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INTRODUCTION

The photosynthetic cyanobacterium Synechococcus
is a ubiquitous prokaryote in marine environments,
present from tropical waters to polar waters (Walker &

Marchant 1989, Burkill et al. 1993, Chavez et al. 1996,
Landry et al. 1996, Vezina & Vincent 1997, Campbell et
al. 1998, Zubkov et al. 1998, Sherry & Wood 2001, Liu
et al. 2002, Mackey et al. 2002, DiTullio et al. 2003,
Maranon et al. 2003). It often dominates the abun-
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ABSTRACT: We investigated the feeding by 18 red-tide dinoflagellate species on the cyanobacterium
Synechococcus sp. We also calculated grazing coefficients by combining the field data on abundances
of the dinoflagellates Prorocentrum donghaiense and P. micans and co-occurring Synechococcus spp.
with laboratory data on ingestion rates obtained in the present study. All 17 cultured red-tide dinoflagel-
lates tested (Akashiwo sanguinea, Alexandrium catenella, A. minutum, A. tamarense, Cochlodinium
polykrikoides, Gonyaulax polygramma, G. spinifera, Gymnodinium catenatum, G. impudicum, Hetero-
capsa rotundata, H. triquetra, Karenia brevis, Lingulodinium polyedrum, Prorocentrum donghaiense, P.
minimum, P. micans, and Scrippsiella trochoidea) were able to ingest Synechococcus. Also, Synecho-
coccus cells were observed inside the protoplasms of P. triestinum cells collected from the coastal waters
off Shiwha, western Korea, during red tides dominated by the dinoflagellate in July 2005. When prey con-
centrations were 1.1 to 2.3 × 106 cells ml–1, the ingestion rates of these cultured red-tide dinoflagellates
on Synechococcus sp. (1.0 to 64.2 cells dinoflagellate–1 h–1) generally increased with increasing size of the
dinoflagellate predators (equivalent spherical diameters = 5.2 to 38.2 µm). The ingestion rates of P. dong-
haiense and P. micans on Synechococcus sp. increased with increasing mean prey concentration, with
saturation occurring at a mean prey concentration of approximately 1.1 to 1.4 × 106 cells ml–1. The max-
imum ingestion and clearance rates of P. micans on Synechococcus sp. (38.2 cells dinoflagellate–1 h–1 and
4.3 µl dinoflagellate–1 h–1) were much higher than those of P. donghaiense on the same prey species
(7.7 cells dinoflagellate–1 h–1 and 2.6 µl dinoflagellate–1 h–1). The ingestion rates of red-tide dinoflagellates
on Synechococcus sp. were comparable to those of the heterotrophic nanoflagellates and ciliates on Syne-
chococcus spp., so far reported in the literature. The calculated grazing coefficients attributable to small
Prorocentrum spp. (P. donghaiense + P. minimum) and P. micans on co-occurring Synechococcus spp.
were up to 3.6 and 0.15 h–1, respectively. The results of the present study suggest that red-tide dino-
flagellates potentially have a considerable grazing impact on populations of Synechococcus.
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dance and/or the primary production of phytoplankton
in both coastal and open oceanic waters (Chang et al.
1996, 2003, Karlson et al. 1996, Phlips & Badylak 1996,
Agawin et al. 1998, Yahel et al. 1998, Crosbie & Furnas
2001, Arin et al. 2002, Chiang et al. 2002, Stal et al.
2003, Nielsen et al. 2004, Wawrik & Paul 2004).
The abundance of Synechococcus spp. often exceeds
105 cells ml–1 and sometimes forms red tides (Lindell
& Post 1995, Partensky et al. 1996, 1999, Morel 1997,
Andreoli et al. 1999, Diaz & Maske 2000, Uysal 2000,
Agawin et al. 2003, Murrell & Lores 2004). In oceanic
waters, Synechococcus has been thought to be one of
the major contributors to CO2 and nutrient uptake from
ambient waters and, in turn, eventually from the
atmosphere (Maranon et al. 2003). Therefore, the
growth and mortality of Synechococcus are important
factors in understanding the cycling of the materials
in marine planktonic food webs.

There have been many studies on the growth of
Synechococcus, in particular the effects of iron concen-
trations on its growth (Wells et al. 1994, Henley & Yin
1998, Timmermans et al. 1998, Yin & Henley 1999).
Also, there have been a large number of studies on the
mortality of Synechococcus due to predation by hetero-
trophic protists (Campbell & Carpenter 1986, Kuosa
1990, Caron et al. 1991, Strom 1991, 2imek 1997, Dolan
& 2imek 1998, 1999, Lewitus et al. 1998, Ochs & Eddy
1998, Christaki et al. 1999, Monger et al. 1999, Rivkin
et al. 1999, Cowlishaw 2000, Boenigk et al. 2001, Guil-
lou et al. 2001, Pitta et al. 2001, Quevedo & Anadon
2001, Bettarel et al. 2002, Jochem 2003, Agawin et al.
2004). Many studies on the feeding by heterotrophic
protists on Synechococcus have suggested that hetero-
trophic nanoflagellates and ciliates are usually major
grazers on Synechococcus (Bettarel et al. 2002, Jochem
2003, Worden & Binder 2003, Agawin et al. 2004).
Here, an important question concerning the protistan
predators on Synechococcus arises: Is there any un-
known predator which can affect the population
dynamics of Synechococcus?

Dinoflagellates are ubiquitous protists and some-
times form red-tide patches in coastal (e.g. Jeong 1995)
and offshore and/or oceanic waters (e.g. Tyler &
Seliger 1978, Tester & Steidinger 1997). Red tides dom-
inated by dinoflagellates can alter the balance of food
webs and cause large-scale mortalities of fish and
shellfish. Recently, many red-tide dinoflagellates,
which had previously been thought to be exclusively
autotrophic dinoflagellates, have been revealed to be
mixotrophic dinoflagellates (Bockstahler & Coats 1993,
Chang & Carpenter 1994, Jacobson & Anderson 1996,
Granéli et al. 1997, Stoecker et al. 1997, Stoecker 1999,
Skovgaard et al. 2000, Smalley et al. 2003, Jeong et al.
2004, 2005a,b). These dinoflagellates usually co-occur
with Synechococcus and/or the blooms of these

dinoflagellates sometimes succeed those of Syne-
chococcus (Taslakian & Hardy 1976, Chavez et al.
1996, Tarran et al. 1999, 2001, Duyl et al. 2002, Murrell
& Lores 2004). There is a possibility that red-tide
dinoflagellates feed on Synechococcus; however, the
interactions between red-tide dinoflagellates and
Synechococcus, in particular possible predator–prey
relationships, are still poorly understood.

There have been few studies on the feeding by red-
tide dinoflagellates on Synechococcus (Legrand et al.
1998). Legrand et al. (1998) reported that Synechococcus
was not ingested by the red-tide dinoflagellate Hetero-
capsa triquetra. However, we have recently found that
some red-tide dinoflagellates, including H. triquetra, are
able to ingest Synechococcus. Therefore, the following
basic questions arise: (1) Are most red-tide dino-
flagellates able to ingest Synechococcus? (2) What is the
range of ingestion rates of red-tide dinoflagellates on
Synechococcus? Are the ingestion rates of red-tide dino-
flagellates on Synechococcus comparable to those of
heterotrophic nanoflagellates and ciliates? (3) What is
the potential grazing impact by red-tide dinoflagellates
on Synechococcus? If most red-tide dinoflagellates are
able to ingest Synechococcus, we must change conven-
tional views about the planktonic food webs related to
Synechococcus and to dinoflagellates, and the mecha-
nisms of outbreak and persistence of red tides, etc.

We (1) investigated whether or not 17 cultured red-
tide dinoflagellates, having a wide range of morpho-
logical properties (size, shape, single or chain forms,
thecate or naked, etc.), were able to feed on Synecho-
coccus; (2) observed Prorocentrum triestinum cells
collected from the coastal waters off Shiwha, western
Korea, during the red tide dominated by the dinoflagel-
late in July 2005, to ascertain the feeding by dino-
flagellates on Synechococcus in natural environments;
(3) conducted experiments to determine the ingestion
rates of those 17 cultured red-tide dinoflagellates on
Synechococcus at a single high-prey concentration,
and (4) measured the ingestion rates of Prorocentrum
donghaiense (previously P. dentatum in Korean, Chi-
nese, Japanese, and in some United States waters) and
P. micans on Synechococcus as a function of the prey
concentration. (5) The ingestion rates of red-tide dino-
flagellates on Synechococcus were compared to those
of heterotrophic nanoflagellates and ciliates reported in
the literature. (6) We also estimated the grazing coeffi-
cients attributable to small Prorocentrum spp. (P. dong-
haiense and P. minimum) and P. micans on co-occurring
Synechococcus using our data for ingestion rates ob-
tained from laboratory experiments and the abundances
of predator and prey in the field. The results of the pre-
sent study provide a basis for understanding the inter-
actions between red-tide dinoflagellates and co-occur-
ring Synechococcus and their population dynamics.
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MATERIALS AND METHODS

Preparation of experimental organisms. Synechococ-
cus sp. (SYN, Genbank Accession Number DQ023295,
equivalent spherical diameter [ESD] = ca. 1 µm) was
grown at 20°C in enriched f/2 seawater media (Guil-
lard & Ryther 1962) without silicate, under a 14:10 h
light:dark cycle of 20 µE m–2 s–1 of cool white fluores-
cent light, while dinoflagellate predators were grown
under a 14:10 h light:dark cycle of 30 µE m–2 s–1 (Table
1). Mean ESDs (± SD) of the dinoflagellates were mea-
sured by an electronic particle counter (Coulter Multi-
sizer II, Coulter Corporation). Cultures in their expo-
nential growth phase were used for these feeding
experiments.

Feeding occurrence. Expt 1 was designed to investi-
gate whether or not each dinoflagellate species was
able to feed on Synechococcus (Table 1).

A dense culture of each dinoflagellate predator,
maintained in f/2 media and growing photosyntheti-
cally in its exponential growth phase on shelves and
incubated under a 14:10 h light:dark cycle of 30 µE m–2

s–1, was transferred to a 1 l polycarbonate (PC) bottle
containing freshly filtered seawater. Three 1 ml
aliquots were then removed from the bottle and exam-
ined using a compound microscope to determine the
dinoflagellate concentration.

In this experiment, the initial concentrations of each
dinoflagellate predator (2000 to 20 000 cells ml–1) and
Synechococcus (1 to 2 × 106 cells ml–1) were estab-
lished using an autopipette to deliver a predetermined
volume of culture with a known cell density to the

experimental bottles. Triplicate 80 ml PC bottles (mix-
tures of dinoflagellate predator and Synechococcus)
and triplicate predator control bottles (containing dino-
flagellate predator only) were set up at a single prey
concentration for each dinoflagellate predator. The
bottles were filled to capacity with freshly filtered
seawater, capped, and then placed on a shelf at 20°C
under the continuous illumination of 30 µE m–2 s–1.
After 5, 10, 30, and 60 min, and 4 h of incubation, a
10 ml aliquot was removed from each bottle and then
fixed with formalin (final conc. = 4%). The fixed ali-
quots were filtered onto 3 µm pore size, 25 mm PC black
membrane filters, and then the concentrated cells on
the membranes were observed under an epifluores-
cent microscope (Olympus BH2, Olympus) with blue
light excitation at a magnification of 1000 × to deter-
mine whether or not each dinoflagellate predator was
able to feed on Synechococcus. However, ingested
Synechococcus cells were rarely detectable in the pro-
toplasms of Akashiwo sanguinea, Lingulodinium poly-
edrum, and Scrippsiella trochoidea under the epifluo-
rescent microscope. Therefore, after conducting the
same processes as described above, except for the
Synechococcus cells being fluorescently labeled using
DTAF (Siegler et al. 1989), the concentrated cells on
the membranes were observed under a confocal laser
scanning microscope (CLSM: Carl Zeiss-LSM510) at a
magnification of 1000 × by scanning the dinoflagellate
body at consecutive intervals of 1 to 2 µm along the z-
axis. Pictures showing ingested Synechococcus cells
inside each dinoflagellate predator cell were taken
using digital cameras on these microscopes at a magni-
fication of 1000 ×.

To observe ingested Synechococcus cells inside the
protoplasms of dinoflagellate predator cells collected
from natural environments, we took water samples
using a clean bucket from the surface of the coastal
waters off Siwha, Ansan, western Korea, during red
tides dominated by Prorocentrum triestinum in July
2005. The water samples were poured into 100 ml
polyethylene bottles and immediately preserved with
formalin (final conc. = 4%). The fixed aliquots were
filtered onto 5 µm pore size, 25 mm PC black mem-
brane filters, and then the concentrated cells on the
membranes were observed under the epifluorescent
microscope with blue light excitation at a magnifica-
tion of 1000 ×.

Ingestion rates. Expt 2 was designed to compare the
ingestion rates of cultured red-tide dinoflagellates on
Synechococcus when similar prey concentrations were
provided. We provided live Synechococcus at initial con-
centrations of 1.1 to 2.3 × 106 cells ml–1 for the dinoflagel-
late predators, because the ingestion rates of Prorocen-
trum donghaiense and P. micans on Synechococcus
were almost saturated at these prey concentrations (see
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Table 1. Cultured dinoflagellate species used as predators on
Synechococcus in Expts 1 and 2. Mean equivalent spherical
diameter (ESD, µm) (±SD) was measured by an electronic
particle counter measured before these experiments; n > 2000 

for each species

Predator species ESD (±SD)

Heterocapsa rotundata 15.8 (0.4)
Prorocentrum minimum 12.1 (2.5)
Prorocentrum donghaiense 13.3 (2.0)
Heterocapsa triquetra 15.0 (4.3)
Alexandrium minutum 16.7 (2.9)
Gymnodinium impudicum 17.8 (2.6)
Karenia brevis 20.3 (1.1)
Scrippsiella trochoidea 22.8 (2.7)
Cochlodinium polykrikoides 25.9 (2.9)
Prorocentrum micans 26.6 (2.8)
Alexandrium tamarense 28.1 (3.1)
Akashiwo sanguinea 30.8 (3.5)
Gonyaulax polygramma 32.5 (3.0)
Alexandrium catenella 32.6 (2.7)
Gymnodinium catenatum 33.9 (1.6)
Gonyaulax spinifera 35.0 (1.3)
Lingulodinium polyedrum 38.2 (3.6)
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Figs. 2 & 3). Two different methods were used for these
experiments; the first method involved measuring inges-
tion rates by plotting the numbers of ingested Syne-
chococcus cells (seen as orange-colored inclusions under
an epifluorescence microscope) inside the protoplasm of
a dinoflagellate against incubation time, as in Sherr et al.
(1987). This method was used for Heterocapsa triquetra,
Karenia brevis, P. donghaiense, and P. micans inside
which all the ingested prey cells were easily seen and
each ingested prey cell was clearly countable. The sec-
ond method was measuring ingestion rates by comparing
concentrations of the dinoflagellate predator and Syne-
chococcus between the experimental and control bottles.
This method was used for the other dinoflagellate preda-
tors inside which all ingested prey cells could not be seen
and/or each ingested prey cell was not clearly countable.
To assess how close the results from these 2 methods are,
ingestion rates of P. donghaiense on Synechococcus
were measured using both of these methods.

A dense culture of each dinoflagellate predator
maintained in an f/2 medium and growing photo-
synthetically in its exponential phase under a 14:10 h
light:dark cycle of 30 µE m–2 s–1 for ca. 1 mo was trans-
ferred into a 1 l PC bottle. Three 1 ml aliquots from the
bottle were counted using a compound microscope, to
determine cell concentrations of the dinoflagellate
predator, and the cultures were then used to conduct
experiments.

For the first method (prey-inclusion method), initial
concentrations of the dinoflagellate predator (2000 to
20 000 cells ml–1) and live Synechococcus were estab-
lished using an autopipette to deliver predetermined
volumes of known cell concentrations to the bottles.
Triplicate 80 ml PC experimental bottles (containing
mixtures of predators and prey) and triplicate pre-
dator-control bottles (containing predators only) were
also established. Then, 20 ml of f/2 medium was added
to all the bottles, which were then filled to capacity
with freshly filtered seawater, capped, and then placed
on the shelf. After 1, 5, 10, and 20 min of incubation,
10 ml aliquots were removed from each bottle, trans-
ferred into 20 ml vials, and then fixed with formalin
(final conc. = 4%). One 2 ml fixed aliquot was filtered
onto 3 µm pore size, PC black membrane filters.
Orange-colored inclusions (Synechococcus cells) inside
the protoplasm of >30 dinoflagellate predator cells
on the PC black membrane filters were enumerated
under an epifluorescence microscope with blue light
excitation. No orange-colored inclusions were ob-
served inside the protoplasm of the dinoflagellate
predators in the control bottles. Prorocentrum spp.
cells in old cultures (>1 mo after being transferred)
sometimes contained yellow-colored inclusions, even
when prey cells were not provided. Therefore, we used
only Prorocentrum spp. in cultures of <7 d after being

transferred to new medium and ascertained that there
were no yellow-colored inclusions seen under an epi-
fluorescence microscope. The bottles were capped,
placed on a shelf, and incubated as described above. A
linear regression curve for the number of prey cells
inside a dinoflagellate predator cell against incubation
time was obtained, and then an ingestion rate (prey
cells dinoflagellate–1 h–1) was calculated by explo-
ration, as in Sherr et al. (1987).

For the second method (bottle-incubation method),
the initial concentrations of the dinoflagellate preda-
tors and live Synechococcus were established using
an autopipette, to deliver predetermined volumes of
known cell concentrations to the bottles. Triplicate
80 ml PC experimental bottles (containing mixtures of
predators and prey), triplicate prey-control bottles
(containing prey only), and triplicate predator-control
bottles (containing predators only) were also estab-
lished. Then, 20 ml of f/2 medium was added to all the
bottles, which were then filled to capacity with freshly
filtered seawater, capped, placed on the shelf, and
incubated at 20°C under an illumination of 30 µE m–2

s–1. To determine the actual initial predator and prey
densities (cells ml–1) at the beginning of the experi-
ment and after 6 h incubation, a 5 ml aliquot was
removed from each bottle and fixed with 5% Lugol’s
solution. All or >300 dinoflagellate predator cells, fixed
in Lugol’s solution, in three 1 ml Sedgwick–Rafter
counting chambers were enumerated. Another 5 ml
aliquot was removed from each bottle, fixed with for-
malin (final conc. = 4%), and then filtered onto 0.2 µm
pore size, PC black membrane filters. Orange-colored
prey cells on the PC filter were enumerated under an
epifluorescence microscope. Ingestion and clearance
rates were calculated using the equations of Frost
(1972) and Heinbokel (1978).

Effects of prey concentration. Expt 3 was designed
to investigate the ingestion rates of Prorocentrum
donghaiense and P. micans on Synechococcus as a
function of prey concentration. The actual initial pre-
dator (and prey) concentrations were 13 to 16 570 cells
ml–1 (111 to 2 996 200; 9 prey concentrations) for P.
donghaiense and 10 to 3260 cells ml–1 (131 to 3 438 500;
9 prey concentrations) for P. micans. Using the first
method (prey-inclusion method), as in Expt 2, triplicate
ingestion rates at each prey concentration were
obtained. All ingestion rate data were fitted to a
Michaelis–Menten equation:

(1)

where Imax is the maximum ingestion rate (cells
dinoflagellate–1 h–1), x is the prey concentration
(cells ml–1), and KIR is the prey concentration sustain-
ing one-half Imax.

IR
I x

K xIR

( )
( )

max= +
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Potential grazing impact. We estimated the grazing co-
efficients (mortality rate due to predation) attributable to
small Prorocentrum spp. (P. donghaiense + P. minimum)
and P. micans on Synechococcus by combining field data
on abundances of the dinoflagellate predators and Syne-
chococcus with ingestion rates of the dinoflagellate
predators on Synechococcus obtained in the present
study. The ingestion rate of P. minimum on Synecho-
coccus at a certain prey concentration was calculated by
multiplying that of P. donghaiense by 0.81, because the
ingestion rate of P. minimum on Synechococcus at a prey
concentration of 1.83 × 106 cells ml–1 (5.9 cells dinoflagel-
late–1 h–1) was 0.81 times lower than that of P. donghaiense
at the same prey concentration (7.3 cells dinoflagellate–1

h–1), calculated using the equation of the regression curve
in Fig. 2. Data on the abundances of small Prorocentrum
spp. (P. donghaiense + P. minimum), P. micans, and the
co-occurring Synechococcus used in this estimation were
obtained from the water samples off Masan (bay waters,
in 2004) and at 6 stations 90 to 220 km off Jeju Island
(offshore and oceanic waters, in 2003), Korea.

The grazing coefficients (g, h–1) were calculated as:

g =  CR × GC (2)

where CR (ml dinoflagellate–1 h–1) is a clearance rate of
an algal predator on a target prey at a prey concentra-
tion and GC is a grazer concentration (cells ml–1). CR
values were calculated as:

CR = IR/PC (3)

where IR (cells eaten dinoflagellate–1

h–1) is the ingestion rate of the algal
predator on the target prey and PC
(cells ml–1) is a prey concentration. CRs
were corrected using Q10 = 2.8 (Hansen
et al. 1997), because in situ water tem-
peratures and the temperature used
in the laboratory for this experiment
(20°C) were sometimes different.

RESULTS

Dinoflagellate predators

All cultured red-tide dinoflagellates
tested (Akashiwo sanguinea, Alexan-
drium catenella, A. minutum, A. tama-
rense, Cochlodinium polykrikoides,
Gonyaulax polygramma, G. spinifera,
Gymnodinium catenatum, G. impu-
dicum, Heterocapsa rotundata, H. tri-
quetra, Karenia brevis, Lingulodinium
polyedrum, Prorocentrum donghai-
ense, P. minimum, P. micans, and

Scrippsiella trochoidea) were able to ingest both live
and fluorescent-labeled Synechococcus (Fig. 1A–Q).
Ingested Synechococcus cells were usually found
aggregated in 1 or 2 areas of the protoplasm of the
thecate dinoflagellates H. triquetra, L. polyedrum, and
S. trochoidea, while they were widely distributed
in the protoplasm of P. donghaiense and P. micans
and the naked dinoflagellates C. polykrikoides and G.
catenatum (Fig. 1).

Synechococcus cells were observed inside the proto-
plasm of dinoflagellate (Prorocentrum triestinum)
cells collected from the surface of coastal waters off
Shiwha, western Korea, during red tides dominated by
the dinoflagellate in July 2005 (Fig. 1R).

Ingestion rates of diverse dinoflagellate predators

The ingestion rate of Prorocentrum donghaiense on
Synechococcus, measured using the second method
(bottle-incubation method) at an initial prey concentra-
tion of 2.3 × 106 cells ml–1 (8.2 cells dinoflagellate–1 h–1),
was only 10% higher than the ingestion rate at the
same prey concentration calculated using the equation
of the regression line on the ingestion rates mea-
sured using the first method (prey-inclusion method)
(7.4 cells dinoflagellate–1 h–1) (Table 2, Fig. 2).

When the initial prey concentrations of Synecho-
coccus were 1.1 to 2.3 × 106 cells ml–1, the ingestion
rates of the red-tide dinoflagellates on Synechococcus
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Table 2. Ingestion rates (means, SEs in parentheses) of the dinoflagellate preda-
tors on Synechococcus, measured using 2 different methods in Expt 2 (see ‘Ma-
terials and methods’). BI: bottle-incubation method; PI: prey-inclusion method

Predator species Method Initial concentrations Ingestion rate
of Synechococcus (cells dinoflagel-

(106 cells ml–1) late–1 ml–1)

Heterocapsa rotundata BI 1.17 (0.04) 1.0 (0.2)
Prorocentrum minimum BI 1.83 (0.04) 5.9 (1.2)
Prorocentrum donghaiense BI 2.25 (0.10) 8.2 (0.4)
Prorocentrum donghaiense PI 2.25 7.4a

Heterocapsa triquetra PI 1.20 (0.03) 4.4 (0.3)
Alexandrium minutum PI 1.09 (0.01) 3.2 (2.2)
Gymnodinium impudicum BI 1.28 (0.02) 14.5 (1.5)
Karenia brevis BI 1.25 (0.04) 5.0 (0.1)
Scrippsiella trochoidea BI 1.26 (0.04) 7.1 (1.1)
Cochlodinium polykrikoides BI 1.08 (0.20) 38.7 (1.1)
Prorocentrum micans PI 1.38 (0.04) 35.4 (2.1)
Alexandrium catenella BI 1.89 (0.05) 29.5 (6.7)
Alexandrium tamarense BI 1.13 (0.05) 13.7 (0.9)
Akashiwo sanguinea BI 1.90 (0.11) 62.9 (5.4)
Gonyaulax polygramma BI 1.65 (0.65) 42.4 (2.8)
Gymnodinium catenatum BI 1.00 (0.04) 30.2 (2.8)
Gonyaulax spinifera BI 1.14 (0.09) 24.3 (3.5)
Lingulodinium polyedrum BI 1.53 (0.04) 64.2 (2.2)
a7.4 was calculated using the equation of the regression line in Fig. 2
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Fig. 1. Feeding by dinoflagellate predators on Synechococcus. Cultured cells of the predators and prey: (A) Heterocapsa rotundata,
(B) Gymnodinium impudicum, (C) Cochlodinium polykrikoides, (D) Prorocentrum micans, (E) Gonyaulax polygramma, (F) Gymnodinium
catenatum, (G) Akashiwo sanguinea, (H) P. minimum, (I) P. donghaiense, (J) H. triquetra, (K) Alexandrium minutum, (L) Karenia brevis,
(M) Scrippsiella trochoidea, (N) A. catenella, (O) A. tamarense, (P) Gonyaulax spinifera, (Q) Lingulodinium polyedrum. (R) Ingested
Synechococcus cells inside the protoplasm of P. triestinum collected from a natural water sample. Scale bars = 5 µm. Arrows indicate
ingested prey cells. (A to G) and (R) are photomicrographs showing dinoflagellate predators ingesting live Synechococcus cells (seen as
orange-colored inclusions), taken using an epifluorescence microscope, and (H to Q) are photomicrographs showing dinoflagellate
predators ingesting fluorescently labeled Synechococcus cells (seen as green-colored inclusions), taken using a confocal laser 

scanning microscope
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generally increased as the size of the algal predators
increased (Table 2). The smallest ingestion rate
(1.0 cells dinoflagellate–1 h–1) was obtained for the
smallest predator Heterocapsa rodundata (ESD =
5.2 µm), while the greatest ingestion rate (64.2 cells
dinoflagellate–1 h–1) was obtained for the largest
predator Lingulodinium polyedrum (ESD = 38.2 µm).

Effects of prey concentration

The initial concentrations of Synechococcus in the ex-
periment on the feeding by Prorocentrum donghaiense on
Synechococcus were 1.1 × 102 to 3.0 × 106 cells ml–1. When
being measured using the first method (prey-inclusion
method), with increasing Synechococcus concentration,
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the ingestion rate of P. donghaiense on Synechococcus in-
creased, with saturation at a prey concentration of ap-
proximately 1.1 × 106 cells ml–1 (Fig. 2). When the data
were fitted to Eq. (1), the maximum ingestion rate of P.
donghaiense on Synechococcus was 7.7 cells dinoflagel-
late–1 h–1. The maximum clearance rate of P. donghaiense
on Synechococcus was 2.6 µl dinoflagellate–1 h–1.

The initial concentrations of Synechococcus in the
experiment on the feeding by Prorocentrum micans on
Synechococcus were 1.3 × 102 to 3.4 × 106 cells ml–1.
With increasing prey concentration the ingestion rate
of P. micans on Synechococcus increased, with satura-
tion at a prey concentration of approximately 1.4 ×
106 cells ml–1 (Fig. 3). When the data were fitted to
Eq. (1), the maximum ingestion rate of P. micans
on Synechococcus was 38.2 cells dinoflagellate–1 h–1.
The maximum clearance rate of P. micans on Synecho-
coccus was 4.3 µl dinoflagellate–1 h–1.

Grazing impact

The grazing coefficients attributable to Prorocen-
trum donghaiense on co-occurring Synechococcus in
Masan Bay, Korea, were 0.1 to 3.6 h–1 (i.e. 11 to 98% of
a Synechococcus population was removed by a popu-
lation of P. donghaiense in 1 h) when the abundances

of P. donghaiense and Synechococcus were 1710 to
55 000 cells ml–1 and 550 to 16 130 cells ml–1, respec-
tively (Fig. 4A). The grazing coefficients attributable to
P. donghaiense on co-occurring Synechococcus in the
offshore and/or oceanic waters away from Jeju island,
Korea, were 0.001 to 0.014 h–1 (i.e. 0.1 to 1.5% of a
Synechococcus population was removed by a popula-
tion of P. donghaiense in 1 h) when the abundances
of P. donghaiense and Synechococcus were 12 to
328 cells ml–1 and 70 110 to 203 140 cells ml–1, respec-
tively (Fig. 4A).

The grazing coefficients attributable to Prorocen-
trum micans on co-occurring Synechococcus in Masan
Bay were 0.04 to 0.15 h–1 (i.e. up to 4 to 17% of a Syne-
chococcus population was removed by a population of
P. micans in 1 h) when the abundances of P. micans
and Synechococcus were 100 to 461 cells ml–1 and 547
to 9840 cells ml–1, respectively (Fig. 4B).

DISCUSSION

Dinoflagellate predators on Synechococcus

All red-tide dinoflagellates tested in the present
study were able to ingest Synechococcus. Dinoflagel-
lates not tested yet are also likely able to feed on
Synechococcus. We reported here for the first time
that Alexandrium catenella, A. minutum, Heterocapsa
rotundata (previously Katodinium rotundatum), and
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Fig. 2. Ingestion rate (cells dinoflagellate–1 h–1) of Prorocen-
trum donghaiense on Synechococcus as a function of the ini-
tial prey concentration (cells ml–1). Each value of the ingestion
rates was calculated by exploration from a linear regression
curve on the number of prey cells inside a dinoflagellate
predator cell over incubation time (see ‘Materials and meth-
ods’ for calculation). Symbols represent single treatments.
The curves were fitted by a Michaelis-Menten equation
(Eq. 1) using all treatments in the experiment. Ingestion rate
(IR, cells dinoflagellate–1 h–1) = 7.7 [x/(114 000 + x)], r2 = 0.909, 

where x is the prey concentration

Fig. 3. Ingestion rate (cells dinoflagellate–1 h–1) of Prorocen-
trum micans on Synechococcus as a function of the initial prey
concentration (cells ml–1). Each value of the ingestion rates was
calculated as for Fig. 2. Symbols represent single treatments.
The curves were fitted by a Michaelis-Menten equation
(Eq. 1) using all treatments in the experiment. Ingestion rate
(IR, cells dinoflagellate–1 h–1) = 38.2 [x / (152 000 + x)], r2 = 0.980, 

where x is the prey concentration
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Karenia brevis, which had been previously thought
to be exclusively autotrophic dinoflagellates, were
mixotrophic species. The other dinoflagellates tested
in the present study have already been classified as
mixotrophic (Bockstahler & Coats 1993, Jacobson &
Anderson 1996, Stoecker et al. 1997, Legrand et al.
1998, Jeong et al. 2004, 2005a,b). Feeding by mixo-
trophic dinoflagellates on Synechococcus may be an
important factor in marine planktonic communities in
the following ways. (1) In food webs, the pathway from
one of the most abundant photosynthetic micro-
organisms in the world’s oceans (Ferris & Palenik 1998,
Li 1998) to the mixotrophic dinoflagellates is a new dis-
covery. So far, most studies have reported that hetero-
trophic nanoflagellates and ciliates are responsible for
the mortality of Synechococcus due to predation. In the
future we should take mixotrophic dinoflagellates into
consideration as important predators on Synechococ-

cus. (2) Synechococcus may be too small to be eaten by
filter-feeding copepods, while many red-tide dinofla-
gellates are easily eaten by these grazers (Nival &
Nival 1976, Berggreen et al. 1988, Jeong 1995). There-
fore, dinoflagellates might be a link between Syne-
chococcus and some metazooplankters that are unable
to ingest Synechococcus directly. (3) Some dinoflagel-
lates such as K. brevis, P. donghaiense, and P. mini-
mum formed red tides in offshore and/or oceanic
waters, where the nutrient concentrations were low
(Tyler & Seliger 1978, Tester & Steidinger 1997).
Because Synechococcus are usually abundant in off-
shore and/or oceanic waters, it may be an important
prey source for the red-tide dinoflagellates there. (4)
Some studies suggested that besides iron limitation,
high microzooplankton grazing pressure could be one
of the reasons why the biomass of picophytoplankton
(mainly Synechococcus) in oceanic waters with high
nutrient concentrations remains fairly constant (e.g.
Wells et al. 1994). Feeding by mixotrophic dinoflagel-
lates may be another mechanism for limiting the exces-
sive growth of picophytoplankton there.

Ingestion rates

Prior to this present study, there have been no data
on the ingestion rate of mixotrophic dinoflagellates on
Synechococcus. When prey concentrations were 1.1 to
2.3 × 106 cells ml–1, ingestion rates of the red-tide
dinoflagellates on Synechococcus sp. varied from 1 to
64 cells dinoflagellate–1 h–1. Data from these studies
show that the ingestion rates of 17 cultured red-tide
dinoflagellates on Synechococcus sp. are positively
correlated with the ESDs of the dinoflagellates (Fig. 5).
This relationship suggests that the sizes of the algal
predators may be an important factor affecting their
ingestion rates on Synechococcus.

When the carbon content for Synechococcus sp.,
estimated from cell volume (1 µm3) according to Strath-
mann (1967), is 0.2 pg C cell–1, the maximum ingestion
rate of Prorocentrum donghaiense on Synechococcus
sp. (1.5 pg C dinoflagellate–1 h–1) was slightly higher
than those on a cryptophyte (1.1 pg C dinoflagellate–1

h–1), while the maximum ingestion rate of P. micans on
a Synechococcus sp. (7.5 pg C dinoflagellate–1 h–1) was
much higher than that on a cryptophyte (1.7 pg C
dinoflagellate–1 h–1) (Jeong et al. 2005b). The maxi-
mum ingestion rate of P. micans (ESD = 26.6 µm) feed-
ing on a Synechococcus sp. under the conditions pro-
vided in the present study was slightly higher than that
of Cochlodinium polykrikoides (ESD = 25.9 µm) on a
cryptophyte (6.7 pg C dinoflagellate–1 h–1) (Jeong et al.
2004) and the same as that of Gonyaulax polygramma
(ESD = 32.5 µm) on the cryptophyte (7.5 pg C dinofla-
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ferent. The scales of the circles in the inset boxes are g (h–1)
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gellate–1 h–1) (Jeong et al. 2005a). If the dinoflagellates
having similar sizes have similar ingestion rates as
shown above, Synechococcus may be an optimal prey
for P. micans.

The maximum ingestion rate of Prorocentrum dong-
haiense on a Synechococcus sp. was higher than that
of the small heterotrophic nanoflagellate Picophagus
flagellatus or Pseudobodo sp. on Synechococcus sp.
(Guillou et al. 2001, Christaki et al. 2002), but lower
than that of the heterotrophic nanoflagellate Cafeteria

roenbergensis (Boenigk et al. 2001), when corrected to
20°C using Q10 = 2.8 (Hansen et al. 1997) (Table 3). The
maximum ingestion rate of P. micans on Synechococ-
cus was also comparable to that of the ciliate Uronema
sp., having a volume similar to this dinoflagellate.
Therefore, the red-tide dinoflagellates have ingestion
rates comparable to the heterotrophic nanoflagellates
and ciliates when fed on a Synechococcus sp., and
thus these grazers may sometimes compete with one
another for a Synechococcus if they co-occur.

Grazing impact

Grazing coefficients (g) attributable to Prorocentrum
donghaiense and P. micans on co-occurring Syne-
chococcus in Masan Bay, Korea, were up to 3.6 and
0.15 h–1, respectively (i.e. up to 98 and 17% of Syne-
chococcus populations were removed by the popula-
tions of P. donghaiense and P. micans, respectively,
in 1 h). Therefore, P. donghaiense and P. micans may
sometimes have a considerable grazing impact on pop-
ulations of co-occurring Synechococcus in Masan Bay.
However, grazing coefficients attributable to P. dong-
haiense in offshore and/or oceanic waters away from
Jeju Island, Korea, were up to 0.014 h–1 (i.e. up to 1.5%
of a Synechococcus population was removed by a pop-
ulation of P. donghaiense in 1 h). The removal of 23%
of a Synechococcus population by a population of P.
donghaiense per day in offshore and/or oceanic waters
may not be absolutely low, but it is relatively much
lower than that in Masan Bay. High abundances of
Synechococcus (70 000 to 203 000 cells ml–1) compared
to the abundances of P. donghaiense (12 to 328 cells
ml–1) in oceanic waters are responsible for these rela-
tively lower grazing coefficients. The maximum con-
centration of P. donghaiense so far reported was
360 000 cells ml–1 in the offshore/oceanic waters of the
East China Sea (Lu et al. 2002), but in this case g could

not be calculated, because data on
the concentrations of co-occurring
Synechococcus had not been re-
ported. If the abundances of P. dong-
haiense were 360 000 cells ml–1, P.
donghaiense could almost eliminate
Synechococcus in a few minutes at
a Synechococcus concentration of
203 000 cells ml–1. Some dinoflagel-
lates such as K. brevis, P. dong-
haiense, and P. minimum, which
sometimes form red tides in offshore
and/or oceanic waters may have
considerable grazing impact on pop-
ulations of co-occurring Synecho-
coccus (Tyler & Seliger 1978, Tester
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Table 3. Comparison of ingestion and clearance rates in red-tide dinoflagellates
(DIN), heterotrophic nanoflagellates (HNF), and ciliates (CIL) when fed on
Synechococcus. Rates are corrected to 20°C using Q10 = 2.8 (Hansen et al. 1997).
PDV: predators’ volume, as µm3; Imax: maximum ingestion rate, as cells dinofla-

gellate–1 h–1; Cmax: maximum clearance rate, as mµl dinoflagellate–1 h–1

Predator PDV Imax Cmax Source

Prorocentrum donghaiense (DIN) 1200 7.7 2.6 Present study
Prorocentrum micans (DIN) 9900 38.2 4.3 Present study
Picophagus flagellatus (HNF) 8 0.8 2.8 Guillou et al. (2001)
Pseudobodo sp. (HNF) 14 3.3 13.4 Christaki et al. (2002)
Cafeteria roenbergensis (HNF) 20 15.1 – Boenigk et al. (2001)
Bodo saltans (HNF) 45 2.0 – Dolan & 2imek (1998)
Uronema sp. (CIL) 8300 31.0 148.2 Christaki et al. (1999)
Strombidium sulcatum (CIL) 157000 96.0 515.0 Christaki et al. (1999)
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Fig. 5. Ingestion rates (IRs) of 17 red-tide dinoflagellates on
Synechococcus as a function of dinoflagellate size (equivalent
spherical diameter, µm). The equation of the regression was
IR (cells dinoflagellate–1 h–1) = 0.991e(0.116 × ESD), r2 = 0.999
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Ac: Alexandrium catenella; At: A. tamarense; Am: A. minu-
tum; As: Akashiwo sanguinea; Cp: Cochlodinium poly-
krikoides; Gp: Gonyaulax polygramma; Gs: Gonyaulax
spinifera; Gc: Gymnodinium catenatum; Gi: Gymnodinium
impudicum; Hr: Heterocapsa rotundata; Ht: H. triquetra;
Kb: Karenia brevis; Lp: Lingulodinium polyedrum; Pd: P.
donghaiense; Pmc: Prorocentrum micans; Pm: P. minimum; 

St: Scrippsiella trochoidea
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& Steidinger 1997). However, the grazing rates of some
mixotrophic dinoflagellates are known to be affected
by light and/or nutrient conditions (Hansen & Nielsen
1997, Steocker et al. 1997, Jeong et al. 1999, Hansen et
al. 2000, Jakobsen et al. 2000, Li et al. 2000, Skovgaard
et al. 2000, Smalley et al. 2003). Therefore, the grazing
impact of dinoflagellate predators on co-occurring
Synechococcus may also be affected by light and/or
nutrient conditions. Also, co-occurring phototrophic
plankton cells may affect the grazing impact by
dinoflagellate predators on Synechococcus, because
many dinoflagellate predators have been known to
feed on phototrophic plankton (Stoecker et al. 1997,
Jeong et al. 1999, 2004, 2005a,b).
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