INTRODUCTION

It is well established that different water masses harbor distinct bacterioplankton communities, even though important players often occur in larger areas, and even throughout oceanic provinces, frequently at varying abundances. This notion is supported by many studies extending over large oceanic areas and across fronts (Baldwin et al. 2005, Pommier et al. 2005, Giebel et al. 2009, Schattenhofer et al. 2009), over more regional zones and mesoscale eddies (Suzuki et al. 2001, Hewson et al. 2006, Alonso-Sáez et al. 2007, Baltar et al. 2007, 2010) and across estuarine salinity gradients (Crump et al. 1999, Selje & Simon 2003, Hewson & Fuhrman 2004, Kirchman et al. 2005). These differences in community composition are usually attributed to different environmental conditions, such as general hydrographic features...
(salinity and temperature); however, they are also attributed to the substrate supplied by different phytoplankton communities, the trophic state, grazing and viral infection. Rather little attention has been given to the direct effects of horizontal or vertical current patterns on the spatio-temporal distribution of bacterioplankton communities and populations. Suzuki et al. (2001) found pronounced small scale heterogeneities of the horizontal distribution of major bacterioplankton phylogenetic groups in the Californian upwelling system of the Pacific during an upwelling event. Hewson et al. (2006) studied the relative significance of physical mixing and biological controls of the bacterioplankton community composition in the tropical Atlantic, Gulf of Mexico and the central north Pacific; their results show that the community composition is relatively stable within patch sizes of a few to ~50 km, suggesting that in these open ocean regions physical mixing and biological controls act on different scales in space and time. Baltar et al. (2007) reported pronounced differences in the bacterioplankton community composition along a productivity/upwelling gradient in the northeastern subtropical Atlantic, and Baltar et al. (2010) reported that the composition and activity of prokaryotic communities differ in and outside mesoscale eddies in the northeastern subtropical Atlantic. Studying the seasonal dynamics of the bacterioplankton community in a coastal upwelling system in northwestern Spain, Teira et al. (2008) and Alonso-Gutiérrez et al. (2009) found that the SAR11 clade occurred in very low abundances and that the Roseobacter clade greatly dominated Alphaproteobacteria in all seasons. They attributed the low abundance of SAR11 to the upwelling and thus to the hydrography of this dynamic coastal system.

Neritic seas often exhibit complex current patterns that may change seasonally and rapidly according to weather conditions. Even though the general currents may follow consistent and well-established patterns, variations over days and weeks may deviate strongly from these general patterns. Studying the distribution of plankton communities in dynamic coastal systems does not usually take into account the short-term history of the current patterns unless a Lagrangian study design is applied. Hence, to the best of our knowledge, no information is available to clarify whether and how features in plankton dynamics and in the composition and growth of bacterioplankton communities are related to the actual current field or whether the short-term history of water masses is reflected in the bacterioplankton communities or populations.

The German Bight is a shallow region of the southern North Sea with water depths of 10 to 40 m. Current patterns and water masses are highly variable in this shallow sea, even though in general, currents from the southwestern North Sea transport water masses into this area and continue northwards as the Jutland current towards the Skagerrak (Becker et al. 1992, Staneva et al. 2009). To examine whether the short-term history of the water masses and the current field have any effect on the bacterioplankton composition and dynamics, we quantified 2 major lineages of marine Alphaproteobacteria—the SAR11 clade (Rappé et al. 2002) and the Roseobacter RCA cluster (Selje et al. 2004, Giebel et al. 2011)—by quantitative polymerase chain reaction (qPCR) at 10 stations and backtracked the trajectories, temperature and salinity changes of the water masses at these stations for the preceding weeks using the output of a 3-dimensional circulation model developed for the southern North Sea (Staneva et al. 2009). The SAR11 clade is a much wider phylogenetic lineage than the Roseobacter RCA cluster. The former has a sequence similarity of the 16S rRNA gene of >87%, whereas the latter has >98% similarity. Both lineages are abundant components of the bacterioplankton in the North Sea (Giebel et al. 2011).

**MATERIALS AND METHODS**

**Study area and sampling**

Surface water samples were collected on board the RV ‘Heincke’ with a 10 l Niskin bottle at 2 m depth at 10 locations in the German Bight between 24 and 27 June 2003 (Fig. 1A,B, Table 1). For analysis of suspended particulate matter (SPM), particulate organic carbon (POC) and chlorophyll a (chl a), 500 to 1000 ml of sample water were filtered in duplicates onto precombusted and preweighed glass fiber filters (GF/F, Whatman) and stored at −20°C in the dark until further processing in the lab within 4 wk. For enumeration of bacteria, 100 ml of seawater were fixed with formaldehyde (2% v/v) and stored at 4°C until further processing within 4 wk. For DNA extraction and PCR analyses, 250 ml of sample water were fractionated by filtration onto polycarbonate filters (Nuclepore) with pore sizes of 5.0 µm (particle-associated [PA] bacteria) and subsequently of 0.2 µm (free-living [FL] bacteria) and stored at −20°C until further processing. Temperature and salinity were recorded by a built-in probe of the RV ‘Heincke’ fixed at a depth of 3 m.
For determination of SPM, filters were dried for 1 h at 110°C and weighed on a micro-balance (Sartorius). POC was determined with a FlashEA 1112 CHN-analyzer (Thermo Finnigan). For chl \(a\) analysis, filters were extracted in 90% ethanol at 75°C, and concentrations of chl \(a\) were determined spectrophotometrically (Nusch 1999). For phaeopigment determination, samples were acidified with HCl (2 N) prior to spectrophotometric analysis. Bacteria were enumerated by epifluorescence microscopy after staining with 4’-6-diamidino-2-phenylindole (DAPI) on black 0.2 µm Nuclepore filters at 1000x magnification (Porter & Feig 1980). For more details on these methods, see Rink et al. (2011).

\[
\begin{array}{cccccc}
\text{Station} & \text{Latitude (N)} & \text{Longitude (E)} & \text{Water depth (m)} & \text{Temperature (°C)} & \text{Salinity} & \text{Days of sampling} \\
1 & 54° 07.98’ & 7° 04.64’ & 32 & 15.0 & 35.0 & 26 June \\
2 & 53° 49.69’ & 7° 15.31’ & 18 & 17.3 & 34.1 & 26 June \\
3 & 53° 48.33’ & 7° 38.45’ & 8 & 17.4 & 33.5 & 27 June \\
4 & 53° 52.95’ & 8° 05.24’ & 8 & 17.6 & 33.4 & 24 June \\
5 & 53° 59.58’ & 8° 03.52’ & 8 & 17.2 & 32.1 & 24 June \\
6 & 54° 13.91’ & 8° 20.66’ & 11 & 17.1 & 31.8 & 25 June \\
7 & 54° 32.08’ & 8° 10.98’ & 9 & 16.5 & 32.5 & 25 June \\
8 & 54° 36.88’ & 7° 42.26’ & 17 & 15.7 & 33.3 & 25 June \\
9 & 54° 38.44’ & 6° 56.41’ & 36 & 14.6 & 35.5 & 26 June \\
10 & 54° 28.15’ & 7° 15.05’ & 29 & 14.4 & 35.0 & 26 June \\
\end{array}
\]

Table 1. Location of stations, water depth, temperature, salinity and days of sampling

Nucleic acid extraction and quantitative PCR assays for bacterial, SAR11 and RCA 16S rRNA genes

Genomic DNA was extracted with phenol-chloroform as described by Rink et al. (2007) with slight modifications. DNA was precipitated at −20°C overnight using isopropanol and resuspended in
molecular grade water. Extracted DNA was stored at
−20°C until further processing. Amplification and
quantitative detection of 16S rRNA gene fragments by
target genes of Bacteria were detected ac-
RCA-H28 from the Weser estuary, Germany, containing
plasmid containing the 16S rRNA gene of SAR11
target sequences of the standards were deter-
the average efficiency of the
PCR-generated and -purified 16S rRNA gene frag-
cloned MB11M07 (AY033299, provided by M. Suzuki,
University of Maryland) was applied as a standard.
The design and application of the qPCR assay specific
PCR was 0.073 ± 0.003 fg DNA (corresponding to
qPCR were performed as described by Giebel et al.
(2009) with a Rotorgene 3000 thermocycler and fol-
triplicate samples was performed in triplicates withdrawn from one sample in a total vol-
10−5 dilution step of a dilution series of a marine water
phylotype (RCA-H28) were applied as standards. The
plasmid containing the 16S rRNA gene of an RCA
fragments of (2009). PCR-generated and -purified 16S rRNA gene
specific bacterioplankton used in the present study.
The model used is the General Estuarine Ocean
model uses 21 terrain following levels. The model
as described in detail by Giebel et al. (2009). PCR-generated and -purified 16S rRNA gene
phylotype (RCA-H28) were applied as standards. The
16S rRNA gene of RCA-H28 was amplified from the
−3.5 ± 0.3. The detection limit of the RCA-specific
PCR amplifications was 0.93 ± 0.03 (mean ± SD), and the average slope of the standard
target sequences of the standards were deter-
triplicate samples was <10%.
Modeling of the water trajectories
To reconstruct the water trajectories of the sta-
into further processing. Amplification and
quantitative detection of 16S rRNA gene fragments by
target genes of Bacteria were detected ac-
RCA-H28 from the Weser estuary, Germany, containing
plasmid containing the 16S rRNA gene of SAR11
target sequences of the standards were deter-
the average efficiency of the
PCR-generated and -purified 16S rRNA gene frag-
cloned MB11M07 (AY033299, provided by M. Suzuki,
University of Maryland) was applied as a standard.
The design and application of the qPCR assay specific
PCR was 0.073 ± 0.003 fg DNA (corresponding to
qPCR were performed as described by Giebel et al.
(2009) with a Rotorgene 3000 thermocycler and fol-
triplicate samples was performed in triplicates withdrawn from one sample in a total vol-
10−5 dilution step of a dilution series of a marine water
phylotype (RCA-H28) were applied as standards. The
plasmid containing the 16S rRNA gene of an RCA
fragments of (2009). PCR-generated and -purified 16S rRNA gene
specific bacterioplankton used in the present study.
The model used is the General Estuarine Ocean
model uses 21 terrain following levels. The model
as described in detail by Giebel et al. (2009). PCR-generated and -purified 16S rRNA gene
phylotype (RCA-H28) were applied as standards. The
16S rRNA gene of RCA-H28 was amplified from the
−3.5 ± 0.3. The detection limit of the RCA-specific
PCR amplifications was 0.93 ± 0.03 (mean ± SD), and the average slope of the standard
target sequences of the standards were deter-
triplicate samples was <10%.
Modeling of the water trajectories
To reconstruct the water trajectories of the sta-
into further processing. Amplification and
quantitative detection of 16S rRNA gene fragments by
target genes of Bacteria were detected ac-
RCA-H28 from the Weser estuary, Germany, containing
plasmid containing the 16S rRNA gene of SAR11
target sequences of the standards were deter-
the average efficiency of the
PCR-generated and -purified 16S rRNA gene frag-
cloned MB11M07 (AY033299, provided by M. Suzuki,
University of Maryland) was applied as a standard.
The design and application of the qPCR assay specific
PCR was 0.073 ± 0.003 fg DNA (corresponding to
qPCR were performed as described by Giebel et al.
(2009) with a Rotorgene 3000 thermocycler and fol-
triplicate samples was performed in triplicates withdrawn from one sample in a total vol-
10−5 dilution step of a dilution series of a marine water
phylotype (RCA-H28) were applied as standards. The
plasmid containing the 16S rRNA gene of an RCA
fragments of (2009). PCR-generated and -purified 16S rRNA gene
specific bacterioplankton used in the present study.
The model used is the General Estuarine Ocean
model uses 21 terrain following levels. The model
as described in detail by Giebel et al. (2009). PCR-generated and -purified 16S rRNA gene
phylotype (RCA-H28) were applied as standards. The
16S rRNA gene of RCA-H28 was amplified from the
−3.5 ± 0.3. The detection limit of the RCA-specific
PCR amplifications was 0.93 ± 0.03 (mean ± SD), and the average slope of the standard
Statistical analysis

Linear, multiple linear and non-linear regressions were calculated using the statistical software package Sigma Stat 2.03.

RESULTS AND DISCUSSION

The area of the German Bight visited included 5 shallow near-shore stations (Stns 3–7; Fig. 1B), 4 offshore stations (Stns 1 & 8–10) and 1 station of intermediate characteristics (Stn 2). The near-shore stations were shallower and had higher temperatures and in most cases lower salinities and higher SPM concentrations relative to the offshore stations; the same distinction was not evident for POC, chl a, percentage of phaeopigments and bacterial abundances (Tables 1 & 2). Stn 2 in the southwestern region was deeper than all of the near-shore stations, but the temperature was as high as at the near-shore stations even though salinity was higher. The phytoplankton was dominated by *Rhizosolenia imbricata* at all stations, constituting at least 80% of the cell numbers (Rink et al. 2011). The RCA cluster constituted fractions between <1 and 4.5% of total bacterial 16S rRNA genes, with highest fractions at Stns 3 to 5 (Fig. 2A). The SAR11 clade constituted between <1 and 47%, with highest fractions of 24 and 47.1%.

Table 2. Suspended particulate matter (SPM), particulate organic carbon (POC), chlorophyll a, phaeopigments and bacterial abundance at the stations; na: data not available.
at Stns 6 to 8 (Fig. 2B). 16S rRNA genes of both the RCA cluster and the SAR11 clade were only detected in the FL bacterial fraction.

The computed Lagrangian back-trajectories of the various stations exhibited complex current patterns in the German Bight from 1 June until the day of sampling. They are dominated by tidal excursions (spiral-like loops) and depict 3 different transport directions of the northern, central and southern water masses (Fig. 1B). Those of the northern Stns 7 to 10 and of Stn 6 had their origin further north and travelled south in the course of June. Water masses at Stns 1, 2 and 5 had travelled in a westerly direction and those at Stns 3 and 4 eastward. Interestingly, the waters at Stns 4 and 5, which are located closely together, came from opposing directions, and those at Stns 2 and 4 had an origin rather close together. The model yielded a rise in SST at all stations of 3 to 6°C from 1 June until the day of sampling irrespective of the given temperature (Fig. 2C). There was no systematic difference in the temperature increment between the off- and on-shore or northern and other stations except that the increment at Stn 3, close to the outlet of a back-barrier tidal flat area (Fig. 1B), was lowest. The initial temperature at this station, however, was higher than at the other stations. The measured in situ temperatures and the modeled SST on the sampling days exhibited a highly significant linear correlation (Fig. 3A; p < 0.001, r² = 0.86).

In contrast to SST, the SSS of the water masses of the various stations exhibited pronounced differences between 1 June and the sampling day. The greatest variability (ΔSSS) occurred at Stns 4, 9 and 10, whereas at Stns 6 to 8, the SSS remained almost constant (Fig. 2D). The low salinity at Stn 5 reflects that it is located in the plume of the Weser estuary. The measured in situ salinities and the modeled SSS on the sampling day exhibited a highly significant linear correlation (Fig. 3B; p < 0.001, r² = 0.85). The increasing difference between the measured and modeled temperature at higher salinity is due to the difference in the salinity modeled for the surface and measured at 3 m depth by the ship’s salinometer. The German Bight exhibits a thin surface layer of a lower and decreasing salinity towards the coast and Wadden Sea overlying a layer with enhanced salinity representing more offshore conditions (Otto et al. 1990).

The relative abundance of the RCA cluster was correlated significantly with bacterial abundance, phaeo-pigments, chl a, POC, SPM and ΔSSS of the trajectories of the water masses of the stations in a multiple linear regression model, which accounted for 98.1% of the variability in the RCA data (Table 3). Excluding the only non-significant (p = 0.088) independent variable, phaeo pigments, from the regression model, 94.3% of the variability of the RCA data are still accounted for in this model (Table 3). SPM and POC exhibited collinearity, reflecting the fact that POC is a subfraction of SPM. Temperature yielded a non-significant regression component. No single linear, non-linear or other multiple linear regressions with fewer independent variables and the relative abundance of RCA yielded any significant result, presumably reflecting the complex growth requirements of members of this cluster (Giebel et al. 2011). In contrast, the relative abundance of the SAR11 clade exhibited no significant single or multiple linear regression with biogeochemical or environmental variables. However, the relative abundance of the SAR11 clade exhibited a highly significant and inverse non-linear regression with the ΔSSS of the trajectories of the water masses of the stations (Fig. 4;
thus supporting our finding. The fact that both phylogenetic lineages were detected only in the FL bacterial faction is consistent with the study of Giebel et al. (2011) covering the entire North Sea.

The *Roseobacter* and SAR11 clades are abundant components of the bacterioplankton in the German Bight and the entire North Sea. Previous studies have shown that the SAR11 clade can constitute from <5 to 40% of total bacterial 16S rRNA genes in the North Sea and the RCA cluster from <2 to 22% (Giebel et al. 2011). The SAR11 clade is usually more abundant than the RCA cluster and the entire *Roseobacter* clade. However, cells of the latter clade are metabolically more active than those of the SAR11 clade, as indicated by the proportions of cells incorporating glucose (Alonso & Pernthaler 2006). Further, the RCA cluster exhibits many more correlations to environmental and biogeochemical parameters, such as salinity (negative), POC and phaeopigment concentrations, than the SAR11 clade, which appears less responsive to biogeochemical parameters than the RCA cluster (Giebel et al. 2011). Also, the present study showed that the relative abundance of the RCA cluster can be explained by a suite of biogeochemical parameters, whereas that of the SAR 11 clade cannot, underscoring the different controls of both bacterioplankton populations in the southern North Sea. The findings of the present study shed further light on the environmental parameters affecting the abundance of the SAR11 clade in the shallow German Bight of the North Sea by showing that SAR11 accounts for higher proportions of the bacterioplankton only in stable water masses that persist for at least several weeks. Although the growth rates of members of the SAR11 clade are in the same range as those of other planktonic bacteria under optimal conditions (Rappé et al. 2002), net community growth rates of the SAR11 clade have been shown to be lower than those of the *Roseobacter* clade, *Flavobacteria*, *Sphingobacteria* and *Gammaproteobacteria* in a coastal northwest Spanish upwelling system (Teira et al. 2009). It is conceivable that members of the SAR11 clade, with a relatively small genome (Giovannoni et al. 2005) lacking quite a few regulatory systems and uptake systems for exogenous amino acids and monosaccharides (Tripp et al. 2009, Schwalbach et al. 2010), cannot

$p < 0.01, r^2 = 0.85$, i.e. the highest abundances occurred at the stations with the most constant salinity and thus the least disturbance and mixing with other waters. In a previous study, pronounced differences between the bacterial community composition of the PA and FL bacterial fractions and of the near- and offshore stations were found (Rink et al. 2011). We did not find these differences for the RCA cluster and the SAR11 clade because both lineages were only detected in the FL bacterial fraction. Rink et al. (2011) reported that differences in the community composition within FL *Alphaproteobacteria* between the near- and offshore stations were least pronounced,

Table 3. Results of multiple linear regression statistics with the relative abundance of RCA (%) as the dependent variable and bacterial abundance (bacteria), phaeopigments, chlorophyll *a*, POC, SPM and ΔSSS as independent variables. N = 10. For dimensions of the parameters, see Table 2. VIF: variance inflation factor

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard error</th>
<th>t</th>
<th>p</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2 = 0.981</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−5.422</td>
<td>1.006</td>
<td>−5.391</td>
<td>0.013</td>
</tr>
<tr>
<td>Bacteria</td>
<td>0.746</td>
<td>0.145</td>
<td>5.148</td>
<td>0.014</td>
</tr>
<tr>
<td>Phaeopigments</td>
<td>0.028</td>
<td>0.011</td>
<td>2.499</td>
<td>0.088</td>
</tr>
<tr>
<td>Chlorophyll <em>a</em></td>
<td>1.182</td>
<td>0.140</td>
<td>8.417</td>
<td>0.004</td>
</tr>
<tr>
<td>POC</td>
<td>−14.162</td>
<td>1.822</td>
<td>−7.774</td>
<td>0.004</td>
</tr>
<tr>
<td>SPM</td>
<td>0.566</td>
<td>0.072</td>
<td>7.910</td>
<td>0.004</td>
</tr>
<tr>
<td>ΔSSS</td>
<td>4.595</td>
<td>0.778</td>
<td>5.906</td>
<td>0.010</td>
</tr>
<tr>
<td>r^2 = 0.943</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−3.584</td>
<td>1.044</td>
<td>−3.435</td>
<td>0.026</td>
</tr>
<tr>
<td>Bacteria</td>
<td>0.765</td>
<td>0.220</td>
<td>3.474</td>
<td>0.026</td>
</tr>
<tr>
<td>Chlorophyll <em>a</em></td>
<td>0.906</td>
<td>0.132</td>
<td>6.879</td>
<td>0.002</td>
</tr>
<tr>
<td>POC</td>
<td>−12.444</td>
<td>2.565</td>
<td>−4.851</td>
<td>0.008</td>
</tr>
<tr>
<td>SPM</td>
<td>0.519</td>
<td>0.105</td>
<td>4.944</td>
<td>0.008</td>
</tr>
<tr>
<td>ΔSSS</td>
<td>3.691</td>
<td>1.047</td>
<td>3.524</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Fig. 4. Non-linear regression of differences (minima and maxima) of the modeled sea surface salinities (ΔSSS) of the water masses with the abundance of SAR11 at the 10 stations between 1 June and the day of sampling in 2003
compete with other planktonic bacteria in unstable meso- and eutrophic waters in the same way as in stable water masses. The SAR11 clade consists of several subclusters (Carlson et al. 2009), but our qPCR assay detected only the entire clade. Therefore, we cannot rule out the possibility that this relationship of the SAR11 clade to the stability of water masses is not valid for the entire clade but only for 1 or 2 subclusters. In fact, Carlson et al. (2009) found in the Sargasso Sea that stability and mixing of water masses affected the occurrence of the various subclusters. However, because the hydrography and mixing of the southern North Sea is much more dynamic than in the Sargasso Sea and because all subclusters of the SAR11 clade share a similar small genome with limited substrate uptake systems and regulatory properties, we assume that this relationship is valid for the entire SAR11 clade. Other bacterial lineages, such as Flavobacteria, Sphingobacteria, Gammaproteobacteria and the Roseobacter clade, are obviously better adapted to unstable meso- and eutrophic waters, which often exist in shallow seas like the German Bight, because of their more versatile physiology. We assume that the more stable water masses were more depleted in inorganic nutrients and organic substrates, thus limiting growth of the abovementioned bacterioplankton groups more than that of the SAR11 clade and providing a competitive advantage to the latter under these conditions, which prevailed at Stns 6, 7 and 8. Ground truth or modeled data and flux rate measurements of inorganic nutrients and organic substrates in the back-tracked water masses may have provided strong support for this assumption. However, such data are not available due to the lack of repeated measurements and missing nutrient models for the German Bight. The significant multiple linear regression of the relative abundance of the RCA cluster with a suite of biogeochemical parameters and ΔSSS of the modeled trajectories of the water masses explained at least 94 % of the cluster’s variability. However, no single correlation between this cluster and hydrographic parameters, reflecting the currents and stability of these water masses, existed. This result provides strong evidence that growth dynamics of the SAR11 clade and the RCA cluster are controlled differently. In addition to our results, findings by Teira et al. (2008, 2009) and by Alonso-Gutiérrez et al. (2009) in an upwelling system along the northwest coast of Spain support this view. These authors found low abundances and net growth rates of the SAR11 clade and dominance of the Roseobacter clade and other bacterioplankton phylogenetic groups in this system.

In studies carried out along upwelling gradients in deeper waters and going beyond the neritic zone, differences in the composition of the bacterioplankton community have been reported (Alonso-Sáez et al. 2007, Baltar et al. 2007, 2010). These differences, however, have been mainly attributed to the nutrient supply and trophic state of the different water masses. The Sphingobacteria, Flavobacteria and Roseobacter clade have been shown to be most responsive to such trophic gradients, with highest proportions in the more eutrophic and upwelling region (Baltar et al. 2007). Suzuki et al. (2001) assessed the horizontal distribution of the bacterioplankton community composition in Monterey Bay of the Californian upwelling system directly at an upwelling event and found that Sphingobacteria and Flavobacteria were directly negatively affected. The SAR11 clade and the Roseobacter clade, with a twofold higher abundance than the SAR11 clade, were less affected, but both lineages exhibited an inverse gradient to the reduced salinity towards the coast.

The role of physical mixing versus biological control for shaping bacterioplankton communities has been investigated specifically only in a study by Hewson et al. (2006). Applying a Lagrangian approach with drifter studies in the Gulf of Mexico, tropical Atlantic and northern central Pacific, these authors found that the composition of bacterioplankton communities was stable over different time periods in these regions, from days to weeks. Modeling the change in stability of the water masses and the bacterioplankton community composition over space and time suggested that mixing contributed to changes in the composition, even though short-term changes due to biological controls also occurred. The southern North Sea is a much more dynamic hydrographic system than the mixed layer of stratified open oceans. Therefore, mixing is a much more important factor in this and similar coastal seas. Because of strong air-sea interactions and dynamic warming by surface irradiation, temperature is not a reliable proxy for water stability in such systems.

This is evident from the rise in SST of 3 to 6 °C in our model from 1 June to the day of sampling and our correlation analysis, which yielded a significant inverse non-linear correlation between the relative abundance of SAR11 and ΔSSS but not between the former and ΔSST. Although we do not have direct evidence, we assume that the stations with high ΔSSS mixing and thus input of substrates favored the more rapidly growing bacterioplankton lineages rather than SAR11.
Our study shows that a new perspective can be added to understanding the horizontal distribution and dynamics of the relative proportions (and presumably activities) of major bacterioplankton groups by taking into account the preceding history of water masses, i.e. their trajectories. This aspect becomes more important in regions with strong and complex current patterns, such as coastal shallow seas and estuarine systems, but also in regions with strong upwelling activities and dynamic frontal systems. Our analyses have shown that the trajectories of water masses can be reliably backtracked by 2-dimensional Lagrangian trajectories. A well suited and fitted 2-dimensional model, supplied with appropriate environmental and hydrographic data, is a prerequisite for such analyses. The close correlation between the modeled and measured salinities and temperatures gives us confidence that the model reliably back-tracked the trajectories of the water masses. The outcome of the analysis also provided important information on the current patterns and the strikingly different trajectories of stations located close together. Such analyses can help in interpreting and understanding differences in the horizontal distribution and community composition of bacterioplankton and other plankton in addition to biogeochemical and environmental parameters. They may also valuably add a Lagrangian aspect to Eulerian studies at fixed stations, such as microbial observatories like the San Pedro Ocean Time Series (SPOTS; Fuhrman et al. 2006), the Bermuda Atlantic Times Series (BATS; Carlson et al. 2009), the Hawaiian Ocean Time Series (HOTS; Karl & Lukas 1996) and stations in coastal seas, like Helgoland Roads (Wiltshire et al. 2008), which are affected by currents. As shown in the present study, the mixing and stability of water masses is obviously important for the growth or accumulation of abundant populations of distinct bacterioplankton lineages, such as the SAR11 clade.

Acknowledgements. We are most grateful to B. Kuerzel for chl a analyses, to A. Luek for bacterial cell counts and to the crew of the RV ‘Heincke’ for their excellent cooperation on ship. We also appreciate the constructive comments of 3 reviewers on an earlier version of this manuscript. This work was supported by the Deutsche Forschungsgemeinschaft within the Research Unit BioGeoChemistry of Tidal Flats (FG 432).

LITERATURE CITED


Submitted: January 9, 2012; Accepted: June 11, 2012

Proofs received from author(s): August 1, 2012

Editorial responsibility: Jed Fuhrman,
Los Angeles, California, USA