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INTRODUCTION

In temporary freshwater ecosystems, microorgan-
isms such as cyanobacteria and ciliated protozoa are
the main components of the aquatic microbial commu-
nity. Their ecological functions, along with predator-
prey interactions, have been well studied (e.g. Gasol &
Duarte 2000, Wiąckowski et al. 2001, Ventelä et al.
2002, Pinckney et al. 2003, Samuelsson & Andersson
2003); however, the detailed links among different
components of trophic cascades remain for the most
part unclear. In both laboratory microcosms and nat-
ural ecosystems, direct predator–prey interactions
evoke oscillations in predator and prey abundances.
These predator–prey abundances, which depend on
experimental design or ecosystem properties, usually
lead to prey population decrements or prey extinction

(e.g. Gause 1934, Salt 1967, Luckinbill 1973, Veilleux
1979). Under conditions of food shortage, the predator
population may decrease or even completely disap-
pear. Most ecologists agree that the trophic cascade in
a variety of ecosystems is a balance between bottom-
up and top-down control (Brett & Goldman 1996, Halaj
& Wise 2002, Shurin et al. 2002, 2006). The role of the
predator in a food web can be complicated by prey het-
erogeneity (Bohannan & Lenski 2000, Steiner 2001) or
by the availability of prey representing alternative
trophic levels (Bal<iünas & Lawler 1995, Ko8aczyk &
Wiąckowski 1997). Bohannan and Lenski (1997)
observed that the invasion of a model laboratory com-
munity by bacteriophage-resistant mutants of
Escherichia coli subjected to bacteriophage T4 had a
strong effect on the subsequent population dynamics
of both predator and prey. Both the equilibrium density
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and stability of the E. coli population increased follow-
ing the invasion. Ko8aczyk and Wiąckowski (1997)
showed reduced predation on ciliate Euplotes octocar-
inatus by Stylonychia mytilus in the presence of an
abundant green flagellate population, which served as
alternative food for the predator. Trophic cascade
interactions are also modified when the prey has
access to refuges (Křivan 1998) or activates predator-
induced defences (Fia8kowska & Pajdak-Stós 1997,
Fyda 1998, Tollrian & Harvell 1999, Pajdak-Stós et al.
2001). These predator-induced defences include adap-
tive prey behaviours, such as predator avoidance reac-
tions or escape responses, as well as the use of refuges
that make prey less susceptible to predator attacks and
consequently, reduce predator–prey oscillations. In
addition, low refuge carrying capacity leads to stability
of predator–prey dynamics, while stability is lost when
the carrying capacity of the refuge is high (Křivan
1998). In the presence of their predators, some ciliates
reveal induced defences consisting of cell shape
changes, as in the case of Colpidium (Fyda 1998), or
develop additional spines, as in Onychodromus
quadricornutus and Aspidisca turrita (Wicklow 1997).
Likewise, in the presence of their predators, several
Euplotes species enlarge cell width and develop dorsal
spines. The induced morphotype stands a better
chance of avoiding the predator attack and a higher
probability of survival in the predator’s presence
(Kuhlman & Heckmann 1994, Kusch 1995, Fyda &
Wiąckowski 1998, Altwegg et al. 2006). An interesting
example of induced defence in filamentous cyanobac-
teria was discovered by Fia8kowska and Pajdak-Stós
(1997). In the presence of the ciliate Pseudomicrotho-
rax dubius, which is specialised for ingesting fila-
ments, cyanobacterium Phormidium sp. reacts to a cil-
iate attack by withdrawing inside a polysaccharide
sheath where the filament is inaccessible to grazers.
Moreover, instead of dispersing as in ciliate-free con-
trols, in the presence of Pseudomicrothorax, cyanobac-
teria filaments entangle in dense and compact clumps,
surrounded by a layer of exopolysaccharides, which
further protects them from attack (Fia8kowska & Paj-
dak-Stós 1997, 2002, Pajdak-Stós et al. 2001).

Induced defence, widespread in both terrestrial and
aquatic ecosystems, has broader impacts on the com-
munity than mere prey survival (Tollrian & Harvell
1999, Gomez & Zamora 2002). As discovered recently, it
also affects other direct and indirect interactions among
community components (Van der Stap et al. 2006,
2007a,b, 2008). Induced defences decrease per capita
consumption rates of predators and increase the rela-
tive importance of bottom-up control (Vos et al. 2004a).
These defences also promote population persistence
and stability in simple bitrophic and tritrophic food
chains (Verschoor et al. 2004, Vos et al. 2004b, Fyda et

al. 2009). Moreover, inducible defence causes an ab-
sence of the ‘paradox of enrichment’, which in simple
food chains leads to destabilisation of the predator pop-
ulation (Rosenzweig 1971, Vos et al. 2004b).

The present study examined the changes in
tritrophic levels of microcosm communities composed
of an autotrophic producer, its ciliate consumer and a
top ciliate predator. Our aim was to study how the
predacious ciliate affects prey ciliate abundance and
activity, and how Phormidium predator-induced
defences affect predator-grazer mediated coexistence.

MATERIALS AND METHODS

Cultures. All microorganisms used in this study are
common species in freshwater puddles and ponds and
coexist in nature. As a primary producer, we used the
filamentous cyanobacterium (C) Phormidium sp.
(described by Fia8kowska & Pajdak-Stós 1997). The
second trophic level (P1) was represented by Pseudo-
microthorax dubius, which is a specialised grazer of
filamentous cyanobacteria. The top predator (P2) used
in some treatments was the gymnostomatid ciliate
Homalozoon vermiculare. Both ciliate species used in
the experiment were taken from clone populations
maintained at the Institute of Environmental Sciences,
Jagiellonian University, Kraków, Poland. Hereafter, we
refer to the species by their generic names. The strain
of Phormidium and the clone of Pseudomicrothorax
were obtained from single filaments/cells isolated from
a freshwater aquarium filled with pond water, and
Homalozoon was isolated from a puddle. The pond and
the puddle were located near the university campus on
wetlands (50° 01’ 34’’ N, 19° 54’ 05’’ E).

Prior to the experiment, clones of the ciliates and
Phormidium were cultivated in 5 cm diameter Petri
dishes in Sanyo MLR-350 versatile environmental test
chambers at a constant temperature of 20°C. The
dishes contained BG11 medium (Stanier et al. 1971)
prepared according to a formula obtained from the
Culture Collection of Algae and Protozoa (CCAP,
Ambleside, UK). The cultures of Phormidium were
kept at a light intensity of 70 µmol photon m–2 s–1 under
a 12:12 h light:dark cycle at 20°C. The ciliate cultures
were kept in constant darkness. Twice a week, the
clone of Pseudomicrothorax was fed Phormidium fila-
ments, whereas the clone of Homalozoon was fed cili-
ate Colpidium colpoda. About 100 µl of dense Colpid-
ium culture was added by micropipette to the Petri
dishes containing Homalozoon every 2 d.

Experimental design and sampling regime. A
microcosm experiment was carried out in cross-
combinations of the presence or absence of the ciliate
predator Homalozoon. The microcosms were estab-
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lished in 24-well polystyrene tissue culture test plates
(Renner GmbH). Each well contained 1 ml of BG11
medium. Approximately equal-sized (1 × 1 mm) pieces
cut from the Phormidium mat were added to 12 wells.
The presence of Phormidium in the treatments is
marked by the symbol C. The wells were divided into
4 groups: to the first (C+P1+P2), 100 Pseudomicrotho-
rax individuals and 5 Homalozoon individuals were
added to each well; to the second (C+P1), 100 Pseudo-
microthorax individuals were added; the third (C+P2)
contained 5 Homalozoon cells per well, and the fourth
(P1 + P2) contained 100 Pseudomicrothorax and 5
Homalozoon cells. As a control (C), we used wells con-
taining only Phormidium mat. A second control (P1),
containing only 100 Pseudomicrothorax individuals in
1 ml of BG11 medium, was also established. All ciliates
were individually transferred with a pipette from their
culture dishes to the experimental wells. Four repli-
cates of every experimental treatment and control
were made. Experimental plates were placed in a cli-
mate chamber and kept at 20°C at a light intensity of
70 µmol photon m–2 s–1 under a 12:12 h light:dark
cycle. The experiment lasted 7 d. During this period,
all experimental wells were checked under an inverted
Olympus IX 71 microscope at 40× after 2 h (Day 0),
then after 2, 6 and 7 d. During those surveys, the bot-
tom of each well was scanned systematically and
Pseudomicrothorax were counted using the following
categories: well-fed with green vacuoles, active and
dead cells. During the microscope surveys, ciliate cysts
were also counted using 2 categories: full cysts with a
ciliate inside and empty cyst walls remaining after
excystment, referred to as empty cysts. Neither dead/
paralyzed (by predator) Pseudomicrothorax individu-
als nor their cysts were removed from the wells. After
2 h and after 3 and 6 d, the percentage of Phormidium
filaments ending with polysaccharide sheaths was cal-
culated from 100 randomly chosen filament endings
along the edge of the mat. At the end of the experi-
ment, a 10× reference image of every treatment well
was recorded with a DP70 microscope digital camera
attached to the microscope in order to evaluate the
condition of the cyanobacteria mat.

Statistical analysis. We used repeated-measures
analysis of variance (ANOVA) to estimate the effects of
Homalozoon presence on Pseudomicrothorax abun-
dance and activity during the experiment. The pres-
ence of the top predator (P2) and cyanobacteria (C) and
the interactions between the 2 were used as between-
treatment factors and consecutive days in the experi-
ment were used as a within-subject factor. To avoid
non-linearity of percentage values, the arcsine transfor-
mation was used (Sokal & Rohlf 1981). All statistical
analyses were performed using the data analysis soft-
ware system STATISTICA StatSoft (2007), version 8.0.

RESULTS

Effects of Homalozoon on Pseudomicrothorax

On Day 0, the mean number of active Pseudomi-
crothorax per well ranged from 18 ± 5 (mean ± SD here
and elsewhere) in pure BG11 medium (P1 treatment)
to 23 ± 5 on average in all other treatments that day
(Fig. 1). The number of active Pseudomicrothorax indi-
viduals varied significantly between treatments on
consecutive days (Fig. 1). In C+P1+P2, the number
increased significantly on the second day of the exper-
iment, and remained at a similar level until the end of
experiment. A similar effect was observed in C+P1
where Homalozoon was absent. The ciliate predator
significantly affected the abundance of Pseudomi-
crothorax only in P1+P2 where no cyanobacteria were
present. In this treatment, the number of active
Pseudomicrothorax rapidly decreased, and no active
ciliates were observed after the second day. This pre-
dation effect was significant (repeated-measures
ANOVA, p < 0.003), and almost all prey ciliates were
paralysed or ingested by Homalozoon. Similar results,
though much later in the experiment, were observed in
the P1 treatment with only Pseudomicrothorax in BG11
medium: after a small increase in the number of active
cells on the second day, the number of Pseudomi-
crothorax decreased and no active cells were observed
at the end of experiment (Fig. 1). The statistical signif-
icance of the results is shown in Table 1.

The mean percentage of well-fed Pseudomicrotho-
rax per experimental well remained at a similar level
throughout the experiment in the C+P1+P2 treatment,
ranging from 74 ± 13% at the beginning to 95 ± 4.6%
after 1 wk. In the C+P1 treatment, well-fed Pseudomi-
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crothorax comprised 85 ± 7 and 93 ± 7% of total num-
bers on Days 0 and 7, respectively, which was not
significantly different from that of treatments with
Homalozoon.

The mean number of Pseudomicrothorax cysts per
well was low in the C+P1+P2 treatment during the first
2 d of the experiment, then increased to 165 ± 24.9 on
Day 6, and did not change significantly on the last day
(Fig. 2a). A similar situation was observed in the treat-
ment without the predator (C+P1), where the total
number of cysts reached 198.8 ± 35.7 and remained at
a similar level until the end of the experiment (Fig. 2a).

Phormidium significantly affected cyst
formation during the entire experi-
ment (repeated-measures ANOVA,
p < 0.001), whereas Homalozoon did
not (repeated-measures ANOVA, p =
0.243). The number of empty cysts
remaining after excystment — noticed
for the first time on Day 2 — was low in
all treatments and differences were
not significant (Fig. 2b).

The mean number of dead Pseudo-
microthorax cells varied during the
experiment depending on the treat-
ment. A few dead cells of Pseudomi-
crothorax were observed on the sec-
ond day in the P1+P2 treatment where
no Phormidium was added. Over the
next few days, the number of dead
cells increased significantly in both
the C+P1+P2 and C+P1 treatments,
whereas they were no longer observed
in P1+P2 wells (Fig. 2c). The presence
of the cyanobacterium affected the
number of dead Pseudomicrothorax,
whereas the presence of Homalozoon
had no significant effect (repeated-
measures ANOVA, p < 0.01, p = 0.464,
respectively).

Effects of Pseudomicrothorax on
Phormidium

The effect of Pseudomicrothorax on
cyanobacterial filaments is shown in
Fig. 3. In the absence of the grazer,
the filaments began to disperse over
the bottom of the experimental wells
(Fig. 3a). Similar results were observed
in wells where only Homalozoon was
present (Fig. 3b). The appearance of
mats was different in the C+P1 and
C+P1+P2 treatments (Fig. 3c,d). Fila-

ment dispersion was clearly limited, the effect being
more pronounced when there was no predator in the
wells (Fig. 3c). In addition, it was clear that the mats un-
der strong Pseudomicrothorax pressure created ex-
tremely dense, compact clumps (Fig. 3c), whereas those
in the C+P1+P2 treatment resembled a nest with fila-
ments loosely packed in the centre where active
Pseudomicrothorax gathered, and much more densely
packed at the edge (Fig. 3d). The impact of Pseudomi-
crothorax on Phormidium was also reflected in an in-
creasing proportion of filaments ending with empty
polysaccharide sheaths (Fig. 4). The highest proportion
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State Source of variation df SS F p

Pseudomicrothorax Between-treatments
well fed cells Homalozoon 1 109.0 14.38 <0.01

Error 6 45.5
Within-treatments
Time (T) 5 2105.6 8.16 <0.001
T × P2 5 277.8 1.08 0.393
Error (T) 30 1548.7

Pseudomicrothorax Between-treatments
active cells Phormidium 1 20 988.77 152.54 <0.001

Homalozoon 1 2013.77 14.64 <0.003
C × P2 1 1.89 0.0137 0.909
Error 12 1651.19

Within-treatments
Time (T) 3 2333.05 10.77 <0.001
T × C 3 6418.67 29.62 <0.001
T × P2 3 1525.17 7.04 <0.001
T × C × P2 3 283.30 1.31 0.287
Error (T) 36 2600.56

Pseudomicrothorax Between-treatments
dead cells Phormidium 1 73.50 10.08 <0.01

Homalozoon 1 4.17 0.57 <0.464
C × P2 1 10.67 1.46 <0.250
Error 12 87.50

Within-treatments
Time (T) 5 201.33 14.64 <0.001
T × C 5 159.00 11.56 <0.001
T × P2 5 60.83 4.24 <0.002
T × C × P2 5 79.83 5.81 <0.001
Error (T) 60 165.00

Pseudomicrothorax Between-treatments
cysts Phormidium 1 135 792.3 214.99 <0.001

Homalozoon 1 950.7 1.505 <0.243
C × P2 1 1600.0 2.533 <0.137
Error 12 7579.6

Within-treatments
Time (T) 8 245 128.0 183.052 <0.001
T × C 8 256 393.1 191.465 <0.001
T × P2 8 2769.9 2.069 <0.05
T × C × P2 8 2612.9 1.951 0.06
Error (T) 96 16 069.4

Table 1. The results of repeated-measures ANOVA showing effects of Phormid-
ium (C) and Homalozoon (P2) absence/presence on the abundance of the
cyanobacteria grazer Pseudomicrothorax in microcosms during the time (T) of

the experiment. Significant results are given in bold
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of these ends was observed in the wells containing
Pseudomicrothorax (C+P1+P2 and C+P1 treatments),
and was significantly higher (repeated-measures
ANOVA, p < 0.001) than in the C+P2 and C treatments
(Table 2). Again, the effect was slightly more pro-
nounced in the C+P1 treatment where the cyanobacter-
ial grazer was not controlled by Homalozoon.

DISCUSSION

Effects of Homalozoon on Pseudomicrothorax
activity in bitrophic and tritrophic microcosms

Predatory pressure plays an important role in
ecosystem formation, and predator–prey oscillation
patterns depend on ecosystem complexity and func-
tionality (Chase et al. 2002, Strom 2002). In simple
bitrophic microcosms, strong predatory pressure often
leads to prey extinction in a short period. This is the
case when prey is devoid of any kind of refuge or has
insufficient time or nutrition resources to defend itself
by inducible defences (Tollrian & Harvell 1999). In our
experimental bitrophic microcosms where only Homa-
lozoon and Pseudomicrothorax were present, we
observed predatory pressure strong enough to com-
pletely eliminate prey, much stronger than in the
tritrophic system where the cyanobacterial mat was
present. This effect was strengthened by the fact that
both predator and prey are bottom-dwelling ciliates
and their encounter probability in the experimental
wells was very high (Baumberg & Hausmann 2007).
In addition, Homalozoon is a very effective raptorial
ciliate feeder, with a peristome armed with toxicysts
that paralyze the prey (Foissner et al. 1995).

Our experiments showed how the introduction of
another trophic level — Phormidium mats — compli-
cated the system. In the presence of Pseudomicrotho-
rax, Phormidium defends itself against grazing by
staying inside dense clumps (Pajdak-Stós et al. 2001).
In the wells with Homalozoon, the Phormidium formed
‘nest-like’ clumps with the central space occupied
by Pseudomicrothorax (Fig. 3d). We observed that
Pseudomicrothorax took advantage of refuges offered
by bundled filaments of cyanobacteria clumps. The
cyanobacteria apparently gave Pseudomicrothorax a
better chance to survive and even thrive. The lower
density of filaments inside the clumps creating the
refuge could be the effect of constant grazing pressure
by Pseudomicrothorax or a rapid behavioural ‘escape’
reaction of filaments after ciliate attack (Fia8kowska &
Pajdak-Stós 1997). Contrary to our bitrophic system
results, in the tritrophic microcosms, Pseudomicrotho-
rax was able to survive up to the end of the experiment
(Fig. 3d). We expected that the effect of predation
would be, to some extent, compensated by the fact that
Pseudomicrothorax was able to feed on the cyanobac-
teria and therefore to proliferate (Fig. 1), but its usage
of cyanobacteria clumps as refuges was a surprise.

Many small aquatic organisms are known for their
encystment ability, regarded as a way to survive
unfavourable environmental conditions, such as star-
vation, dryness or changes in environment chemistry
(Gutiérrez et al. 2001, Müller 2007). In some cases,
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encystment was reported to be a predator-mediated
defence (Rengefors et al. 1998, Fyda et al. 2005). Fyda
et al. (2005) noted that the ciliate Euplotes muscorum
showed a higher rate of encystation in the presence of
its predators; however, our results did not indicate pre-

dation as a factor responsible for Pseudomicrothorax
encystment. Apparently, even if Pseudomicrothorax
encystment was strengthened by predatory pressure,
it was insufficient as a defence against Homalozoon. In
the bitrophic (P1+P2) microcosms, the number of full
cysts was extremely low during the experiment
(Fig. 2a), and the majority of prey was eaten by preda-
tors. However, as shown in Fig. 2b, a few empty cysts
were noticed on the second and sixth days in this treat-
ment, which means that ciliate prey left the cysts in
spite of the predators’ presence. The numbers of cysts
in the tritrophic treatment and in the treatment where
only Pseudomicrothorax and Phormidium were pre-
sent (C+P1) remained at the same level throughout the
experiment. Therefore, it seems that Pseudomicrotho-
rax encystment was caused by the lack of edible
cyanobacterial filaments, the result of the Phormidium
induced defence, rather than by the presence of preda-
tors. What is interesting is that almost all active ciliates
remained satiated while the number of cysts was
increasing. This could be explained as a control of
active ciliate density by encystment. As a consequence
of decreased density of active ciliates and thus grazer
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pressure, cyanobacterium trichomes leave their shelter
(Fia8kowska & Pajdak-Stós 2002, Fyda et al. 2009). The
fact that empty cysts were noticeable in all treatments
with Pseudomicrothorax, starting on the second day,
indicates that excystment takes place regardless of
predator presence (Fig. 2b). In treatments with
Phormidium, it might be the reaction of ciliates to the
slowly increasing accessibility of food. However, why
the prey ciliates leave the cysts when there is a preda-
tor in the habitat and no food is available remains
unexplained. Possibly, ciliates in cysts are unable to
monitor predator presence in the environment and
leave cysts at random.

Effects of Pseudomicrothorax on induced defence
in Phormidium

In the aquatic environment, predator-induced
defence can be a factor that strongly influences preda-
tor-prey oscillations (Kusch 1998, Tollrian & Harvell
1999, Vos et al. 2004a, Van der Stap et al. 2007a, 2008).
Prey that are able to undergo predator-induced mor-
phological changes in unpredictable aquatic environ-
ments have a better opportunity to survive in the pres-
ence of the predator than an undefended morphotype
(Wicklow 1997, Fyda & Wiąckowski 1998, Van der
Stap et al. 2007b). Although the induced defence is
energetically more costly than the constitutive form, it
is very effective, especially when prey can adjust the
extent of their reaction to the real predatory threat
(Tollrian & Harvell 1999). This has been thoroughly
studied in several ciliates from the genera Euplotes,
Colpidium and Coleps (Kuhlmann & Heckmann 1985,
Fyda & Wiąckowski 1998, Wickham & Gugenberger
2008) as well as in green algae (Lürling & Van Donk
1996) and cyanobacteria (Fia8kowska & Pajdak-Stós

2002). Our observations strongly support
the results obtained by Fia8kowska & Paj-
dak-Stós (2002), in that Phormidium
adapts its induced defence to grazer pres-
sure and density. During the first 3 d of the
experiment, strong pressure from
Pseudomicrothorax induced a strong
defence reaction in Phormidium fila-
ments. Induced prey defence can stabilise
and reduce the oscillations of predator–
prey populations, and this effect was rein-
forced in the case of Phormidium by the
refuges created by cyanobacterial fila-
ments. Recent studies have indicated that
predator-induced defence promotes pop-
ulation persistence in tritrophic food
chains (Vos et al. 2004a, 2004b), prevents
high amplitude predator–prey fluctua-

tions and stabilises community dynamics (Verschoor et
al. 2004, Vos et al. 2004a, Altwegg et al. 2006, Van der
Stap et al. 2007a,b), as well as increasing the relative
importance of bottom-up control (Vos et al. 2004b).
The results of our work support these hypotheses.

It is worth stressing that our experiment showed that
bottom-up control can strongly override top-down con-
trol in some cases. Homalozoon quickly eliminates
Pseudomicrothorax in a bitrophic system, but in the
presence of Phormidium, the influence of the top
predator on the prey population is very weak.

The number of dead Pseudomicrothorax cells, very
similar in treatments with and without the predator,
indicated low Homalozoon pressure. Homalozoon sur-
vived to the end of the experiment in numbers similar
to its initial abundance. The results described by Fyda
et al. (2009) showed that a top predator (Chaetogaster)
is able to strongly control an undefended cyanobacte-
ria grazer, whereas defended Euplotes survive under
predatory pressure. This might have resulted from the
reaction of Phormidium — in Fyda et al. (2009), the
grazers were eliminated quickly enough to let the fila-
ments disperse on the well bottoms. In the present
study, the induced defence of Phormidium offered
good shelter for ciliates grazing on Phormidium.

The observed equilibrium between cyanobacteria
and active ciliates was possible because of grazer den-
sity-dependent inducible defence in cyanobacteria
on the one hand, and the ability of Pseudomicrothorax
to react to this form of defence by means of rapid
encystment on the other. The top predator effect on
this equilibrium turned out to be negligible because of
the ability of Pseudomicrothorax to use clumps of
cyanobacterial mats as refuges.

Our simple microcosm experiment shows how
sophisticated mechanisms can be involved in the inter-
action between trophic levels. However, we should be
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Source of variation df SS F p

Phormidium Between-treatments
defended Homalozoon 1 13.80 0.0253 0.876
filaments Pseudomicrothorax 1 10616.59 19.459 <0.001

C × P2 1 881.85 1.616 0.228
Error 12 6547.14

Within-treatments
Time (T) 2 3011.19 10.499 <0.001
T × P2 2 6.25 0.022 0.098
T × C 2 1350.60 4.709 <0.02
T × P2 × P1 2 307.43 1.072 0.358
Error (T) 24 3441.78

Table 2. The results of repeated-measures ANOVA showing the effects of
Homalozoon (P2) and Pseudomicrothorax (P1) absence/presence on the
number of Phormidium (C) filaments defended by a polysaccharide enve-
lope during the time (T) of the experiment. Significant results are given 

in bold
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very careful when extrapolating the results from
bitrophic experiments to the natural biocenosis. Addi-
tional laboratory experiments and data from field stud-
ies are needed to reveal and explain the links among
different components of microbial food webs.
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