used for quantitative detection of amplified PCR products. Thermal cycling conditions were 50°C for 2 min, 95°C for 10 min, and 45 cycles (95°C for 15 s followed by 60°C for 1 min).

The specificities of each QPCR primer/probe set were evaluated using non-target controls (plasmids containing non-target nifH inserts) in QPCR reactions and comparing the amplification cycle threshold (Ct) to plasmids containing the target nifH insert. The non-target controls used for the Group A primers and probes were non-target nifH PCR products cloned from Group B cyanobacteria (AF299418; 80% identical nifH DNA), and *Trichodesmium* spp. (AY528677; 75% identical nifHDNA); Group B non-target controls were cloned Group A (AF059642; 80% identical nifH DNA), and *Trichodesmium* spp. (77% identical nifH DNA) nifH fragments. Similarly, non-target controls for the *Trichodesmium* spp. probes and primers were cloned nifH PCR products from the Group A and B cyanobacteria. The non-target control for the Cluster III sequence was a cloned nifH PCR product (84% similar nifH DNA) from an uncultivated Cluster III phytype recovered from a microbial mat in Baja, Mexico (AY232376), as well as the nifH PCR products cloned from the Group A, B, and *Trichodesmium* spp. phytypes (Table 1).

Standard curves and PCR inhibition. Standards for each TaqMan® primer/probe set consisted of serial dilutions of the positive controls (plasmids with the target nifH inserts). To create standard curves of Ct versus amount of nifH target added to each reaction, 2 µl of each plasmid dilution were added to duplicate QPCR reactions. Additions of nifH genes for standard curves ranged from <10 to >10⁷ nifH copies per reaction. Least-squares linear regression analyses of Ct versus log₁₀ nifH gene copies were used to quantify the target genes in the environmental DNA samples.
Table 1. Specificity of oligonucleotide quantitative polymerase chain-reaction (QPCR) primers and probes, showing probe sequences followed by target and non-target sequences. Mismatched bases are underlined; number of mismatches relative to target sequence shown in parentheses. Gene abundances: \textit{nifH} gene abundances added to each reaction and gene abundances detected by QPCR; Target-base region: region of sequence targeted by primers and probe; ns: no significant amplification after 45 cycles of QPCR (i.e. cycle threshold value = 45)

<table>
<thead>
<tr>
<th>Probes and targets</th>
<th>Forward primer</th>
<th>Probe</th>
<th>Reverse primer</th>
<th>Gene abundances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A probe</td>
<td>\textbf{F} 5'-AGCTATAAACAACGTTTTA TGCCTTGA-3'</td>
<td>\textbf{P} 5'- TGGTTGGCAGCCTGAGGCA-3'</td>
<td>\textbf{R} 5'- ACCACGACACCACTGAC-3'</td>
<td>\textit{nifH} gene abundances added to each reaction and gene abundances detected by QPCR; ns: no significant amplification after 45 cycles of QPCR (i.e. cycle threshold value = 45)</td>
</tr>
<tr>
<td>Target-base region</td>
<td>106–131</td>
<td>133–153</td>
<td>156–174</td>
<td></td>
</tr>
<tr>
<td>Targets</td>
<td></td>
<td>TCCGCTTGA-3'</td>
<td>ACCACGACACCACTGAC-3'</td>
<td>1.1 (0/19)</td>
</tr>
<tr>
<td>Group A (AF059642)</td>
<td>GCTATAAACAACGTTTTATGCGTTGA (1/26)</td>
<td>(1/21)</td>
<td>(0/19)</td>
<td></td>
</tr>
<tr>
<td>Group B (AF299418)</td>
<td>GATTGAAACATCGATGCTGGA (11/26)</td>
<td>(0/21)</td>
<td>(0/19)</td>
<td></td>
</tr>
<tr>
<td>Trichodesmium clone (AY528677)</td>
<td>GCCCTGTGACGAGTTTTG (14/26)</td>
<td>(1/21)</td>
<td>(5/19)</td>
<td></td>
</tr>
<tr>
<td>Group B probe</td>
<td>\textbf{F} 5'-TGTTCCGAAGCCCTTGAGTGTTG-3'</td>
<td>\textbf{P} 5'-GATTGCTGAGCCTGAGGTA-3'</td>
<td>\textbf{R} 5'-TCTTGCTAGGAAATTTGAGGTA-3'</td>
<td>\textit{nifH} gene abundances added to each reaction and gene abundances detected by QPCR; ns: no significant amplification after 45 cycles of QPCR (i.e. cycle threshold value = 45)</td>
</tr>
<tr>
<td>Targets</td>
<td></td>
<td>TGGTGCTGAGGTA-3'</td>
<td>TCTTGCTAGGAAATTTGAGGTA-3'</td>
<td>3.3 (5/26)</td>
</tr>
<tr>
<td>Group B (AF299418)</td>
<td>TGGTTCCGAAGCCCTTGAGTGTTG (0/20)</td>
<td>(0/20)</td>
<td>(0/20)</td>
<td></td>
</tr>
<tr>
<td>Group A (AF059642)</td>
<td>TGGTTCCGAAGCCCTTGAGTGTTG (0/20)</td>
<td>(0/17)</td>
<td>(0/17)</td>
<td></td>
</tr>
<tr>
<td>Trichodesmium clone (AY528677)</td>
<td>TGGTGCTGAGGTA-3'</td>
<td>(2/20)</td>
<td>(0/20)</td>
<td></td>
</tr>
<tr>
<td>Trichodesmium probe</td>
<td>\textbf{F} 5'-GACGAAGTGTAATGGAAGCCAGGTTTCTGTC-3'</td>
<td>\textbf{P} 5'-ATCATAAGTTGAATCTGGTGGTGACGCAACCTA-3'</td>
<td>\textbf{R} 5'-CGGAGTGTAATGGAAGCCAGGTTTCTGTC-3'</td>
<td>\textit{nifH} gene abundances added to each reaction and gene abundances detected by QPCR; ns: no significant amplification after 45 cycles of QPCR (i.e. cycle threshold value = 45)</td>
</tr>
<tr>
<td>Target-base region</td>
<td>217–241</td>
<td>246–278</td>
<td>284–300</td>
<td></td>
</tr>
<tr>
<td>Targets</td>
<td></td>
<td>CATTTAAGTTGAATCTGGTGGTGACGCAACCTA-3'</td>
<td>CGGAGTGTAATGGAAGCCAGGTTTCTGTC-3'</td>
<td>1.5 (3/16)</td>
</tr>
<tr>
<td>Trichodesmium clone (AY528677)</td>
<td>GACGAAGTGTAATGGAAGCCAGGTTTCTGTC-3'</td>
<td>(0/24)</td>
<td>(0/24)</td>
<td></td>
</tr>
<tr>
<td>Cluster III probe</td>
<td>\textbf{F} 5'-GGAGCCCTACGAGGAGCCAAGTCACG-3'</td>
<td>\textbf{P} 5'-TTGACGTACCGTCTTACGACG-3'</td>
<td>\textbf{R} 5'-GCAAGCACCGCTACCCAGTAC-3'</td>
<td>\textit{nifH} gene abundances added to each reaction and gene abundances detected by QPCR; ns: no significant amplification after 45 cycles of QPCR (i.e. cycle threshold value = 45)</td>
</tr>
<tr>
<td>Target-base region</td>
<td>202–223</td>
<td>227–245</td>
<td>247–267</td>
<td></td>
</tr>
<tr>
<td>Targets</td>
<td></td>
<td>TGGACTACCGCCTTACGACG-3'</td>
<td>GCAAGCACCGCTACCCAGTAC-3'</td>
<td>4.6 (0/21)</td>
</tr>
<tr>
<td>Cluster III (AY528678)</td>
<td>GGAGCCCTACGAGGAGCCAAGTCACG (0/21)</td>
<td>(0/19)</td>
<td>(0/19)</td>
<td></td>
</tr>
<tr>
<td>Guerro Negro clone (AY232376)</td>
<td>GGAGCCCTACGAGGAGCCAAGTCACG (4/21)</td>
<td>(0/21)</td>
<td>(0/21)</td>
<td></td>
</tr>
<tr>
<td>Group A (AF059642)</td>
<td>GAAGAGGGTTCTGTAGCATGAGAAAAAC (12/21)</td>
<td>(2/21)</td>
<td>(2/21)</td>
<td></td>
</tr>
<tr>
<td>Group B (AF299418)</td>
<td>GAAGAGGGTTCTGTAGCATGAGAAAAAC (12/22)</td>
<td>(9/21)</td>
<td>(9/21)</td>
<td></td>
</tr>
<tr>
<td>Trichodesmium clone (AY528677)</td>
<td>GAAGAGGGTTCTGTAGCATGAGAAAAAC (14/21)</td>
<td>(8/21)</td>
<td>(8/21)</td>
<td></td>
</tr>
</tbody>
</table>
Model I linear regression analyses were performed using Sigma Plot Version 8.0 (SPSS).

To assess potential influences of PCR inhibition on amplification of environmental samples, duplicate QPCR reactions from each environmental sample were spiked with 0.5 pg positive-control DNA (plasmids containing the target nifH PCR product). An increase in the Ct of the positive control due to inhibition by environmental samples was detected by comparison with the Ct of the positive control alone. Several experiments were also conducted to determine if the measured QPCR signal was proportional to the amount of environmental DNA added to the reaction. In these experiments, varying additions of environmental DNA (0.1 to 24 ng DNA) were added to triplicate 25 µl QPCR reactions and the resulting Ct values were evaluated to determine if the signal was proportional to the sample added.

Biogeochemical parameters. Chlorophyll a concentrations were determined by filtering 125 ml seawater samples onto Whatman 25 mm GF/F filters (Whatman) and extracting samples in 90% acetone; concentrations were determined fluorometrically using a Turner AU-10 fluorometer (Turner). PE concentrations were measured from size-fractionated plankton samples following a protocol described by Wyman (1992), as modified by Dore et al. (2002). Briefly, whole seawater was size-fractionated onto 10.0, 5.0, and 0.4 µm filters; PE was extracted from the filters, and concentrations were determined fluorometrically. To capture suspended particles, 10 l of seawater were sequentially pressure filtered onto 25 mm diameter 10.0 µm pore-size Nitex screening and 5.0 µm polycarbonate filters (Millipore). Next, 1 l from each of the <5.0 µm filtrates was vacuum-filtered onto 25 mm-diameter, 0.4 µm pore-size polycarbonate filters (Millipore). Filters were placed in 20 ml scintillation vials containing 5 ml of a saline-glycerol solution (35 g L–1 NaCl), and stored frozen until processed in the laboratory. In the laboratory, scintillation vials were placed on an orbital shaker table to resuspend particulate material from the filters, and the in vivo fluorescence of the resuspended particles was determined on the same Turner AU-10 fluorometer (544 nm excitation and 577 nm emission) used for chlorophyll determinations.

The abundances of Prochlorococcus spp., Synechococcus spp. and non-pigmented prokaryotes were enumerated by flow cytometry using the methods described in Monger & Landry (1993) and Campbell & Vaulot (1993). Briefly, 1 ml seawater samples were added to cryovials (Corning) containing 0.02 ml of 10% paraformaldehyde, and samples were quick-frozen in liquid nitrogen. For analyses, samples were thawed and stained for 2 h with the fluorochrome Hoechst 33342 (Molecular Probes). Cell concentrations were then enumerated on a Coulter EPICS dual laser (1 W 488 nm and 225 mW UV) flow-cytometer (Beckman Coulter). The flux of photosynthetically available radiation (PAR, 400 to 700 nm) was determined from measurements of downwelling irradiance; profiles were collected using a Biospherical Instruments Profiling Reflectance Refractometer (PRR 600) (Biospherical Instruments). Upper-ocean [NO3– + NO2–] was determined using the chemiluminescent detection system described by Garside (1982) and Dore & Karl (1996).

RESULTS

Upper-ocean biogeochemical characteristics and degenerate nifH PCR

Based on data collected on a Hawaii Ocean time-series (HOT) program cruise to Stn ALOHA on December 17 to 21, 2002 (approximately coincident with this study), the average surface mixed layer based on the 0.125 potential density criterion (Monterey & Levitus 1997) was 82 m, and the base of the photic zone (1% surface isopleth for PAR) was 108 m (Fig. 1A). Mixed-layer temperatures averaged 24.7°C and decreased to 23.1°C at the base of the photic zone. Mixed-layer [NO3– + NO2–] averaged 2.5 nmol N l–1, increasing to >300 nmol N l–1 at 100 m (Fig. 1A). Concentrations of DNA extracted from the <10 µm plankton size classes ranged between 0.18 and 1.5 µg DNA l–1 (Fig. 1A).

The abundance of non-pigmented picoplankton was nearly constant throughout the mixed layer, averaging 6.7 × 10⁶ cells l–1, declining more than 2-fold beneath the photic zone (Fig. 2A). Similarly, the depth distributions of Prochlorococcus spp. and Synechococcus spp. were also approximately constant in the mixed layer, averaging 1.3 × 10⁹ and 2.4 × 10⁸ cells l–1, and declining 76 and 90%, respectively, toward the base of the photic zone. Depth-integrated (0 to 100 m) abundances of non-pigmented picoplankton, Prochlorococcus spp., and Synechococcus spp. were 3.9 × 10¹³, 1.7 × 10¹³, and 1.9 × 10¹¹ cells m–², respectively. Vertical profiles of size-fractionated PE revealed the greatest concentrations to be associated with the <10 to 0.4 µm size fraction (Fig. 2B); concentrations in this size fraction were more than 1 order of magnitude greater than concentrations in the >10 µm size fraction. Concentrations of PE in the <10 µm size fraction averaged 5.8 ng l–1 in the top 60 m of the water column, decreasing roughly 5-fold toward the base of the photic zone (Fig. 2B). In contrast, concentrations of >10 µm PE were lower, varying from 0.2 and 2.1 ng l–¹ throughout the mixed layer, and decreased to ≤0.1 ng l–¹ by 100 m.

nifH gene fragments were amplified from samples collected in the upper 175 m of the water (Fig. 1B).
Phylotypes retrieved from the nifH PCR amplification and sequencing of the <10 µm plankton size class included several sequences ≥98% identical to the Group A (AF059642) and Group B cyanobacteria (AF299418) (Zehr et al. 2001). In addition, several...
sequences similar (98 to 99% identical) to Trichodesmium thiebautii (U23507) and Katagnymene spiralis (AF395130) were obtained (Fig. 3A). Also retrieved from the <10 mm plankton size class was a Cluster III nitH DNA sequence (Fig. 3B); this Cluster III nitH sequence had not previously been reported from the open ocean. Sequences grouping with the Cluster III nitH phylotypes include strict anaerobes such as Desulfovibrio spp., archaeal methanogens, and green sulfur bacteria (Young 1992, Zehr et al. 2003).

PCR amplification and sequencing of the >10 µm plankton size class revealed several phylotypes identical to sequences found in the <10 µm size class, including nitH DNA sequences ~98% identical to Trichodesmium thiebautii, and several sequences identical to the Group A and the novel Cluster III nitH phylotype. No nitH sequences closely related to the Group B cyanobacteria were found in the >10 µm plankton clone library.

QPCR amplification of upper-ocean diazotrophs

Amplification of standards was log_{10}-linear across a range of target gene concentrations from ~1 to 10^7 gene copies per reaction (Fig. 4A). The relationship between Ct and target nitH genes in the standards was also generally consistent among the 4 primer and probe sets (Fig. 4A). The least-squares linear regression of the standard curve for all phylotypes was

\[\text{Ct} = -3.27 \times \log_{10}(\text{nitH gene copies}) + 39.9 \quad (R^2 = 0.95, p < 0.0001) \]

with the coefficient of variation of the log_{10}-transformed standards averaging 5%.

The specificities of the QPCR primers and probes used in this study were tested by the addition of plasmids containing non-target, cloned nitH PCR products to QPCR reactions and evaluating whether any of the non-target nitH PCR products demonstrated cross-reactivity with the QPCR probes and primers (Table 1).
When <10⁵ non-target nifH gene copies were added to each reaction, no significant amplification was detected after 45 PCR cycles (Table 1). This procedure has a detection limit of ~1 nifH gene copy per reaction.

Overall, the presence of environmental DNA did not significantly alter the amplification of the plasmid positive controls, indicating that PCR inhibition did not influence the amplification of nifH DNA in the environmental samples. QPCR reactions containing DNA additions between 0.2 and 12 ng DNA demonstrated the predicted logarithmic relationship between target gene abundance and Ct (Fig. 4B), implying that within this range of DNA, the measured Ct values were proportional to the amount of DNA added to each reaction.

The relative abundances of all 4 nifH phylotypes demonstrated large variations with depth, with greater nifH gene abundances in the upper 50 m of the photic zone, declining substantially with depth (Fig. 5). The average mixed-layer abundance of the nifH gene from Group A cyanobacteria in the <10 µm plankton size class was 1 × 10⁵ copies l⁻¹, decreasing to 2 × 10⁴ copies l⁻¹ beneath the photic zone (Fig. 5A). Trichodesmium spp. phylotypes were only detected by QPCR in the mixed layer from the >10 µm plankton size fraction (Fig. 5B). Mixed-layer abundance of Trichodesmium spp. averaged 4 × 10³ copies l⁻¹, becoming undetectable (<1 gene copy per reaction) below the photic zone (Fig. 5B). The Cluster III nifH phylotype in the <10 µm size class averaged 7 × 10⁴ copies l⁻¹ in the mixed layer, but beneath the photic zone the Cluster III nifH phylotype was the most abundant of the phylotypes examined in this study (5 × 10² copies l⁻¹) (Fig. 5A). The Cluster III nifH phylotype was also detectable in the >10 µm plankton size class, but at low abundance (ranging from 5 × 10² to 1 × 10² copies l⁻¹) (Fig. 5B). The sum of the depth-integrated gene abundances for all 4 nifH phylotypes was ~1. 5 × 10¹⁰ nifH copies m⁻².

DISCUSSION

While diverse species of oceanic microorganisms appear capable of N₂-fixation (Zehr et al. 1998, 2001), to date there is little information on the abundance of specific diazotrophs in the open ocean. In this study, we utilized TaqMan® assays to quantify the abundance and vertical distributions of nifH genes corresponding to 4 upper-ocean nifH phylotypes. As employed in this study, detection of nifH genes indicates the genetic potential for N₂ fixation. All 4 nifH phylotypes demon-
stratified greatest abundances in the upper 45 m, where \([\text{NO}_3^- + \text{NO}_2^-] \) averaged 2.5 nmol N l\(^{-1}\) and flux of light energy was high (68 to 700 µmol quanta m\(^{-2}\) s\(^{-1}\)). Gene abundances decreased significantly below the mixed layer, where \([\text{NO}_3^- + \text{NO}_2^-] \) increased more than 20-fold, and light fluxes decreased to <17 µmol quanta m\(^{-2}\) s\(^{-1}\).

Among the \(nifH \) phylotypes examined by QPCR, the Group A and B cyanobacteria and the novel Cluster III phylotypes were most abundant in the smaller (<10 µm) plankton size class. \(Trichodesmium \) spp. phylotypes were detected by QPCR in the >10 µm plankton size class at mixed-layer concentrations of \(\sim 4 \times 10^3 \) \(nifH \) gene copies l\(^{-1}\). Group A cyanobacteria, which phylogenetically cluster with unicellular cyanobacteria, were detected at low concentrations (<3 × 10\(^2\) gene copies l\(^{-1}\) in the >10 µm size class. Based on these results, we are unable to determine whether the Group A cells sometimes exceed 10 µm, or whether the cells exist as aggregates or aggregated during filtration. The Group A phylotypes could also occur as endosymbionts; Carpenter & Janson (2000) observed unicellular cyanobacteria with 16S rDNA sequences similar to \(Cyanotoce \) sp. (ATCC 51142) inside the diatom host \(Climacodium frauenfeldianum \) in both the tropical Pacific and Atlantic Oceans.

The use of QPCR to enumerate \(nifH \) gene abundances relies on several assumptions. Gene copy numbers are calculated relative to PCR standards and therefore assume that amplification of environmental DNA closely mimics amplification of the standards (Chandler 1998, Suzuki et al. 2000). Suzuki et al. (2000) demonstrated that quantification of gene targets in environmental DNA depends on selection of suitable standards. In the present study, most of the sequence-types targeted by the QPCR were uncultivated; as a result, we derived our estimates of gene copy numbers from plasmids that contained the cloned \(nifH \) sequence-types.

Our estimates of \(nifH \) gene abundances also assume that the DNA extraction efficiency was complete and equal among the various organisms in the environmental samples. Suzuki et al. (2001) observed differences in percentages of phylotypes estimated by QPCR from samples collected on different filter matrices. These authors hypothesized that these differences may have resulted from variations in DNA extraction efficiency (Suzuki et al. 2001). We did not specifically examine the efficiency of DNA extraction from each sample; however, all samples were subjected to identical extraction procedures, and had equal volumes of seawater loaded onto the filters.

Previous investigations into the diversity of \(N_2 \)-fixing bacteria at Stn ALOHA have identified several distinct \(nifH \) sequence-types, including the Group A and B cyanobacteria (Zehr et al. 1998, 2001, Falcón et al. 2002, 2004). Consistent with those prior studies, PCR amplification and sequencing of the upper-ocean
plankton assemblage in the present study revealed several *nifH* phylotypes, including sequences closely related to *Trichodesmium* spp., the previously identified Group A and B unicellular cyanobacteria, and a novel Cluster III *nifH* phylotype.

Both the Group A and B cyanobacteria have been shown to express *nifH* at Stn ALOHA, suggesting that these groups may be actively involved in N$_2$-fixation (Zehr et al. 2001, Falcón et al. 2004). The Group B *nifH* DNA sequences are most similar (93 to 99%) to the *nifH* DNA sequence of marine *Crocosphaera watsonii*, while Group A *nifH* DNA sequences are most closely aligned (~82%) with *Cyanobacaera* sp. (ATCC 51142). Both *C. watsonii* and *Cyanobacaera* sp. typically range from 2 to 10 µm in diameter (Reddy et al. 1993, Rippka et al. 2001), and both appear to temporally decouple N$_2$-fixation from photosynthesis (Sherman et al. 1998).

The recently sequenced genomes of *Crocosphaera watsonii* and *Trichodesmium erythraeum* indicate that each of these microorganisms contains a single *nifH* gene copy per genome (see www.jgi.doe.gov). Based on QPCR amplification, we estimate that the mixed-layer cellular abundances of Group B phylotype averaged ~103 cells l$^{-1}$. Assuming that the Group A phylotype also contains a single copy of *nifH*, mixed-layer Group A abundances would have averaged ~104 cells l$^{-1}$. These abundance estimates are consistent with previous enumerations of 2 to 10 µm unicellular, PE-containing cyanobacteria in the oligotrophic Pacific Ocean. Ishizaka et al. (1994) observed a population of 2 to 4 µm sized PE-containing coccolid cyanobacteria at concentrations ranging from ~103 to 106 cells l$^{-1}$ along a meridional survey between 14 and 26°N in the central North Pacific Ocean. Similarly, Campbell et al. (1997) found 3 to 5 µm diameter *Synechocystis* sp.-like cells at Stn ALOHA at concentrations varying from 103 to 106 cells l$^{-1}$. In the South Pacific, Neveux et al. (1999) observed 2 to 3 µm diameter cyanobacteria at concentrations of ~105 cells l$^{-1}$ in the upper 60 m of the water, and Falcón et al. (2004) estimated that the abundance of 3 to 7 µm unicellular cyanobacteria at Stn ALOHA averaged ~106 cells l$^{-1}$.

Prior to the discovery of unicellular N$_2$-fixing cyanobacteria, *Trichodesmium* spp. was believed to be the dominant marine diazotroph in the open ocean. Based on 3 yr of microscopic enumerations, Letelier & Karl (1996) estimated that *Trichodesmium* spp. abundance in the upper 45 m at Stn ALOHA ranged from ~1 × 104 to 9 × 104 cells l$^{-1}$, consistent with previous reports (Carpenter 1983). Based on QPCR amplification of *Trichodesmium* spp. phylotypes, we estimate that the mixed-layer gene abundances of *Trichodesmium* spp. averaged 3 × 103 *nifH* copies l$^{-1}$ during this cruise. These results suggest that, at times, the *nifH* gene abundances of the unicellular cyanobacterial Groups A and B can be similar to or exceed that of *Trichodesmium* spp. Supporting these results, concentrations of the <10 µm PE-containing plankton were approximately 1 order of magnitude greater than the >10 µm size classes, suggesting that unicellular cyanobacteria were substantially more abundant than the larger filamentous, colony-forming cyanobacterium *Trichodesmium* spp. during this cruise.

In addition to evaluating the distributions of *nifH*-containing cyanobacteria, we also quantified the abundance of a Cluster III *nifH* phylotype. Previous studies have retrieved Cluster III *nifH* sequences from PCR clone libraries for the open ocean. For example, Zehr et al. (1998) and Braun et al. (1999) found Cluster III *nifH* sequences in PCR-amplified DNA extracted from zooplankton biomass in the Gulf of Mexico and eastern Caribbean, leading these authors to hypothesize that oceanic invertebrates might host diazotrophs. To our knowledge, the present study is the first to have retrieved Cluster III *nifH* sequences from <10 µm plankton in the surface waters of the open ocean. Conceivably, the Cluster III *nifH* prokaryotes could exist in O$_2$-reduced microenvironments in the upper ocean, e.g. attached to large particles or within the food vacuoles of microzooplankton. However, QPCR amplification of the Cluster III *nifH* gene in the >10 µm size fraction revealed low gene abundances (<102 *nifH* copies l$^{-1}$).

Diazotrophic prokaryotes that phylogenetically group with the Cluster III *nifH* sequences include strict anaerobes such as *Desulfovibrio* spp., spirochetes, archaeal methanogens *Methanosarcina* spp., and phototrophic green-sulfur bacteria *Chlorobium tepidum* (Young 1992, Zehr et al. 2003). The depth distribution of the Cluster III phylotype resembles the depth distribution of the *Crenarchaeota* sp. at Stn ALOHA (Karner et al. 2001); however, the Cluster III *nifH* sequence-type clusters more closely with green-sulfur bacteria and the spirochetes than with archaeal *nifH* sequences. Moreover, a recent study characterizing the diversity of *nifH* phylotypes in the deep (2200 m) waters of the North Pacific found only Cluster II *nifH* phylotypes (Mehta et al. 2003). The Cluster III *nifH* sequences retrieved in this study could also have derived from green-sulfur bacteria; 16S rRNA sequences similar to those of *Chlorobium* spp. (SAR406) have been retrieved from the oligotrophic Sargasso Sea (Gordon & Giovannoni 1996). Based solely on *nifH* sequence information and the phylotype depth distribution it is difficult to judge the ecological and biogeochemical significance of this Cluster III phylotype.

Unicellular N$_2$-fixing bacteria may serve an important role in the introduction of new N to open-ocean microbial food webs. Unicellular plankton populations appear tightly regulated by top-down control (Caron et
al. 1991, Landry & Kirchman 2002); such trophodynamic pressures could support a significant fraction of nutrient regeneration in the upper ocean. Trophic transfer of N fixed by diazotrophic bacteria may provide a source of N that partly supports microbial food webs. Moreover, the low surface-area-to-volume ratio of unicellular cyanobacteria probably facilitates their ability to compete for nutrients in the oligotrophic ocean. While episodic blooms by large colonial cyanobacteria such as Trichodesmium spp. and diatoms with endosymbiotic N₂-fixing cyanobacteria undoubtedly support a significant fraction of export productivity at Stn ALOHA (Letelier & Karl 1996, Karl et al. 1997), the occurrence of these blooms appears linked to aeolian iron deposition (Karl 2002, Karl et al. 2003); the relatively small size of unicellular diazotrophs may enable sustained N₂-fixation in the absence of infrequent dust-deposition events, and provide a regular source of N to upper-ocean microbial food webs.

Acknowledgements. We are grateful to the captain and crew of the RV ‘Kilo Moana’ for assistance at sea. We thank R. R. Bidigare (University of Hawaii) for organizing the research cruise and extending the opportunity for us to participate in this special-focus HOT cruise. S. M. Short, C. M. Short, and E. O. Omoregie provided insights into the nifH QPCR assays. This project was supported by NSF grants to J.P.Z. (OCE 9977460 and OCE 0132638) and D.M.K. (OCE 0326616).

LITERATURE CITED

Submitted: March 8, 2004; Accepted: August 15, 2004

Proofs received from author(s): December 27, 2004

Editorial responsibility: David Caron, Los Angeles, California, USA