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INTRODUCTION

In the world’s oligotrophic oceanic regions, nitrogen
(N) and iron are traditionally considered the nutrients
that limit primary production (Graziano et al. 1996,
Mills et al. 2004). However, at certain times of the year,
phosphorus (P) may actually limit primary production.

The Mediterranean Sea appears to be P-limited during
summer-stratified periods (Thingstad & Rassoulzade-
gan 1995). In the North Atlantic, a seasonal P limitation
(based on measurements of concentrations and ratios
of N and P and alkaline phosphatase activity, APA) has
been observed following increased periods of N2 fixa-
tion (Michaels et al. 1996, Wu et al. 2000, Cavender-
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which lacks phoA and a functional phosphate-sensing histidine kinase gene, phoR, exhibits low
constitutive activity that decreases when the cells become P-starved. These results show variability
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and marked differences among Prochlorococcus genotypes, implying that only certain eco/genotypes
of these marine cyanobacteria will have an ecological advantage under conditions of P limitation in
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tools to assess the response of the picophytoplankton community to large-scale changes in nutrient
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Bares et al. 2001, Ammerman et al. 2003). The most
dramatic example of P limitation has been documented
in the North Pacific subtropical gyre (NPSG), where it
appears to have undergone a climate-related shift from
an N- to a P-limited ecosystem over the past several
decades, due to increases in N2 fixation (Karl et al.
1997). Correlated with increased N2 fixation are shifts
in the total dissolved nutrients to greater concentra-
tions of organic P compounds in the euphotic water
column of the Sargasso Sea and NPSG (Bjorkman et al.
2000). This shift to P limitation may also be the cause of
an observed ‘domain shift’ toward an ecosystem domi-
nated by prokaryotic organisms (Karl et al. 2001).
Thus, these short- and long-term shifts in P limitation
are affecting rates of gross primary production and
export, C:N:P stoichiometry of dissolved and particu-
late matter, and community structure.

The unicellular marine cyanobacterial genera,
Prochlorococcus and Synechococcus, dominate the
photosynthetic biomass and are responsible for a sig-
nificant portion of primary production in oligotrophic
ocean ecosystems (Partensky et al. 1999). However,
whether these primary producers become P-limited is
not clear. There is some evidence in the Red Sea (Li et
al. 1998, Fuller et al. 2005) and the Mediterranean Sea
(Vaulot et al. 1996) that Synechococcus populations
may be P-limited, whereas Prochlorococcus popula-
tions do not appear to be (Vaulot & Partensky 1992).
On the other hand, it has recently been reported that
Synechococcus predominate in the Mediterranean
Sea, possibly due to their high affinity for inorganic P
(Pi) and significantly higher maximum uptake rates
relative to other plankton (Moutin et al. 2002). In the
NPSG Prochlorococcus populations appear to have
increased over the last several decades, possibly in
response to the shift towards conditions of P limitation
(Karl et al. 2001). These results on natural populations
of Prochlorococcus and Synechococcus may differ if
different eco/genotypes1 of either of these genera were
dominating at the time of the studies. Regardless, both
genera appear to be impacted in some way by condi-
tions of P limitation.

Isolates of both Prochlorococcus and Synechococcus
have been categorized based on their phylogenetic
relationships, which in many cases can be correlated to
differences in their ecology and/or physiology. There

are 2 physiologically and genetically distinct groups of
Prochlorococcus isolates: high-light-adapted isolates
(HL ecotypes) and low-light-adapted isolates (LL eco-
types), which differ in their chlorophyll b/a ratio,
photosynthetic capabilities, copper sensitivity, nitrite
utilization, and depth distributions (Moore et al. 1998,
Moore & Chisholm 1999, Rocap et al. 1999, West &
Scanlan 1999, West et al. 2001, Mann et al. 2002). The
HL isolates can be further subdivided into HLI and
HLII genotypes, the ecophysiological significance of
which is not yet evident. Synechococcus isolates have
been split into as many as 10 clades, only 2 of which
have a distinctive physiology associated with them
(Toledo & Palenik 1997, Urbach et al. 1998, Toledo et
al. 1999, Rocap et al. 2002, Fuller et al. 2003). Up to this
point, phosphorus physiology as a potential determi-
nant of these different eco/genotypes has not been
examined.

Extensive studies of marine A Synechococcus Strain
WH 7803 (Clade V) indicate that this strain can use a
wide range of organic P sources for growth and that P
limitation results in high Pi-uptake rates and produc-
tion of a high-affinity Pi-binding protein (Scanlan et al.
1993, Donald et al. 1997). Examination of the P physi-
ology of Prochlorococcus has not been as extensive,
due to the difficulty in studying the physiological
status of natural populations and to the difficulty in
obtaining isolates of Prochlorococcus that are free of
heterotrophic contaminants, i.e. axenic. Cell-cycle
studies of Prochlorococcus indicate that their response
to P starvation is strikingly different from that of Syne-
chococcus (Parpais et al. 1996). Studies on the axenic
Prochlorococcus sp. PCC 9511 indicated that, like
Synechococcus WH 7803, this strain of Prochlorococ-
cus can utilize a wide variety of organic P sources for
growth (Rippka et al. 2000). Recent work on the ele-
mental composition of Prochlorococcus and Syne-
chococcus isolates under both P-replete and P-limited
culture conditions indicate that their C:N:P ratios are
higher than the Redfield ratio, suggesting relatively
low P requirements and potential competitive advan-
tage over heterotrophic bacteria and larger phyto-
plankton in oligotrophic oceans (Bertilsson et al. 2003,
Heldal et al. 2003). A recent study by Fuller et al.
(2005) indicates that natural populations of Prochloro-
coccus (dominated by the HLII genotype) in the Red
Sea appear unaffected by P stress, whereas Syne-
chococcus populations may have declined due to P
limitation.

The recent availability of the complete genome
sequences for motile Clade III Synechococcus WH
8102 (Palenik et al. 2003) and 3 Prochlorococcus strains
(Dufresne et al. 2003, Rocap et al. 2003) has provided
insight into the genetic basis relating to P ecophysiol-
ogy. Synechococcus WH 8102 and HLI Prochloro-
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1Different types of marine Synechococcus and Prochloro-
coccus have been referred to as ecotypes, genotypes, or pig-
ment types by different researchers. In this paper, the term
‘ecotype’ will refer to phylogenetic clades of Prochlorococcus
that have a characteristic ecophysiology, and ‘genotype’ will
be used when referring to phylogenetic clades of either
Synechococcus or Prochlorococcus that do not yet have an
associated ecophysiology
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coccus MED4 possess most of the genes required for P
acquisition and regulation, whereas the other 2 Pro-
chlorococcus genomes, LL ecotypes MIT 9313 and
SS120, lack several of these genes, indicating clear
diversity among the Prochlorococcus ecotypes (Scan-
lan & West 2002, Mary & Vaulot 2003). This genomic
information and the experiments to date are intriguing,
but do not provide a complete or clear picture of how
these ecologically significant cyanobacteria deal with
P limitation, especially with respect to the diversity
among Prochlorococcus and Synechococcus eco/geno-
types. In order to gain a better understanding of the P
physiology and to further our ecological understanding
of these 2 cyanobacterial genera, we undertook a com-
parative assessment of the ability to utilize different P
sources and the alkaline phosphatase response to P
starvation for a variety of axenic strains from both
genera.

MATERIALS AND METHODS

Cultures and stock growth conditions. Three axenic
Prochlorococcus isolates representing 3 distinct phylo-
genetic lineages (MED4 [Clade HLI], MIT 9312 [Clade
HLII], and MIT 9313 [Clade LLIV]) and 5 axenic Syne-
chococcus isolates representing 4 distinct genotypes
(WH 7803 [Clade V], WH 8102 and WH 8103 [Clade
III], WH 8012 [Clade I], and MIT S9220 [Clade VII])
were used. All Prochlorococcus cultures and Syne-
chococcus MIT S9220 were obtained by courtesy of
S. W. Chisholm (Massachusetts Institute of Technol-
ogy). Synechococcus Strains WH 7803, WH 8103, and
WH 8012 were obtained from J. Waterbury (Woods
Hole Oceanographic Institution), and WH 8102 was
obtained from B. Brahamsha (Scripps Institution of
Oceanography).

Prochlorococcus MIT 9313 and Synechococcus MIT
S9220 were rendered axenic by flow cytometric sorting
on a DakoCytomation MoFlo following methods out-
lined in Sieracki et al. (2004). Sample lines were
sterilized with bleach, then rinsed with sterile MilliQ
H2O before sorting. Sterile, filtered seawater was used
for the sheath. In order to ensure high purity, single-
sort mode with a sort envelope of 0.5 drops was used.
Two cells were sorted per tube of sterile, standard
Sargasso Sea water-based media (Moore et al. 2002)
from a sort region positioned at the center of the flow
cytometric signature specific for the culture used.
Sorted cultures were followed for growth and contam-
ination for several months before an axenic culture
was verified and reliably transferable.

Stock cultures of Prochlorococcus and Synechococ-
cus WH 8103, WH 8012, and MIT S9220 were main-
tained in a standard Sargasso Sea water-based

medium (Moore et al. 2002) at a constant temperature
of 24°C and ~60 µmol Q m–2 s–1 on a 14 h light:10 h
dark cycle. Additional stock cultures of Synechococcus
WH 8102 and WH 7803 were maintained in artificial
seawater medium (ASW; Rippka et al. 2000), at a con-
stant temperature of 24°C and constant light of 15 µmol
Q m–2 s–1 for WH 7803 and 30 µmol Q m–2 s–1 for WH
8102. All stock and experimental cultures were moni-
tored using Marine Purity Broth (Bertilsson et al. 2003)
and/or epifluorescence microscopic visualization of
cultures stained with DAPI or SYBR Green (Molecular
Probes) at various times to verify that they remained
axenic.

Growth-capability experiments. To test the ability to
grow on a variety of environmentally relevant P
sources (Karl & Yanagi 1997, Kolowith et al. 2001),
axenic stock cultures of Prochlorococcus and Syne-
chococcus were transferred to duplicate tubes of
Sargasso Sea water-based medium containing the
same trace metal mix as the stock media, 500 µM
NH4Cl, and 10 µM of P (tripolyphosphate [PPPi], β-
glycerophosphate [GYP], glucose-6-phosphate [G6P],
adenosine triphosphate [ATP], 3’, 5’-cyclic adenosine
monophosphate [cAMP], or 2-aminoethylphosphonic
acid [2AEP]). A control culture without added P (noP)
was always grown in parallel when testing growth
capability. Growth was measured by following daily
changes in autofluorescence using a Turner TD-700
fluorometer or cell concentration as determined by
flow cytometry (Becton-Dickinson FACS-Calibur).
Additional experiments were carried out with Syne-
chococcus WH 7803 and WH 8102 grown in duplicate
in ASW medium in which PO4 was replaced by 10 µM
G6P, ATP, or cAMP. Growth on specific P sources was
verified through serial transfers on the same P source,
whereas lack of growth on a particular P source was
verified by testing several times.

P-stress response experiments. To assess the P-
stress response, alkaline phosphatase-like activity
(APA) was measured over the growth cycle for selected
isolates of Prochlorococcus (MED4, MIT 9312, and MIT
9313) and Synechococcus (WH 8102 and WH 7803).
These particular experiments were carried out in dif-
ferent laboratories, and thus different methods for
growth and APA were used, as outlined below. Despite
the different methods, however, the trends in the phys-
iological results between the 2 genera of cyanobacteria
are comparable. For Prochlorococcus experiments,
cells were grown in 250 or 500 ml batch cultures con-
taining Sargasso Sea water-based media with the trace
metal mix, 250 µM NH4Cl and 1 µM of NaH2PO4 (N:P
= 250:1). Throughout exponential growth and into the
P-starved stationary phase, cell concentration was
determined by flow cytometry (Becton-Dickinson
FACS-Calibur), soluble reactive phosphorus (SRP)

259



Aquat Microb Ecol 39: 257–269, 2005

concentration was determined spectrophotometrically
(Cary 50Bio UV/Vis-spectrophotometer; Murphy &
Riley 1962), and alkaline phosphatase activity was
measured fluorometrically (SPEX FluoroMax-2) using
the fluorogenic compound methylumbelliferyl phos-
phate (MUFP). Briefly, MUFP (200 µM final concentra-
tion) was added directly to subsamples of the cultures,
and fluorescence emission of MUF product was mea-
sured at 442 nm as a function of time. Standard curves
of MUF (Sigma, M-1508) were generated to convert
the fluorescence emission data to PO4 concentrations,
assuming equimolar generation of MUF and PO4 by
APase. Rates were normalized to cell number (units of
amol P h–1 cell–1).

Synechococcus strains were transferred to 100 ml
batch cultures of ASW containing 10 µM KH2PO4 for 2
successive transfers before analysis. APA was mea-
sured throughout the growth curve with the para-
nitrophenyl phosphate (p-NPP) assay (Bessey et al.
1946) adapted for use in a microplate reader. Briefly,
an aliquot of cells (160 µl) was incubated with a
solution of p-NPP or bis-p-NPP (18 mM, Sigma, 104
phosphatase substrate or bis-p-NPP, Acros Organics),
in 1 M Tris-HCl (pH 8.0) to give a final concentration of
3.6 mM p-NPP and 0.2 M Tris (pH 8.0) in 200 µl (con-
centrations of up to 40 mM p-NPP resulted in the same
APA rates, indicating that 3.6 mM p-NPP was saturat-
ing). The formation of product (pNP) was measured in
kinetic mode over a period of 5 h by the change in
absorbance at 405 nm on a Thermo Labsystems iEMS
plate reader. APA was measured in triplicate from at
least 3 independent experiments and calculated from
the linear portion of the curve by subtracting the slope
of control wells containing either no substrate or no
cells. The formation of colored substrate was linear
over the assay period, apart from the first 15 min.
Absorbance units were converted to pNP concentra-
tion with the extinction coefficient 1.78 × 104 M–1 cm–1,
at pH 8.0, and a light path length of 0.32 cm per assay
well, and then equated to PO4 following the same
assumption as with the MUF conversion. Cell counts
were determined by flow cytometry and used for nor-
malizing APA values (units of amol PO4 h–1 cell–1).

Genomic analysis. The presence (or absence) of
genes involved in uptake, utilization, and regulation of
Pi and organic P were assessed from publicly available
genome sequences of Prochlorococcus MED4 (Gen-
Bank Accession Number NC_005072), MIT 9313
(NC_005071), SS120 (NC_005040), and Synechococcus
WH 8102 (NC_005070). The closed genome sequences
of MIT 9312 (M. Coleman, C. Steglich, and S. W.
Chisholm pers. comm.) and Synechococcus WH 7803
(F. Partensky pers. comm.) were made available prior
to public release specifically for use in this publication.
Genome annotations available in GenBank and draft

annotations of WH 7803 and MIT 9312 were used to
guide gene assignments. The finished MIT 9312
genome is now available at DOE’s Joint Genome
Institute’s Microbial Genomics website (http://
genome.jgi-psf.org/microbial/). The presence or
absence of genes in each genome was determined by
reciprocal BLAST searches on the basis that ortholo-
gous pairs demonstrated >50% identity over 80% of
each protein sequence, unless otherwise stated.
Sequence annotations were checked for frameshifts
and manually refined with genome context informa-
tion, multiple protein alignments (ClustalW), and iden-
tification of conserved protein domains using Scan-
Prosite (http://us.expasy.org/prosite) and Pfam (www.
sanger.ac.uk/Software/Pfam).

RESULTS

Growth on various P sources

Synechococcus WH 8103, like isolates from other
genotypic clusters, is capable of using a variety of
organic P sources (Fig. 1, Table 1), consistent with
previous results for Synechococcus WH 7803 (Donald
et al. 1997). The only exception is MIT S9220, a Syne-
chococcus strain incapable of utilizing nitrate for
growth (Moore et al. 2002), which is limited in the
types of organic P that it can use for growth. Prochloro-
coccus HLI MED4 can grow on a wide variety of
organic P sources (Table 1), consistent with findings for
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Fig. 1. Representative growth curves for Synechococcus iso-
late WH 8103 grown on cAMP (h), GYP (F), and ATP (m) for
2 transfers compared to response of cells when no P source
was added to the media (s). Growth in the first transfer of the
no P culture reflects the carryover of Pi from the standard
growth conditions of the initial parent culture. Data similar to
that presented here were obtained for all the isolates tested 

(for abbreviations of media, see ‘Materials and methods’)
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Prochlorococcus PCC 9511, which has an identical 16S
rRNA gene sequence (Rippka et al. 2000). Prochloro-
coccus MIT 9312 and MIT 9313 can utilize ATP, with
only a slight reduction in growth rate (data not shown),
but not any other organic P sources that were tested.
Utilization of cAMP appears to be limited to MED4 and
WH 8103, whereas growth results for WH 8102 on
cAMP could not be repeated consistently and, thus, are
inconclusive. Consistent with previous studies (Donald
et al. 1997), WH 7803 cannot utilize cAMP for growth.
The ability to utilize cAMP suggests the presence of an
exoenzyme capable of decyclizing cAMP, such as
phosphodiesterase, followed by further hydrolysis with
APase or 5’-nucleotidase. Alternatively, the cells may
have the ability to take up cAMP directly (Bruns et al.
2003); however, a candidate nucleotide transporter has
not been described for these cyanobacteria.

Alkaline phosphatase activity

To further characterize the P physiology of Pro-
chlorococcus and Synechococcus, APA was assessed
under Pi-replete and P-starvation conditions through
the course of the growth cycle for the 3 strains of
Prochlorococcus (MED4, MIT 9312, MIT 9313) and 2
strains of Synechococcus (WH 8102 and WH 7803). P
starvation in the cultures was reached when growth
was saturated, as indicated by a constant cell concen-
tration and a concomitant drop in PO4 concentration in
the media to the detection limit of the method
(<0.25 µM PO4), as demonstrated by the results for
Prochlorococcus MED4 (Fig. 2). When PO4 is present in
high concentrations, Prochlorococcus isolates MED4
and MIT 9313 exhibit low (~0.2 amol PO4 cell–1 h–1)
constitutive APA per cell, whereas MIT 9312 shows
essentially none (Fig. 3A–C). The 2 Synechococcus iso-
lates also exhibit low constitutive APA when grown in
Pi-replete ASW (~0.02 amol PO4 cell–1 h–1, Fig. 3D,E).

When the batch cultures became starved for Pi, the
APA responded differently for the different cultures.

MED4 exhibited a dramatic, 43-fold increase in APA
(Fig. 3A). On the other hand, MIT 9312 and MIT 9313
showed small changes in their APA (8-fold increase
and 2.4-fold decrease, respectively; Fig. 3B,C). Like
MED4, the 2 Synechococcus isolates showed increased
APA, but to differing degrees (Fig. 3D,E). WH 7803
exhibited a modest 4-fold increase over constitutive
APA levels, whereas WH 8102 exhibited an increase in
APA that was biphasic. During the phase of decelerat-
ing growth, the APA jumped 6-fold relative to the
low constitutive Pi-replete level. At the onset of the 
Pi-starved stationary phase, APA increased another 
4-fold to reach a maximum of 0.239 ± 0.015 amol PO4

cell–1 h–1 (Fig. 3E). For both WH 7803 and WH 8102 the
external Pi concentration fell below detectable limits
(0.25 µM) at least 1 generation before the saturated
growth phase was achieved (data not shown); how-
ever, the maximum APA was not achieved until after
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MED4 MIT 9312 MIT 9313 WH 8103 WH 8102 WH 8012 WH 7803 MIT S9220
(HLI) (HLII) (LLIV) (III) (III) (I) (V) (VII)

NaH2PO4 + + + + + + + +
Tripolyphosphate (PPPi) + + + nt + nt nt nt
β-glycerophosphate (GYP) + – – + + + + –
Glucose-6-phosphate (G6P) + – – nt + nt + –
ATP + + + + + + + –
cAMP + – – + +/– – – –
2-aminoethylphosphonate – – – nt nt nt nt nt

Table 1. Growth capability of Prochlorococcus and Synechococcus strains (clades in parentheses) on a variety of inorganic and 
organic P sources. +: growth; –: no growth; +/–: inconclusive; nt: not tested
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Fig. 2. Increase in cell concentration (f) and decrease in SRP
concentration (s) versus time for Prochlorococcus MED4
grown with PO4 and used for APA measurements. Symbols
and error bars represent average and standard deviation of
replicate cultures. Data similar to that presented here were
obtained for the other isolates used for APA measurements
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saturation. The maximum measured APA per cell for
both Synechococcus strains is similar to that measured
in P-deplete cultures of Synechococcus sp. PCC7942
(Ray et al. 1991), and the rates of phosphate di-esterase
activity (tested with the substrate bis-pNPP) were sim-
ilar to rates of monoesterase activity at all time points.

The level of APA varies with the source and concen-
tration of P. When MED4 is grown with organic P (GYP
or ATP) as the sole source of P, the APA is 3 to 8 times
higher than when PO4 is available, suggesting slight
up-regulation of APase expression or activity in the
presence of external organic P (Fig. 4). APA further
increased in these cultures upon reaching P starvation,
however, we were not able to follow the ATP-grown
MED4 cultures very far into the P-starvation stage.
Although these same experiments were not carried out
with the Synechococcus strains, when these strains are

grown in SN media (Waterbury et al. 1986)
containing 75% Sargasso Sea water base and
17.4 µM PO4, APA was 2- to 3-fold higher (data
not shown) than when grown with ASW and
10 µM PO4, suggesting an increase in APA due to
the likely presence of external organic P in the
Sargasso Sea water. On the other hand, when PO4

is added to P-starved cultures of MED4 (10 µM
PO4), WH 7803 and WH 8102 (50 µM PO4 for
rescuing the Synechococcus cultures), APA is
repressed almost immediately (Fig. 3A,D,E), sug-
gesting that high concentrations of PO4 inhibit
APA, the enzyme(s) is actively degraded, or gene
expression is repressed.

Genomic comparisons

In order to comprehend the molecular basis of
the specific differences in P physiology observed,
we examined the completed genomic sequences
of 6 marine cyanobacteria for genes related to P
acquisition and regulation. We looked specifically
for the presence and absence of genes encoding
phosphate-uptake systems, outer-membrane
porins, regulatory systems, and phosphate-scav-
enging pathways, such as extracellular phos-
phatases in 4 Prochlorococcus strains (MED4,
MIT 9313, SS120, and MIT 9312) and 2 Syne-
chococcus strains (WH 8102 and WH 7803)
(Table 2). Unlike the much-studied phosphate-
acquisition and -regulation system in Escherichia
coli, these marine cyanobacterial genomes lack
the genes associated with the low-affinity system
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(pitAB) and homologues of the P-specific porin (phoE).
However, the marine cyanobacteria contain ortho-
logues of many components of bacterial high-affinity
P-uptake systems, most notably the high-affinity
periplasmic binding protein and ABC-type transport
system (PstSCAB), and a number of P-limitation-
inducible outer-membrane porins (Som proteins). An
interesting feature of marine cyanobacterial genomes

is the multiplication of the pstS and som genes, which
are present in multiple, nonidentical copies in all
strains, with the exception of a single copy of pstS in
MED4 and MIT 9312 (Table 2). In addition to the Pst
ABC–type transport system, the genes for a putative
phosphonate ABC transporter system, phnCDE
(Palenik et al. 2003), are also conserved within the
genomes studied, indicating the potential to at least
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Gene Gene Reference sequence Syn Syn Pro Pro Pro Pro 
function name accession no.a WH 8102 WH 7803 MED4 MIT 9312 MIT 9313 SS120

Low-affinity pitA,B NP_417950 – – – – – –
P transporters NP_417461

Outer membrane phoE AAG54566 – – – – – –
porin

High-affinity pstS CAA50495 + (4) + (3) + + + (2) + (2)
Pi-binding protein

Pi-channel pstA,B,C NP_897363 + + + + + +
components NP_897364

NP_897365

P-limitation-inducible som NP_898316 + (4) + (5) + (3) +(5) + (4) + (2)
porins

Phosphonate ABC-type phnC,D,E NP_897263 + + + + + +
transport system NP_897262
for phosphonates NP_897261

Phosphonate operon phnO AAG59293 – – – – – –
regulator

Phosphonate phnF-N,P Nostoc sp. – – – – – –
biodegradation PCC 7120b

Alkaline phosphatase phoA NP_898480 + (2) + +c +c – –
(APase) NP_892896

5'-nucleotidase 5ND (ushA) NP_898471 + – – – – –

APase-like dedA NP_896215 + + + + + +

Exopolyphosphatase ppX (gppA) NP_897937 + + + + + +

Polyphosphate utilization ppK NP_898584 + + + + + +
(kinase)

Pi sensor kinase phoR NP_897041 + + + + –d –

Response regulator phoB NP_897040 + + + + + –

Modulator of Pi phoU NP_440013 – – – – – –
transduction

Potential transcriptional ptrA CAA87409 + + + – – +
regulator

Pi-starvation-inducible phoH-like NP_897709 + + + + + +
protein (possible RNA 
helicase)

Pi-starvation-inducible psip1 NP_896260 + – + – – –
protein

aThe significance of BLASTP matches against the reference sequence in the third column are supported by E-values <1e-55.
The absence of a gene sequence is supported by E-values >0.05

bNo similar sequences were found when phosphonate metabolism genes from Nostoc sp. PCC 7120 and E. coli were used as
reference

cMED4 and MIT 9312 PhoA have amino acid identity of 91%
dThe gene sequence is present but contains frameshifts and/or deletions

Table 2. Phosphorus assimilation and regulatory genes present in unicellular marine cyanobacterial genomes (+: presence of the
gene; –: gene is absent). The genome copy number for all genes present in the genomes is 1, except those with multiple copies 

indicated by the number in parentheses
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actively transport phosphonates into the cell. However,
on the basis of similarity searches, we were unable to
identify genes encoding enzymes (PhnF-N,P) capable
of degrading phosphonate (carbon–phosphorus)
bonds or the phosphonate-operon-regulatory protein,
PhnO. The lack of phosphonate-degrading enzymes is
consistent with the inability of Prochlorococcus isolates
to grow with AEP. Testing additional phosphonate
compounds is necessary to more fully understand the
phosphonate-related physiology of Prochlorococcus
and to confirm the previous report that WH 8102 is
capable of growing on an unidentified phosphonate
source (Palenik et al. 2003).

Apart from the potential ABC-transport system for
phosphonates, no genes were identified for the transport
of organic phosphates in these marine cyanobacterial
genomes. This is also the case for numerous freshwater
cyanobacteria that are reliant on the synthesis of
periplasmic phosphatases to enable Pi scavenging
through hydrolysis of organic phosphates under Pi-
deficient conditions (Grossman et al. 1994). Gene se-
quences similar to characterized APases (such as phoA)
were identified in HL Prochlorococcus MED4 and MIT
9312, in Synechococcus WH 8102 and WH 7803, but not
in LL Prochlorococcus ecotypes MIT 9313 or SS120
(Table 2). The phoA gene sequence for MIT 9312 has the
highest sequence identity to that of the other HL
Prochlorococcus MED4, which has a deduced amino
acid (aa) sequence (760 aa, 83 kDa predicted molecular
weight) most similar to the predicted 79 kDa APase of
Silicibacter sp. TM1040 (Fig. 5). This suggests that the
HL Prochlorococcus may have acquired their phoA gene
in a lateral gene transfer event. In contrast, Synecho-
coccus WH 8102 and WH 7803 possess different comple-
ments of phoA. The WH 7803 genome encodes 1 phoA

gene sequence (Fig. 5) with a predicted mass of 185 kDa
homologous to an atypical 145 kDa APase, which is re-
sponsible for increased APA in Synechococcus sp. PCC
7942 (Ray et al. 1991) and similar to the 149 kDa P-limi-
tation-induced APase found in Synechocystis PCC6803
(Hirani et al. 2001). Strain PCC 7942 also contains a sec-
ond constitutive (noninducible) APase of 61 kDa, desig-
nated as phoV (Wagner et al. 1995) for which no obvious
homologues have been found within the genomes exam-
ined in this study. In contrast to WH 7803, WH 8102
encodes at least 3 APases (Palenik et al. 2003): an APase
(749 aa, 80 kDa) similar to sequences found in γ-
proteobacteria (Shewanella and Vibrio) and 2 adjacent
APase genes, a predicted APase (576 aa, 63 kDa) and a
predicted APase/5’nucleotidase (750 aa, 80 kDa), both of
which are homologous to the C-terminal of the WH 7803
phoA (Fig. 5). A small (~200 aa), putative APase-like
gene, dedA, named for its predicted transmembrane re-
gion, is also found in all the marine cyanobacterial
genomes examined for this study; however, its specific
function is not known.

There are also obvious differences in gene comple-
ment with respect to phosphate sensing and regulation
amongst the genomes (Table 2). The HL Prochlorococ-
cus (MED4 and MIT 9312) and the 2 marine A Syne-
chococcus (WH 8102 and WH 7803) contain homo-
logues of the phoR gene, encoding a sensor histidine
kinase, and the phoB gene, encoding the cognate
response regulator responsible for P sensing and regu-
lation in a wide variety of bacteria (e.g. see Wanner
1996). LL-adapted Prochlorococcus MIT 9313 contains
a phoB gene, but a nonfunctional phoR (Scanlan &
West 2002), whereas Prochlorococcus SS120 appears
to lack both regulatory genes. The gene corresponding
to PtrA, a putative transcriptional activator found in

WH 7803 (Scanlan et al. 1997a), is also found in
WH 8102, MED4, and SS120, but is missing from
MIT 9312 and MIT 9313. Another regulatory gene
encoding for a modulator of Pi transduction,
phoU, is also missing from all the marine
cyanobacterial genomes, but is found in the fresh-
water cyanobacterium Synechocystis PCC6803
(www.kazusa.or.jp/cyanobase/).

Other genes involved in P acquisition are also
present in all 6 marine cyanobacterial genomes, in-
cluding the genes involved in internal polyphos-
phate metabolism (ppK and ppX), consistent with
the ability of the strains tested to grow with PPPi as
the sole source of P (Table 1), and the P-starvation-
induced protein, phoH, believed to be an RNA
helicase that is highly conserved in bacteria (Kim et
al. 1993). Another gene for a P-starvation-induced
protein, psip1 (N. J. West & D. J. Scanlan unpubl.
data), is found in MED4 and WH 8102, but not in
MIT 9312, SS120, MIT 9313, and WH 7803.
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Fig. 5. Simplified alignment of domains in phoA and phoA-like
genes found in marine cyanobacterial and proteobacterial
genomes with high sequence similarities, indicated by matched
shading. Lengths of rectangles represent relative protein sizes.
Predicted molecular weights (in kDa) for each protein are indicated
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DISCUSSION

Utilization of organic P sources

The ability to utilize organic sources of phosphate
varies widely among the strains of Prochlorococcus
and Synechococcus tested so far. Some of the vari-
ability can be explained by presence and/or absence of
P-acquisition and -scavenging genes. Synechococcus
isolates from several genotypic clusters are capable of
using a variety of organic P sources (Table 1), as was
demonstrated previously for Synechococcus WH 7803
(Donald et al. 1997). Consistent with this ability is the
presence of essential genes required for acquisition
and regulation of Pi under phosphate-deficient condi-
tions. One exception is MIT S9220, a Synechococcus
strain incapable of utilizing nitrate for growth (Moore
et al. 2002), which cannot utilize any of the organic P
compounds tested. However, the genome is not avail-
able for this strain of marine Synechococcus. Like
Synechococcus strains WH 8102 and WH 7803, HLI
Prochlorococcus MED4 is capable of utilizing a broad
range of organic P compounds and contains a similar
suite of P-acquisition and -regulation genes. Thus,
these genotypes may have an advantage in Pi-
depleted marine waters that have greater concentra-
tions of organic P compounds due to increased N2 fixa-
tion and Pi depletion (Bjorkman et al. 2000).

Like freshwater cyanobacteria, marine cyanobacte-
ria appear to be reliant on the expression of exported
phosphatases, such as APase, for hydrolysis of phos-
phate from organic sources during periods of Pi restric-
tion. Indeed, WH 8102, WH 7803, and MED4 have at
least 1 gene for APase, phoA, as well as the putative
APase-like gene, dedA, consistent with their ability to
utilize various organic phosphates. Interestingly, HLII
Prochlorococcus MIT 9312 contains a very similar P-
acquisition gene compliment to HLI MED4, with no
obvious mutations, but only utilizes ATP as an organic
P source. The only P-related genes that MIT 9312
appears to lack relative to MED4 are psip1 and ptrA.
On the other hand, the LL Prochlorococcus strains MIT
9313 and SS120 lack phoA, but contain dedA, which
may explain the ability of MIT 9313 to utilize ATP, or
ATP may be taken up into the periplasm through one
of the many P-limitation-induced porins.

Alkaline phosphatase activity

The ability to utilize a wide variety of organic P
sources and the presence of APases in MED4, WH
8102, and WH 7803 are reflected in their APA. These 3
cyanobacteria express constitutive APA when PO4 is
present, and then increase their APA when PO4

becomes depleted and the cells become P-starved.
Unexpectedly, HLII MIT 9312, which contains essen-
tially the same phoA as MED4, does not exhibit consti-
tutive APA and only shows minimal increases in APA
once it becomes P starved. Possible explanations
include the lack of Psip1, which may be required for
constitutive APA, and/or the lack of PtrA, which may
be required for activation or enhancement of expres-
sion of genes responding to P limitation, such as phoA
and pstSCAB. The LLIV Prochlorococcus ecotype MIT
9313, which cannot utilize many organic P compounds
and does not contain a phoA equivalent, exhibits very
low but measurable constitutive APA. The expression
of measurable APA in this strain is possibly due to the
presence of the APA-like DedA protein, though gene-
expression studies are required to pin this down. The
frameshift and mutation in phoR of MIT 9313 (Scanlan
& West 2002) suggest that this LL strain lacks the abil-
ity to regulate a response to P depletion, possibly
explaining the decrease in cell-specific APA once Pi

becomes depleted. The total absence of phoB and
phoR in SS120 implies that this LL strain also is
incapable of regulating a response to P depletion, but
determining this awaits an axenic strain of SS120,
which currently is not available.

Synechococcus WH 7803 and WH 8102 exhibit
similar low constitutive levels of APA when P replete
(>50 µM PO4). However, after successive subculture in
ASW with 10 µM PO4, WH 7803 displayed a 2-fold
increase in baseline AP activity, while WH 8102 main-
tained activity at constitutive levels. This slight differ-
ence in the pattern of APA induction hints that these
strains could sense P limitation at different threshold
concentrations of Pi or could possess different mecha-
nisms of APA regulation. The maximum APA activity
for WH 7803 and WH 8102 was not achieved until at
least 120 h after the external P concentration had fallen
below detectable levels. The time delay in reaching
maximum APA may be due simply to a rather high
detection limit for P. However, another explanation for
this observation is in line with the response of Syne-
chocystis PCC6803, where 1 of 2 operons encoding the
high-affinity P-uptake system PstSCAB is expressed
during the early stages of P depletion, while the
expression of phoA, nucH (extracellular nuclease), and
the second pst operon occurs later (Suzuki et al. 2004),
suggesting a distinction between P-limitation (expres-
sion of pstSCAB) and P-starvation responses (expres-
sion of pstSCAB and APA). A maximum APA was not
observed for MED4 or MIT 9312, though these cultures
were not followed beyond ~100 h after P starvation
was reached.

Another intriguing observation is that MED4, WH
8102, and WH 7803 express higher APA activity when
grown in the presence of organic P. This occurs in the
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Synechococcus cultures even when the external Pi

concentration is relatively low (<25 µM), but not pre-
venting growth, suggesting that these strains are capa-
ble of regulating their APA in order to exploit organic
and inorganic sources of P simultaneously, as observed
for marine microbial communities (Bjorkman & Karl
2003). Furthermore, the lack of a constitutive low-
affinity P-uptake system (Pit system) suggests that the
high-affinity, energy-dependent ABC transporter is
always required for P uptake in the marine environ-
ment. The possession of multiple copies of the peri-
plasmic phosphate-binding protein, possibly under
differential P regulation, in HL Prochlorococcus and
Synechococcus WH 8102 and WH 7803 may serve to
provide a rapid response to short periods of P limita-
tion. Since the energy requirements for Pi uptake are
supplied by photosynthesis (Ritchie et al. 2001), the
ability to opportunistically use organic P at the same
time would provide a significant advantage over het-
erotrophic competitors.

Ecological implications

Apart from the APase-like dedA genes present in all
of the strains examined in this study, WH 8102, WH
7803, and the HL Prochlorococcus do not possess
orthologous APase genes. In other words, the current
array of APase genes among the genomes was not
inherited from a common ancestor, implying that APase
genes were acquired independently through horizontal
gene transfer (as appears to be the case for phoA in the
2 HL Prochlorococcus) and/or loss of ancestral genes.
Horizontal gene transfer is supported by the low
mol%G+C composition of phoA sequences relative to
the genome average mol%G+C in WH 7803 and WH
8102. Furthermore, the selection of different APase
genes in each strain may reflect the total range of
organic substrates encountered in their respective
ecological niches. In general APases and 5’-nucleo-
tidases are capable of hydrolyzing a wide range of
organic P monoesters (Wagner et al. 1995, Wanner
1996). Although the substrate specificity of the APases
from PCC7942 or PCC6803 have not been examined in
great detail, these proteins retain domains conserved
amongst alkaline phosphatases such as multiple P-loop
motifs, which are thought to be involved in binding ter-
minal PO4 moieties and could serve to extend the range
of organic P substrates hydrolyzed (Ray et al. 1991,
Hirani et al. 2001). In this regard the WH 7803 phoA is
unusual in that it contains a 480-aa insertion in the
conserved N-terminal ATPase domain of its 185-kDa
PhoA (Fig. 5). The inserted sequence is homologous
with the first 580 aa of a conserved hypothetical protein
found in WH 8102, which itself displays some similarity

to phytase (myo-inositol hexakisphosphatase), an en-
zyme that hydrolyzes phytic acid or similar complex
organic P-rich substrates. The presence of this unusual
insertion sequence and gene raises the intriguing
possibility that complex organic P-rich substrates of
terrestrial origin may provide an advantage to some
Synechococcus in coastal marine environments, even
though phytic acid has not been identified as a compo-
nent of dissolved organic phosphorus in recent coastal
and open ocean surveys (Monaghan & Ruttenberg
1999, Kolowith et al. 2001).

The P physiology presented in this study is consis-
tent in part with the ecological niche distribution of
marine cyanobacteria. LL Prochlorococcus MIT 9313
has a limited capacity to utilize organic P sources and
expresses extremely low levels of APA, and 2 LL
Prochlorococcus (MIT 9313 and SS120) lack an obvious
phoA gene and contain mutations or deletions in key
P-regulatory genes, such that a P-stress response is
likely not regulated. These deficiencies in P acquisition
and regulation may reflect the fact that relatively high
and constant inorganic phosphorus levels are found in
the deep euphotic zone, where LL Prochlorococcus
reside (Scanlan & West 2002, Fuller et al. 2005), and
precise regulation of the P-acquisition machinery
would be unnecessary. In contrast, HL Prochlorococcus
and Synechococcus occupy the upper photic zone,
where inorganic nutrients, such as Pi, are typically
depleted and competition for recycled organic P is
great (Bjorkman & Karl 1994, Li et al. 1998, Fuller et al.
2005).

However, the results from this study and recent field
observations are not entirely consistent with this sim-
plistic model. HLII Prochlorococcus MIT 9312, which
does not utilize a variety of organic P sources and does
not exhibit significant levels of APA even under condi-
tions of P starvation, would appear to be at an ecologi-
cal disadvantage in P-limited surface waters compared
to HLI Prochlorococcus MED4. Yet, the HLII genotype
dominates natural Prochlorococcus populations in
nutrient-depleted summer surface waters of the Red
Sea (Fuller et al. 2005), the North Pacific (E. Zinser &
S. W. Chisholm pers. comm.), and the Sargasso Sea
(Scanlan & West 2002), implying that it may be un-
affected by P limitation in contrast to other HL
Prochlorococcus genotypes, possibly due to more
efficient Pi uptake than the HLI type, which could be
due to, and reflected in, differences in gene regulation.
This hypothesis awaits confirmation.

The results reported here have important implica-
tions for the use of bulk APA as an indicator of the P
status of phytoplankton communities. We have shown
that APA is expressed constitutively in several strains
of Synechococcus and Prochlorococcus and the pres-
ence of organic P sources and conditions of P limitation
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and starvation elicit markedly different capacities to
express APA and utilize organic P sources. Genomic
comparisons make it clear that APA may be attributed
to multiple enzymes with different regulation and sub-
strate specificities in the Prochlorococcus and Syne-
chococcus strains studied. It is important to note that
the use of different markers for APA in this study
(pNPP and MUFP) may add other confounding factors,
such as differential availability of each enzyme for
each substrate. Consequently, bulk APA measure-
ments may not reflect community-wide P status, but
rather P limitation of undetermined subpopulations of
the phytoplankton community. Clearly more work is
needed in order to define genotype-specific responses
to general P stress in marine picophytoplankton, a task
that will benefit greatly from in-depth analysis of
diverse axenic isolates and on-going genome-
sequencing projects, as well as further use and opti-
mization of methodologies that are capable of assess-
ing P status at the single-cell level (Scanlan et al.
1997b, Dyhrman et al. 2002). Understanding the nutri-
ent-stress response of specific eco/genotypes of marine
picophytoplankton is critical to being able to deter-
mine the in situ nutrient status of these organisms, par-
ticularly in response to climate-related environmental
changes. And more generally this work suggests that
studies of nutrient enrichment on natural populations
(e.g. ocean fertilization experiments) need careful
interpretation given that other phytoplankton groups
also likely share a plethora of eco/genotypic responses
to nutrient limitation.
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