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INTRODUCTION

Natural geothermal springs are widespread on the
Earth’s surface. Excluding deep-sea hot vents, the
most accessible ones are terrestrial geothermal
springs, solfataras and geothermally heated soils.
Greece harbours many terrestrial and coastal sites
where geothermal springs occur, with temperatures
between ~30 and 90°C, due to the geology of the coun-
try. Geothermal areas in the country are related to
recent volcanic activity and active tectonics. Magmatic
and volcanic processes, along with the high mountain
chains and active fault systems, favour the rise of deep

waters which are discharged at the surface as geother-
mal springs. The origin of the fluid movement results
from a thermal gradient closely related to volcanic
activity, leading to convection, for the majority of
springs within areas of Tertiary basins in northern
Greece and the Aegean island arc. These springs occur
mainly in the post-orogenic basins of the northern
Aegean and the Aegean island arc. In western Greece,
where volcanic activity does not exist, the thermal gra-
dient is due only to depth. The prokaryotic diversity of
the shallow hydrothermal vents of Milos Island on the
Aegean island arc has been previously studied (Sievert
et al. 1999, 2000). Geothermal spring waters in islands
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from similar environments. The thermophilic nature of most of the discovered phylotypes was also
supported by their high G+C content, which was positively correlated with the springs’ temperatures.
The springs showed different diversity patterns for Bacteria and Archaea, with Bacteria having
higher diversity only in Polihnitos and Lagadas springs. The Shannon diversity index H’ showed
larger variation for Archaea (0.23 to 3.44) than for Bacteria (1.22 to 3.03) and was unrelated to the pre-
vailing temperature, pH, salinity and dissolved oxygen content. Archaeal and bacterial clone
libraries respectively contained 50 to 94.1 and 68.8 to 96.2% rare phylotypes (i.e. those that appear
only once or twice in the clone library), indicating the importance of rare phylotypes in shaping com-
munity diversity.
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and coastal areas are typical of marine solutions and
result from the mixing of deep thermal reservoir water
with meteoric water. In continental areas, thermal
water rising from deep reservoirs is frequently local-
ized in aquifers of neogene sediments such as con-
glomerates and sandstones, or may be mixed with
karstic surface water. In general, the chemistry of
Greek geothermal springs is due to the interaction of
groundwater with silicic rocks bearing alkaline ele-
ments and some carbonates (mostly marbles), or with
shallow aquifers and seawater, e.g. Thermopiles
springs (Duriez et al. 2008). Geothermometric analysis,
i.e. inferring temperature ranges from the occurring
minerals in spring water, suggests that the mean tem-
peratures of hot spring waters are between 149 and
187°C. These temperatures are probably due to a nor-
mal gradient, since the depth of the post-orogenic
basin of Greece is thought to be >4000 m (Lambrakis &
Kallergis 2005).

Although the geochemical features of the majority of
geothermal springs in Greece have been the focus of
several studies (reviewed by Lambrakis & Kallergis
2005), the available information on the microbiology of
such springs is remarkably scarce. Except for the Milos
Island shallow vents, where diverse archaeal and bac-
terial communities dictated by temperature and geo-
chemical gradients have been revealed (Sievert et al.
1999, 2000), to our knowledge, only one study that
focused on the isolation of thermophilic strains that are
able to degrade crude oil originating from geothermal
soils, sediments and waters on the volcanic island of
Santorini exists (Meintanis et al. 2006).

It is well accepted that geothermal springs have site-
specific biological, physical and chemical diversities. In
addition, solid relationships of the existing microorgan-
isms with the prevailing geochemical parameters are
usually difficult to unravel as the majority of the re-
trieved sequences are new or unknown, making under-
standing of the microbial ecophysiology a really chal-
lenging task. One way of overcoming this problem is to
discover trends of microbial diversity in order to deter-
mine whether temperature, substrates, toxic compounds
or viruses play key roles in shaping the microbial
communities in geothermal springs. Patterns of bacterial
diversity give us a better understanding of how bacteria
are distributed spatially and temporally (van der Gast
2008), and geothermal springs are considered to be
among the extreme environments of pristine quality. In
geothermal springs, temporal changes are expected to
be much lower than in other surface habitats (Staley &
Reysenbach 2002); thus, changes in bacterial diversity
most probably depict changes dictated by spatial factors,
like different origin depth and/or different available
electron acceptors and donors for microbial metabolism.
The aims of the present study were to investigate 

(1) archaeal and bacterial diversities based on 16S rRNA
gene phylogenetic relationships in the waters of 5 terres-
trial geothermal springs from 4 different geothermal
fields with temperatures ranging from ~36 to 89°C, and
(2) the pattern of microbial diversity in geothermal
springs with a wide range of different physical and
chemical characteristics.

MATERIALS AND METHODS

Sampling and prokaryotic cell abundance. Water
was collected from the Polihnitos (Pol), Edipsos (Edi),
Thermopiles (Thp), Eleftheres (Ele) and Lagadas (Lag)
geothermal springs in Greece (Fig. 1) between Janu-
ary and May 2005. Water samples of 20 l were col-
lected in pre-sterilised carboys either from 20 to 30 cm
below the surface in the case of pools (Pol, Thp, Lag,
Ele) or by direct filling in the case of seeps (Edi). The
samples were transferred immediately (<12 h) to the
laboratory and filtered upon arrival. Water was filtered
under low vacuum (<150 mm Hg) through polycarbon-
ate filters of 0.2 µm pore size and the filters were kept
at –80°C until further analysis. In situ measurements of
temperature, pH, salinity and dissolved oxygen con-
tent were conducted using probes (YSI). Bacterial
counts were measured using epifluorescence micro-
scopy as described by Turley (1993).

PCR amplification and cloning. DNA was extracted
using a soil DNA isolation kit (UltraClean, MoBio Lab-
oratories) according to the manufacturer’s protocol
after slicing the filters with a sterile scalpel. For each
16S rRNA PCR amplification, 0.5 µl of the DNA tem-
plate (~90 to 160 ng µl–1) was used. To decrease PCR
bias related to high numbers of cycles and minimize
differences in clone library representation between
rare and abundant phylotypes, PCR cycle optimization
was performed, i.e. each PCR was performed at the
minimum number of cycles where a positive PCR sig-
nal occurred. For all samples, a mixture of archaeal
and bacterial universal primers was used in order to
cover possible mismatches (Table 1).

Each 50 µl PCR reaction consisted of a 9 min pre-
PCR hold at 95°C, followed by x number of cycles as
determined by cycle optimisation (Table 1) consisting
of a 1 min denaturation step at 95°C, a 1 min annealing
step at 50°C, a 2 min elongation step at 72°C, and a
final 10 min finishing step at 72°C at the end of x num-
ber of cycles. All PCR ingredients were prepared with
twice-autoclaved ultra pure water, using Ampli Taq
Gold polymerase (Applied Biosystems). The PCR prod-
ucts were checked on a 1.2% agarose gel at 100 V for
35 min, and were purified using a purification kit
(Montage, Millipore). The purified PCR products were
cloned with a T-vector kit (pT7 Blue, Novagen). The
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clonal DNAs were amplified from randomly selected
recombinants by direct PCR with M13 primers (M4, 5’-
GTT TTC CCA GTC ACG AC-3; RV, 5’-CAG GAA
ACA GCT ATG AC-3’), purified with an HR column
(MicroSpin S-400), and then used as templates for
sequencing. Sequencing was performed with primers
907R (5’-CCG YCA ATT CMT TTR AGT TT-3’), a
quick start kit (DTCS, Beckman), and an automated
sequence analyzer (CEQ-2000, Beckman).

Phylogenetic and diversity analysis. Sequences of
~500 to 600 bp from the same sample were compared
with those in the DDBJ/EMBL/GenBank databases
using the FASTA search programs (www.ddbj.nig.ac.
jp/search/). Sequences with ≥98% similarity were
grouped as identical operational taxonomic units
(OTU). For unique OTUs, additional sequencing was
performed with M4 and RV primers, and after contig
construction of the whole amplified region, detection
of chimeric DNAs using the CHECK-CHIMERA pro-
gram (Maidak et al. 2001) of the Ribosomal Database
Project was performed and all chimeric sequences
were discarded. Sequences from the present study

were assigned GenBank accession numbers EF444594
to EF444797.

The sequences were automatically aligned with their
closest relatives data using the Clustal X program
(Jeanmougin et al. 1998) and revised by manual re-
moval of ambiguously aligned regions. Phylogenetic
trees were constructed using the neighbor-joining
method (Saitou & Nei 1987) with the Clustal X program.
Bootstrap analyses for 1000 replicates were performed
to assign confidence levels to the tree topology by using
PAUP* (phylogenetic analysis using parsimony) ver-
sion 4.08b (Swofford 2000). Clone coverage was calcu-
lated using the equation C = [1 × (n1/N)] × 100, where n1

is the number of single-occurrence OTUs and N is the
number of 16S rRNA sequences examined (Good 1953,
Kemp & Aller 2004). The Shannon-Wiener index H’ was
used as the diversity index and was calculated as
follows: H’ = Σ(pi) (log pi), where the summation is over
all OTUs, and pi is the proportion of OTU i relative to
the sum of all OTUs. The Shannon evenness index E
was calculated as E = H’/lnS, where S is the number of
OTUs (Shannon & Weaver 1949, Pielou 1969).
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Fig. 1. Distribution map of the principal geothermal waters of Greece and location of the studied springs (arrows): Polihnitos
(Pol), Edipsos (Edi), Eleftheres (Ele), Thermopiles (Thp) and Lagadas (Lag). For a full description of the map see Lambrakis &

Kallergis (2005)
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RESULTS

Abiotic parameters and prokaryotic cell abundance

The highest temperature (89°C) was noted in Pol
while the lowest was in Lag (35.2°C) (Table 2). The
most acidic spring was Thp (pH 5.14) while the rest
of the springs were slightly acidic to neutral (pH 6.30
to 6.98). Edi had the highest salinity (33 PSU) with
the rest of the springs being either brackish (Thp
12.6, Pol 5.1 PSU) or fresh water (Ele, Lag). Lag was
the only spring with oxygen saturated waters, fol-
lowed by Thp with 37% and the rest of the springs
with ≤12%. Abundance of prokaryotic cells varied
between 0.02 × 105 (Edi) to 0.92 × 105 cells ml–1 (Thp)
(Table 2).

Clone libraries analysis

A total of 227 archaeal and 501 bac-
terial clones were analysed from the 5
geothermal springs, which belonged
to 85 and 121 OTUs, respectively
(Table S1, available as Supplementary
material at www.int-res.com/suppl/
a057p113_app.pdf). Clone library cov-
erage based on Good (1953) was at
least ~75%, except for the archaeal
clone libraries for Thp and Ele (~40
and 60% respectively, Fig. 2), indicat-
ing that at least the most prevalent
archaeal and bacterial groups in each
clone library were identified.

Phylogenetic and diversity analyses

All results are shown in Table S1
and Figs. S1a–c, available as Supple-
mentary material at www.int-res.com/
suppl/a057p113_app.pdf. In Pol, the
archaeal community consisted of only

2 phylotypes. Thus, the low archaeal diversity was at-
tributed to one Crenarchaeota phylotype (Pol-A-2,
93.9% dominance) related to tropical estuarine sedi-
ments, while the same spring showed the highest bac-
terial diversity of all the springs studied. The other
phylotype (Pol-A-1) was closely related to Archaeo-
globus fulgidus. The most abundant (17.1%) bacterial
phylotype (Pol-B-97) was related to environmental se-
quences derived from Taiwan hot springs and Hy-
drogenophilus thermoluteolus. Other phylotypes were
related to known thermophilic or uncultivated repre-
sentatives of the phyla Chloroflexi, Deinococcus-
Thermus, Bacteroidetes, Thermotogae, Aquificae,
Planctomycetes and candidate division OP11.

In Edi, the dominant (43.2%) archaeal phylotype
(Edi-A-1) was the same as the dominant one in Pol.

The rest of the archaeal phylotypes
belonged to other Crenarchaeota (to-
tal 16.0%) and Euryarchaeota (41.0%)
from similar systems or the deep sub-
surface. The dominant (61.9%) bacte-
rial phylotype (Edi-B-3) was related to
Persephonella hydrogeniphila, while
the rest of the phylotypes belonged
to several phyla such as Nitrospirae,
Proteobacteria (classes γ and δ),
Cyanobacteria, Deferribacteres, Fir-
micutes, ‘Termite group’ and OP11,
with representatives mostly from the
deep subsurface and hot springs.
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Primer sequence (5’ – 3’) Optimum
number of 
cycles,
Tm = 50°C

Archaea
Forward: Arc109f-mixa ACGGCTCAGTAACACGT Pol: 30

ACTGCTCAGTAACACGT Edi: 38
AAGGCTCAGTAACACGT Thp: 32

Reverse: Univ1492rb TACGGTTACCTTGTTACGACTT Ele: 38
TACGGCTACCTTGTTACGACTT Lag: 35

Bacteria
Forward: EUB338mixc ACTCCTACGGGAGGCAGC Pol: 32

ACTCCTACGGGAGGCTGC Edi: 28
ACACCTACGGGTGGCTGC Thp: 22
ACACCTACGGGTGGCAGC Ele: 25

Reverse: Univ1492rb TACGGTTACCTTGTTACGACTT Lag: 26
TACGGCTACCTTGTTACGACTT

aGrosskopf et al. (1998), Kamagata et al. (unpubl.)
bLane (1991)
cAmann et al. (1990), Daims et al. (1999)

Table 1. Sequences of oligonucleotide primers used for PCR amplifications.
Pol: Polihnitos, Edi: Edipsos, Thp: Thermopiles, Ele: Eleftheres, Lag: Lagadas

geothermal springs. Tm: annealing temperature

Spring Temp. pH Salinity Dissolved Prokaryotic
(°C) (PSU) oxygen cell abundance

(mg l–1) [O2 (cells ml–1 ±
saturation, %] SD)

Polihnitos 89.0 6.79 5.1 2.96 [2.1] 15,593 ± 777
Edipsos 81.8 6.30 33.0 3.30 [6.3] 2,189 ± 633
Thermopiles 38.9 5.14 12.6 1.35 [37.0] 91,733 ± 1,199
Eleftheres 41.2 6.80 0.0 0.60 [12] 90,591 ± 1,292
Lagadas 35.2 6.98 0.0 5.50 [105.0] 24,696 ± 893

Table 2. Abiotic parameters and prokaryotic cell abundance in Greek geo-
themal spring waters. PSU: practical salinity units

http://www.int-res.com/articles/suppl/a057p113_app.pdf
http://www.int-res.com/articles/suppl/a057p113_app.pdf
http://www.int-res.com/articles/suppl/a057p113_app.pdf
http://www.int-res.com/articles/suppl/a057p113_app.pdf
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Fig. 2. Clone library coverage of (a)  archaeal and (b) bacterial 16S rRNA genes (based on Good’s C estimator) from the 
geothermal spring waters of Polihnitos (Pol), Edipsos (Edi), Thermopiles (Thp), Eleftheres (Ele) and Lagadas (Lag), Greece
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In Thp, the high archaeal diversity was attributed
to the high number (47 or 61.1% of all phylotypes) of
singleton phylotypes. The most dominant phylotype,
Thp-A-14 (20.3%), belonged to the Crenarchaeota
and was related to a phylotype from a South African
gold mine. Of all the archaeal phylotypes, only 6.5%
belonged to the Euryarchaeota. The bacterial com-
munity in Thp was dominated by the γ-Proteobac-
teria (>57.9%), with phylotype Thp-B-2 being the
dominant one (35.8%), which was related to a rhizo-
sphere biofilm. The rest of the phylotypes belonged
to the gamma, β-proteobacteria, OP11, Bacteroidetes,
Thermotogae, Chlorobi, WS6, and Firmicutes, with
their closest relatives originating from hot springs,
anaerobic systems, hydrothermal vents and the
subsurface.

In Ele, all archaeal phylotypes belonged to the
Crenarchaeota. The 2 most abundant (25 and 17.9%)
phylotypes (Ele-A-22 and Ele-A-6, respectively), as
well as the rest of the phylotypes, were related to phy-
lotypes from deep subsurface environments. The low
diversity of the Ele bacterial community was due to the
high dominance (72.2%) of phylotype Ele-B-1, which
was related to a rhizosphere biofilm and belonged to
the γ-Proteobacteria. This subphylum was also domi-
nant in the rest of the phylotypes, followed by OP11
and Chloroflexi.

In Lag, the 2 dominant (46.5 and 34.9%) phylotypes
(Lag-A-2 and Lag-A-9, respectively) belonged to the
Crenarchaeota and were related to soil phylotypes. All
but one of the rest of the phylotypes also belonged to
the Crenarchaeota and were related to phylotypes
from subsurface anaerobic environments. The only
Euryarchaeota phylotype (Lag-A-82) was related to
deep-sea sediments.

The Shannon diversity index H’ (Fig. 3) showed
higher variation for Archaea (between 0.23 in Pol and
3.44 in Thp) than for Bacteria (between 1.22 in Ele and
3.03 in Pol). In Pol and Lag, archaeal was lower than
bacterial diversity, with the former being higher in the
rest of the springs. The Shannon evenness index E
varied between 0.33 and 0.88 for Archaea and 0.44 and
0.89 for Bacteria, and was higher for Bacteria only in
Pol (Fig. 3).

All clone libraries contained rare phylotypes (sensu
Aller & Kemp 2008, Fig. 4). Archaeal and bacterial
libraries respectively contained 50 to 94.1 and 68.8 to
96.2% rare phylotypes. A positive relationship was
observed between the number of rare and observed
phylotypes, for both archaeal (p < 0.01) and bacterial (p
< 0.02) clone libraries. There was a significant relation-
ship between library size and the number of rare phy-
lotypes (positive linear regression slope = 0.87, r2 =
82.5%, p < 0.01) but only for the archaeal clone
libraries.

DISCUSSION

Our experimental approach targeted on revealing
the largest extent of the prokaryotic 16S rRNA genetic
diversity in 5 geothermal springs in Greece, with tem-
peratures ranging from 36 to 89°C. This was achieved
by (1) using primer mixtures at low annealing temper-
ature (50°C) to avoid any mismatches that could ex-
clude some microorganisms (Sipos et al. 2007), (2) PCR
cycle optimization in order to eliminate innate PCR
artifacts (v. Wintzingerode et al. 1997) and reduce rel-
ative differences in abundance between the more
abundant and rarer OTUs, and (3) examining the clone
library coverage of each library before closing the
library, without the limitation of a pre-determined min-
imum clone number to be analysed. Kemp & Aller
(2004) have already stressed the scarcity of high clone
coverage studies and the importance of knowing the
full extent of diversity in environmental clone libraries
for a better understanding of the role of diversity in the
functioning of the ecosystem. The Shannon diversity
index H’ causes overestimation in samples with low
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Fig. 3. Shannon diversity (H ’) and evenness (E) indices for the
bacterial and archaeal 16S rRNA gene clone libraries, from
the geothermal spring waters of Polihnitos (Pol), Edipsos
(Edi), Thermopiles (Thp), Eleftheres (Ele) and Lagadas (Lag),

Greece
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coverage (Hill et al. 2003). Our satisfactory clone
library coverage allowed us to reveal the ‘vast’ major-
ity of the existing prokaryotic diversity in most of the
studied springs, albeit to a lesser degree for the
Archaea in Thp and Ele, making the Shannon diversity
index H’ applicable and realistically informative.

The prokaryotic cell abundance was low compared
with other geothermal springs (Kimura et al. 2005,
Belkova et al. 2007, Hetzer et al. 2007, Mathur et al.
2007) but comparable with values from geothermal
subsurface environments (Schulze-Makuch & Ken-
nedy 2000, Kieft et al. 2005). The lack of correlation of
cell abundance with temperature, pH, salinity and dis-
solved oxygen content (data not shown), suggests that
the observed low cell numbers are controlled by other
factors, such as the availability of electron acceptors
and/or viral infection (Lee et al. 2007).

It is known that Crenarchaeota dominate in geother-
mal springs (Barns et al. 1994, Huang et al. 2007). In
the present study, only 10 of the 85 archaeal OTUs
belonged to the Euryarchaeota, while one spring (Ele)
had no euryarchaeotal phylotypes. In addition, most of

the discovered Euryarchaeota phylotypes were not
abundant in the clone libraries where they came from,
except for Edi-A-46 which represented 18.2% of all
existing archaeal phylotypes in this specific library.
The dominance of the Crenarchaeota is not so surpris-
ing since, at least in terms of cultured representatives,
practically all members of this group are thermophiles;
in contrast, Euryarchaeota are more diverse both in
metabolism and habitats, and include mesophilic, ther-
mophilic, and hyperthermophilic organisms as well as
extreme halophiles in terms of temperature tolerance.
The possibility that Crenarchaeota and Euryarchaeota
possess different ecological niches (i.e. spatial or tem-
poral dominance of the former or latter) in the same
ecosystems has also been suggested for planktonic
communities in Antarctic regions (Massana et al. 1988,
Murray et al. 1998), in the deep Atlantic Ocean
(Herndl et al. 2005), the North Sea (Herfort et al. 2007)
and deep hypersaline anoxic basins (van der Wielen et
al. 2005). In Yellowstone geothermal springs (Barns et
al. 1994, 1996) and in the hot, reducing, and iron and
zinc sulfide-rich interior regions of a deep-sea
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Fig. 4. Comparison of the number of rare phylotypes (i.e. those which occur only once or twice in a clone library) to the total num-
ber observed in all (a) archaeal and (b) bacterial libraries. Libraries which fall below the 1:1 line tend to have uniformly abundant
phylotypes, while libraries above the line have a skewed distribution with many rare phylotypes. (c) % Contribution of rare
phylotypes in each of the clone libraries from the geothermal spring waters of Polihnitos (Pol), Edipsos (Edi), Thermopiles (Thp),

Eleftheres (Ele) and Lagadas (Lag), Greece
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hydrothermal vent black smoker chimney, the Crenar-
chaeota dominated the whole prokaryotic community
(Takai et al. 2001, Schrenk et al. 2003); however, the
Euryarchaeota dominated in a white smoker spire in
the East Pacific Rise (9° N, Kormas et al. 2006) and in a
geothermal aquifer (Kimura et al. 2005). Nevertheless,
the actual relative abundance of Crenarchaeota and
Euryarchaeota in Greek geothermal springs remains
to be confirmed, preferably using fluorescence in situ
hybridization (FISH).

In the present study, the physiological features of the
discovered Crenarchaeota OTUs cannot be inferred
with great confidence since most of them were related
to phylotypes of yet-uncultivated species. In addition,
physiologic traits are not necessarily always coherent
within phylogenetic groups. However, these environ-
mental sequences originated from hydrothermal, geo-
thermal, or anaerobic environments suggesting that
the discovered phylotypes could represent indigenous
thermophilic organisms of the geothermal springs.
Such uncultivated thermophilic Crenarchaeota are
abundant in geothermal areas which are rich in hydro-
gen, Fe(II) and sulfur at many oxidation states, and
may also be chemolithotrophic. Overall, the majority of
the Archaea we found are possible members of an
indigenous hot subsurface community except for those
in Lag, Lag being a shallow spring with upcoming
water that is mixed with meteoric water (Traganso et
al. 1995). This spring is more susceptible to ‘contami-
nation’ from soil microorganisms, which are similar to
its several soil-related Archaea phylotypes, while its
low temperature may inhibit or eliminate thermophilic
microorganisms coming from the deep subsurface.
Finally, it is possible that there is a higher variety of
substrates originating from the more physically and
chemically complex nature of soil in Lag.

The finding of nonthermophilic Crenarchaeota in
warm and hot environments is becoming increasingly
common (Jurgens et al. 1997, Kanokratana et al. 2004,
Kvist et al. 2005, 2007, Huang et al. 2007). We also
found several such OTUs that are especially related to
tropical estuarine sediments and fresh water. Kvist et
al. (2005) suggested that DNA from nonthermophilic
Archaea is not amplifiable; thus, the phylotypes found
in such clone libraries represent Archaea that may also
tolerate or even grow at higher temperatures. Consid-
ering our stringent PCR protocols and the large enough
clone libraries, we believe that the nonthermophilic
OTUs we have found could also be thermophilic.

Unlike the archaeal phylotypes, several of the bacte-
rial phylotypes were related to described bacterial spe-
cies. The dominance of phylotypes related to ther-
mophilic phylogenetic groups and/or environmental
sequences retrieved from habitats with moderate to
high temperatures falls from at least 68.2 and 78.5%

for Pol and Edi, respectively, to 35.6, 14.7 and 1.8% for
Thp, Ele and Lag, respectively. As most of the studied
springs are subject to the mixing of geothermal fluids
with meteoric waters at some point in their fluid ascen-
sion (Lambrakis & Kallergis 2005, Duriez et al. 2008), it
is believed that microorganisms originating from
cooler environments will have less chances of surviv-
ing in the waters of those springs with the highest tem-
peratures, like Pol and Edi, unless they have protective
adaptations, like spore formation (e.g. Baker et al.
2001). Geothermometer calculations (Lambrakis &
Kallergis 2005) suggested that the temperature of the
deep subsurface waters of the studied springs are
142–180, 109–152, 124–164, 218–241 and 131–171°C
for Pol, Edi, Thp, Ele and Lag, respectively. Based on
the measured surface temperatures in the present
study, Pol and Edi showed the lowest difference
between the temperatures of deep and surface waters
(53 to 91 and 27 to 70°C, respectively). Such small dif-
ferences between deep subsurface and surface waters
imply either a faster flow (i.e. less chances for contam-
ination from non-subsurface microorganisms) and/or
less mixing with meteoric water. This renders the Pol
and Edi springs more likely of hosting an indigenous
hot subsurface community. Indeed, only in Pol and Edi
are the most abundant phylotypes closely related to
the thermophilic microorganisms Hydrogenophilus
thermoluteolus and Persephonella hydrogeniphila,
respectively; in the rest of the springs, mixtures of ther-
mophiles and mesophiles prevail. Pol and Edi also had
the highest G+C contents (60.1 and 55.7%, respec-
tively; Fig. 5). It is known that the G+C content of 16S
rRNAs is positively correlated with Topt for bacterial
species (Galtier & Lobry 1997). Within the same
springs, the archaeal 16S rRNAs also had the highest
G+C contents (60.2 and 58.1%, respectively).
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Fig. 5. Relationship of the G+C content of the retrieved bacte-
rial (BAC) (– · – · –) and archaeal (ARC) (–––) 16S rRNA gene
sequences with the prevailing temperature in the geothermal
spring waters of Polihnitos (Pol), Edipsos (Edi), Eleftheres

(Ele), Thermopiles (Thp) and Lagadas (Lag), Greece
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Members of the γ-Proteobacteria dominate in sulfidic
and marine environments and are mostly involved in
ecosystem function via chemolithoautotrophic meta-
bolic pathways (Campbell et al. 2006). Recently, the
first nonmarine natural system where this group domi-
nates has been reported (Porter & Engel 2008). Here
we also report their dominance in a freshwater geot-
hermal spring (Ele) and additionally, their dominance
in a brackish spring (Thp), thus supporting the cos-
mopolitan distribution of this group.

The importance of phylogenetically rare prokaryotic
phylotypes in environmental samples has been
recently highlighted (Sogin et al. 2006, Aller & Kemp
2008). The occurrence of rare phylotypes in all of our
investigated archaeal and bacterial clone libraries
started at 50% and reached 96.2%. Such high num-
bers of rare phylotypes indicate the high species rich-
ness of the systems where they are found. It has been
suggested that in microbial populations, rare species
can possess a survival advantage by directly compet-
ing with the dominant ones (Sogin et al. 2006). For the
Archaea in the geothermal springs studied here, we
suggest that rare phylotypes play a more central role in
enhancing phylogenetic diversity as revealed by the
linear relationship between the number of rare of phy-
lotypes and library size.

In conclusion, the apparent richness and community
composition of Bacteria and Archaea in the studied
geothermal springs showed different patterns. Diver-
sity was unrelated to the prevailing temperature, pH,
salinity and dissolved oxygen concentrations. The
inferred ecophysiology of at least the dominant phylo-
types, coupled with geothermometer estimations, sug-
gests that at least for the 2 hottest springs, an indige-
nous deep and hot subsurface community reaches the
surface. In all other springs, microbial contamination
due to the mixing of geothermal water with meteoric
water, shapes different prokaryotic communites in
terms of species richness and diversity.
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