Autotrophic and heterotrophic microbial plankton biomass in the NW Iberian upwelling: seasonal assessment of metabolic balance

O. Espinoza-González1, F. G. Figueiras1,*, B. G. Crespo1,2, I. G. Teixeira1, C. G. Castro1

1 Instituto de Investigaciónes Mariñas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
2 Present address: Departament de Biologia i Oceanografia, Institut de Ciències del Mar, CSIC, 08003 Barcelona, Spain

ABSTRACT: Although it is assumed that small plankton cells prevail in the oligotrophic ocean and microplankton dominate in coastal upwelling zones, several signals point to a great importance of pico- and nanoplankton in upwelling systems. We studied the size distribution of autotrophic and heterotrophic microbial plankton biomass in shelf waters of the NW Iberian upwelling over an annual cycle. Both autotrophs and heterotrophs showed a seasonal evolution related to the hydrographic regime. The lowest total plankton biomass (3.8 ± 0.9 g C m⁻²) was recorded in winter associated with the Iberian Poleward Current, while highest values occurred during the spring onset (10.5 ± 3.4 g C m⁻²), summer upwelling (10.8 ± 3.8 g C m⁻²) and summer stratification (9.3 ± 2.0 g C m⁻²). Nano- and picoplankton dominated the microbial community, with the major variations in biomass occurring through the addition or disappearance of microplankton cells, mainly diatoms. Thus, the food web in this upwelling system should be considered multivorous, with the microbial loop (pico- and nanoplankton) as a background to which a diatom-based food web is added during upwelling. The estimated metabolic balance showed that the microbial community was autotrophic only during upwelling and spring onset, coinciding with the presence of diatoms. Heterotrophy was basically located in the picoplankton fraction. These results and the threshold of carbon fixation (2.5 to 3.5 g C m⁻² d⁻¹) needed to maintain a balanced metabolism lead us to conclude that in a future scenario with low upwelling intensity and frequency, the microbial community in the NW Iberian upwelling would be heterotrophic.

KEY WORDS: Microbial plankton · Size structure · Picoplankton · Nanoplankton · Diatoms · Upwelling-downwelling · Multivorous food web · NW Iberia

INTRODUCTION

Coastal upwelling systems, due to nutrient enrichment of the surface layer with newly upwelled water, have traditionally been considered areas of the world’s oceans in which the microbial community is dominated by large phytoplankton (Ryther 1969, Mar galef 1978). Because of this, it is commonly assumed that the herbivorous food web prevails in these highly productive regions (Cushing 1989), where export of photosynthesised organic matter outside the microbial realm is considerable (Goldman 1988, Cushing 1989). Nevertheless, upwelling is not an exclusive oceanographic process taking place in these coastal zones since downwelling is equally important. The effect of downwelling is, however, completely opposite to that induced by upwelling. Thus, downwelling and even upwelling relaxation causes the coastward advection of warm and nutrient-poor surface oceanic waters (Crespo et al. 2007), in which

*Corresponding author. Email: paco@iim.csic.es
small-sized plankton cells (Ryther 1969) and therefore the microbial food web predominate (Pomeroy 1974, Azam et al. 1983).

Pico- and nanoplankton dominance during downwelling or upwelling relaxation has been well documented in several coastal upwelling systems (e.g. Varela et al. 1991, Tilstone et al. 2003, Iriarte & González 2004, Lorenzo et al. 2005, Sherr et al. 2005, Böttjer & Morales 2007). However, it is still relatively unknown whether the dominance of these small plankton cells is established through substitution of microplankton or, in contrast, occurs because microplankton vanish during non-upwelling conditions. Identifying which of these 2 processes (addition-disappearance vs. substitution of microplankton) takes place is relevant because it affects the structure and function of the pelagic food web and, hence, the fate of carbon fixed by autotrophs in coastal upwelling systems (Cushing 1989). Substitution between microplankton and small plankton cells means that a herbivorous food web based on diatoms alternates with the microbial loop based on small phytoplankton (Ryther 1969, Cushing 1989, Barber & Hiscock 2006). In contrast, addition-disappearance of microplankton to/from a microbial community composed of smaller cells implies that the microbial loop is a permanent feature in coastal upwelling systems (Teixeira et al. 2011) and that a multivorous food web (Legendre & Rassoulzadegan 1995) better characterises these ecosystems (Vargas et al. 2007, Linacre et al. 2010, Teixeira et al. 2011).

To elucidate how the microbial food web in coastal upwelling systems is organised, we explored the seasonal and short-term (1 wk) variability of the structure and composition of the microbial plankton community at the continental shelf in the NW Iberian margin (Fig. 1). The wind regime in this coastal upwelling region shows a clear seasonal signal (Wooster et al. 1976, Figueiras et al. 2002), with upwelling-favourable equatorward winds blowing from April to the end of September and downwelling-favourable poleward winds lasting from October to March. However, seasonality only accounts for a small part (<30%) of the total annual variability in the wind regime, with most of the variability occurring at shorter time scales (Álvarez-Salgado et al. 2003). This indicates that relaxation and even opposite events within a given upwelling or downwelling season are frequent (Figueiras et al. 2002). Although interannual variability in the onset and cessation of each season also occurs (Figueiras et al. 2002, Álvarez-Salgado et al. 2003), seasonal upwelling-downwelling transition usually coincides or precedes the onset of the Iberian Poleward Current (IPC) (Álvarez-Salgado et al. 2003, Torres & Barton 2006). The IPC is a northward surface flow on the slope that originates at southernmost latitudes (Frouin et al. 1990, Peliz et al. 2005, Crespo & Figueiras 2007) from the advection of warm and saline oceanic water to the continental shelf. Summer upwelling and the IPC are among the oceanographic features with the highest influence on plankton distributions in the NW Iberian region (e.g. Fermín et al. 1996, Castro et al. 1997, Crespo et al. 2007).

MATERIALS AND METHODS

Sampling

A station located on the shelf (150 m depth) in front of the Ría de Vigo (42° 07.8’ N, 9° 10.2’ W) was visited weekly on board the RV ‘Mytilus’ from 15 May 2001 to 24 April 2002 (Fig. 1). Sampling took place by means of a rosette equipped with PVC Niskin bottles to which a conductivity, temperature and depth sensor (CTD) fitted with a fluorometer and a spherical
light sensor (Biospherical) was attached. Seawater samples to determine nitrate and chlorophyll \(a\) (chl \(a\)) concentrations as well as autotrophic and heterotrophic microbial plankton biomass were collected from the CTD upcasts. A LI-190SA cosine-sensor placed on deck recorded the incident irradiance at the sea surface at 1 min intervals.

Wind and Ekman transport

Wind direction and velocity, recorded every hour at the Silleiro buoy (Fig. 1) deployed by the Spanish Agency Puertos del Estado, were used to estimate Ekman transport \(Q_x; \text{m}^2\text{s}^{-1}\) perpendicular to the coast according to Bakun (1973):

\[
Q_x = \frac{\rho_a C |V| V_y}{f \rho_w}
\]

where \(\rho_a\) is the air density \(1.22 \text{ kg m}^{-3}\), \(C\) is an empirical drag coefficient \((1.3 \times 10^{-3}, \text{dimensionless})\), \(|V|\) is the wind speed \(\text{m s}^{-1}\) with component \(V_y\), \(f\) is the Coriolis parameter at this latitude \((9.95 \times 10^{-5} \text{ s}^{-1})\), and \(\rho_w\) is the density of seawater \((\sim 1025 \text{ kg m}^{-3})\). The sign of \(Q_x\) was changed to associate positive values with offshore transport (upwelling) of surface waters.

Nitrate and chl \(a\)

Nitrate and chl \(a\) levels were determined at 7 to 8 depths in the water column from surface to bottom. Nitrate concentrations \((\mu\text{mol kg}^{-1})\) were determined by segmented flow analysis with Alpkem autoanalyzers (Hansen & Grasshoff 1983). For chl \(a\) determinations, seawater volumes of 100 to 250 ml were filtered through 25 mm Whatman glass fiber filters (GF/F) under low vacuum pressure. The filters were immediately frozen at \(-20^\circ\text{C}\) until pigments were extracted in 90% acetone over 24 h in the dark at 4°C. Chl \(a\) concentration \((\text{mg m}^{-3})\) was determined by fluorescence of the pigment extracts using a Turner Designs fluorometer calibrated with pure chl \(a\) (Sigma Chemical).

Microbial plankton biomass

Samples to determine autotrophic and heterotrophic microbial plankton biomass were collected from 4 to 5 depths within the photic layer, which varied between 27 and 88 m (Fig. 2e, Table 1). Sampling depths were selected after inspecting the

Fig. 2. Evolution of (a) cross-shore Ekman transport, (b) temperature \(({}^\circ\text{C})\), (c) salinity, (d) nitrate concentration \((\mu\text{mol kg}^{-1})\), and (e) chlorophyll \(a\) concentration \((\text{mg m}^{-3})\) at the sampled station. The dashed line in (e) shows the depth of the photic layer (0.1% of surface irradiance). The 7 hydrographic phases (1 to 7) are given in Panel (a)
Table 1. Average (±1 SD) total microbial plankton biomass (TC), autotrophic plankton biomass (AC), heterotrophic plankton biomass (HC) and chlorophyll a (chl a) concentration (mg m⁻²) integrated over the photic layer (Z₀.1%) for the 7 hydrographic phases identified and the whole sampling period. Z₀.1% is the average (±SD) depth (m) of the photic layer (0.1% of surface irradiance); n = number of samples; IPC: Iberian Poleward Current

<table>
<thead>
<tr>
<th>Hydrographic phase</th>
<th>TC</th>
<th>AC</th>
<th>HC</th>
<th>Chl a</th>
<th>Z₀.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (n = 16) Summer stratification</td>
<td>9.3 ± 2.0</td>
<td>3.7 ± 1.1</td>
<td>5.6 ± 1.6</td>
<td>78 ± 24</td>
<td>63 ± 10</td>
</tr>
<tr>
<td>Phase 2 (n = 4) Summer upwelling</td>
<td>10.8 ± 3.8</td>
<td>6.1 ± 3.6</td>
<td>4.7 ± 0.7</td>
<td>97 ± 28</td>
<td>40 ± 12</td>
</tr>
<tr>
<td>Phase 3 (n = 5) Autumn downwelling</td>
<td>5.6 ± 2.1</td>
<td>2.6 ± 1.2</td>
<td>3.0 ± 1.0</td>
<td>45 ± 18</td>
<td>47 ± 9</td>
</tr>
<tr>
<td>Phase 4 (n = 4) Winter upwelling</td>
<td>5.2 ± 1.1</td>
<td>2.5 ± 0.9</td>
<td>2.7 ± 0.4</td>
<td>71 ± 54</td>
<td>51 ± 7</td>
</tr>
<tr>
<td>Phase 5 (n = 8) IPC</td>
<td>3.8 ± 0.9</td>
<td>1.6 ± 0.4</td>
<td>2.2 ± 0.5</td>
<td>30 ± 9</td>
<td>61 ± 11</td>
</tr>
<tr>
<td>Phase 6 (n = 5) Winter mixing</td>
<td>5.8 ± 2.5</td>
<td>3.4 ± 1.8</td>
<td>2.4 ± 0.8</td>
<td>76 ± 54</td>
<td>64 ± 21</td>
</tr>
<tr>
<td>Phase 7 (n = 5) Spring onset</td>
<td>10.5 ± 3.4</td>
<td>5.7 ± 2.0</td>
<td>4.8 ± 1.5</td>
<td>107 ± 54</td>
<td>66 ± 12</td>
</tr>
<tr>
<td>Whole sampling period (n = 47)</td>
<td>7.5 ± 3.3</td>
<td>3.5 ± 2.0</td>
<td>4.0 ± 1.8</td>
<td>70 ± 39</td>
<td>59 ± 14</td>
</tr>
</tbody>
</table>

fluorescence profiles to ensure that the subsurface chlorophyll maximum (SCM) was sampled when it was present. Subsamples of 10 ml were fixed with buffered 0.2 µm filtered formaldehyde (2% final concentration) and stained with DAPI at 0.1 µg ml⁻¹ final concentration for 10 min in the dark (Porter & Feig 1980). The samples were then filtered through 0.2 µm black Millipore-Isopore filters placed on top of 0.45 µm Millipore backing filters. Epifluorescence microscopy was used to identify autotrophic and heterotrophic pico- and nanoplankton. Autotrophic organisms were enumerated under blue light excitation, and heterotrophic organisms were counted under excitation with UV light. It was assumed that all organisms showing red autofluorescence when excited with blue light were autotrophic, even though mixotrophic organisms are not correctly identified with this technique. However, Prochlorococcus, which is also inadequately identified and counted with this technique, has a limited presence in the region. Its occurrence in shelf waters of NW Iberia is restricted to short time periods in autumn, coinciding with the seasonal upwelling-downwelling transition when oceanic waters are advected over the shelf (Rodríguez et al. 2006). The biomass of heterotrophic bacteria was estimated using a conversion factor (17.4 fg C cell⁻¹) previously determined for the study region (Morán et al. 2002). Dimensions were taken for several individuals of the other plankton groups, and cell volumes were calculated assuming a spherical shape or after approximation to the nearest geometrical shape (Hillebrand et al. 1999). Cell carbon was estimated following Bratbak & Dundas (1984) for Synechococcus-type cyanobacteria, Verity et al. (1992) for pico- and nanoflagellates and Strathmann (1967) for small naked dinoflagellates recorded in the nano-size fraction.

For microplankton determination, samples (100 ml) preserved in Lugol’s iodine were sedimented in composite sedimentation chambers and observed with an inverted microscope. The organisms were counted and identified to the species level when possible. The small species were enumerated from 2 transects scanned at 400× and 250×, whereas the larger species were counted from scanning the whole slide at 100×. Phototrophic and heterotrophic species of dinoflagellates, flagellates and ciliates were differentiated following Lessard & Swift (1986) and also using our historical records of epifluorescence microscopy. Cell biovolumes were estimated according to Hillebrand et al. (1999), and cell carbon was calculated following Strathmann (1967) for diatoms and dinoflagellates, Verity et al. (1992) for flagellates, Verity & Langdon (1984) for loricate ciliates and Putt & Stoekler (1989) for aloricate ciliates. All organisms containing chloroplasts were assumed to be autotrophic. Ciliates <20 µm and single diatoms <20 µm counted with this technique were assigned to the nanoplankton fraction. In contrast, chain-forming diatoms with cells <20 µm were assumed to be microplankton.

As vertical distributions of all plankton groups are rather similar and roughly follow chl a distribution (Fig. 2e), results of microbial plankton biomass are shown integrated over the photic zone. Integration was done at 1 m intervals from the sea surface down to 0.1% of the surface irradiance.

RESULTS

Meteorology and hydrography

Wind forcing and the hydrographic response of the water column have been previously described in
detail by Crespo et al. (2007). Briefly, 7 phases recorded in wind forcing induced discernible responses in the water column (Fig. 2). Extremely variable northerly winds during Phase 1 (Fig. 2a) were unable to cause upwelling on the shelf. Although the water column during this phase remained stratified (Fig. 2b,c) with low nitrate concentrations (<1 µmol kg⁻¹) in the surface layer (Fig. 2d), upwelling-favourable northerly winds forced the continuous uplift of the nitracline (Fig. 2d) and its SCM (Fig. 2e). Phase 1 ended with a period of wind relaxation during the second half of August (Fig. 2a) that caused a short downwelling event. This downwelling is easily discernible from the downward orientation of the temperature and nitrate isolines (Fig. 2b,d) and the decrease in chl a concentrations to values <1 mg m⁻³ (Fig. 2e) recorded at the end of this Phase 1.

Upwelling and downwelling alternated during the next 3 phases. Persistent northerly winds defined Phase 2 (Fig. 2a), which lasted from 30 August to 24 September. The nutrients supplied to the surface layer during this upwelling event (Fig. 2d) fuelled a conspicuous increase in chl a concentrations (Fig. 2e). After this upwelling, there was a month (25 September to 30 October) with dominance of southerly winds (Phase 3; Fig. 2a) that caused downwelling. This downwelling, which was longer and stronger than the preceding one at the end of Phase 1, also caused a reduction in chl a concentrations to values <1 mg m⁻³ (Fig. 2e). A new intense upwelling that injected nutrients into the surface layer (Fig. 2d) favouring an increase in chl a concentration (Fig. 2e) occurred during the next period, Phase 4, in November (Fig. 2a).

Winter conditions started with Phase 5, when variable southerly winds (Fig. 2a) coincided with the presence of the IPC in the region. The IPC was characterised by a homogeneous water body of 14°C (Fig. 2b) and salinity >35.8 (Fig. 2c), with relatively low nitrate (<3 µmol kg⁻¹) and chl a (~0.5 mg m⁻³) concentrations. Winds during Phase 6 changed from upwelling- to downwelling-favourable (Fig. 2a). In this phase, with high water column homogenisation (Fig. 2b,c), chl a concentration began to increase, showing a uniform vertical distribution (Fig. 2e). The spring transition from winter homogenisation to summer stratification took place during the last period, Phase 7. In this period, upwelling (Fig. 2a) coincided with the early development of temperature stratification in the surface layer (Fig. 2b) and a noticeable increase in chl a concentration (Fig. 2e).

Seasonal variability in microbial plankton biomass: trophic and size structure

Both integrated autotrophic (AC) and heterotrophic plankton carbon (HC) biomasses, and consequently total microbial plankton carbon biomass (TC), showed a clear seasonal evolution (Fig. 3a, Table 1), with the lowest values of TC during the IPC (Phase 5) and the highest during the summer upwelling (Phase 2). High values of TC were also recorded during summer stratification (Phase 1) and at the spring onset (Phase 7). Despite the similar seasonal variability in AC and HC (Fig. 3a), changes between hydrographic phases were more frequent and pronounced in AC than in HC (Table 1). Thus, a significant change (p < 0.05, t-test for 2 samples) occurred between summer stratification (Phase 1) and summer upwelling (Phase 2), when AC almost doubled. After that, AC decreased to less than half of its maximum during the autumn downwelling (Phase 3). Another significant reduction in AC took place between the winter upwelling (Phase 4) and the IPC (Phase 5). Following this reduction, AC increased to reach values at the spring onset (Phase 7) similar to those recorded during the summer upwelling (Phase 2). In contrast, HC only experienced 2 significant changes (p < 0.05, t-test for 2 samples). The first was the reduc-
tion that took place between Phases 2 and 3; the second one was the increase observed between Phases 6 and 7. HC remained relatively constant at ~2.5 g C m$^{-2}$ during the phases in between (Table 1).

Changes were also observed in the size structure of the microbial community (Fig. 3b), which was largely dominated by nanoplankton (66 ± 11% [SD here and elsewhere] of TC). The microplankton fraction, representing 12 ± 13% of TC over the whole sampling period, gained importance at the end of the stratification period (Phase 1) and during the upwelling of Phase 2, when this fraction accounted for 31 ± 14% of TC. The contribution of microplankton was especially important at the end of this upwelling phase (55% of TC). Although of less importance, microplankton contributions exceeding the seasonal average value were registered on some occasions during Phases 4 (18%), 6 (24 ± 3%) and 7 (33%). In contrast, microplankton biomass (0.13 ± 0.6 g C m$^{-2}$) and their contribution to TC (4 ± 2%) were extremely low during the IPC (Phase 5). During this phase (Fig. 3b), picoplankton achieved greater importance (32 ± 5% of TC), well above their mean seasonal contribution (21 ± 7%).

HC (4.0 ± 1.8 g C m$^{-2}$) and AC (3.5 ± 2.0 g C m$^{-2}$) were similar on an annual basis (Table 1), although HC exceeded AC during summer upwelling (Phase 2), winter mixing (Phase 6) and spring onset (Phase 7). AC exceeded HC during the IPC (Phase 5). HC and AC covaried according to an HC:AC ratio = 0.60 ± 0.08 when HC < AC but followed a considerably higher HC:AC ratio = 1.74 ± 0.2 when HC > AC (Fig. 4). During this phase (Fig. 3b), picoplankton biomass (0.13 ± 0.6 g C m$^{-2}$) and their contribution to TC (4 ± 2%) were extremely low during the IPC (Phase 5). During this phase (Fig. 3b), picoplankton achieved greater importance (32 ± 5% of TC), well above their mean seasonal contribution (21 ± 7%).

The size structure of the microbial community in the SCM of the stratified Phase 1 (Fig. 2e) did not differ (p > 0.26, t-test for 2 samples) from the size-structure found in the upper layer, with nanoplankton accounting for 69 ± 7% of TC and lower contributions of picoplankton (18 ± 6%) and microplankton (13 ± 9%).

Although HC (4.0 ± 1.8 g C m$^{-2}$) and AC (3.5 ± 2.0 g C m$^{-2}$) were similar on an annual basis (Table 1), there were sampling days (Fig. 3a) and hydrographic phases (Table 1) in which AC was higher than HC. AC exceeded HC during the IPC (Phase 5). During this phase (Fig. 3b), picoplankton achieved greater importance (32 ± 5% of TC), well above their mean seasonal contribution (21 ± 7%).

Although HC (4.0 ± 1.8 g C m$^{-2}$) and AC (3.5 ± 2.0 g C m$^{-2}$) were similar on an annual basis (Table 1), there were sampling days (Fig. 3a) and hydrographic phases (Table 1) in which AC was higher than HC. AC exceeded HC during the IPC (Phase 5). During this phase (Fig. 3b), picoplankton biomass (0.13 ± 0.6 g C m$^{-2}$) and their contribution to TC (4 ± 2%) were extremely low during the IPC (Phase 5). During this phase (Fig. 3b), picoplankton achieved greater importance (32 ± 5% of TC), well above their mean seasonal contribution (21 ± 7%).
Fig. 5. Evolution of integrated biomass over the photic layer of (a) autotrophic and heterotrophic picoplankton (APP, HPP), (b) autotrophic and heterotrophic nanoplankton (ANP, HNP) and (c) autotrophic and heterotrophic microplankton (AMP, HMP). The 7 hydrographic phases (1 to 7) are given above Panel (a).

Fig. 6. Evolution of integrated biomass over the photic layer of (a) Synechococcus and autotrophic picoflagellates (APF), (b) diatoms larger than 20 µm and total autotrophic nanoplankton (ANP), and (c) autotrophic nanoflagellates (ANF) and ANP. The 7 hydrographic phases (1 to 7) are given above Panel (a).

Table 2. Average (±1 SD) biomass of autotrophic plankton integrated over the photic layer (0.1% of surface irradiance) for the 7 hydrographic phases identified and the whole sampling period. APF: autotrophic picoflagellates; ANP: autotrophic nanoplankton; AD: large (>20 µm) autotrophic dinoflagellates; LAF: large (>20 µm) autotrophic flagellates other than dinoflagellates; ACil: large (>20 µm) autotrophic ciliates; n = number of samples; IPC: Iberian Poleward Current.

<table>
<thead>
<tr>
<th>Hydrographic phase</th>
<th>Synechococcus</th>
<th>APF</th>
<th>ANP</th>
<th>Diatoms</th>
<th>AD</th>
<th>LAF</th>
<th>ACil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (n = 16) Summer stratification</td>
<td>0.28 ± 0.20</td>
<td>0.07 ± 0.03</td>
<td>2.59 ± 0.63</td>
<td>0.67 ± 0.95</td>
<td>0.07 ± 0.04</td>
<td>0.002 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Phase 2 (n = 4) Summer upwelling</td>
<td>0.28 ± 0.19</td>
<td>0.03 ± 0.01</td>
<td>3.07 ± 2.15</td>
<td>2.51 ± 2.28</td>
<td>0.14 ± 0.12</td>
<td>0.003 ± 0.004</td>
<td>0.03 ± 0.04</td>
</tr>
<tr>
<td>Phase 3 (n = 5) Autumn downwelling</td>
<td>0.42 ± 0.47</td>
<td>0.09 ± 0.04</td>
<td>2.05 ± 0.73</td>
<td>0.01 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Phase 4 (n = 4) Winter upwelling</td>
<td>0.09 ± 0.18</td>
<td>0.09 ± 0.02</td>
<td>2.01 ± 0.70</td>
<td>0.30 ± 0.36</td>
<td>0.01 ± 0.01</td>
<td>0.02 ± 0.02</td>
<td>0.002 ± 0.002</td>
</tr>
<tr>
<td>Phase 5 (n = 8) IPC</td>
<td>0.18 ± 0.06</td>
<td>0.19 ± 0.14</td>
<td>1.15 ± 0.33</td>
<td>0.02 ± 0.02</td>
<td>0.01 ± 0.003</td>
<td>0.005 ± 0.01</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>Phase 6 (n = 5) Winter mixing</td>
<td>0.14 ± 0.12</td>
<td>0.18 ± 0.22</td>
<td>2.52 ± 1.46</td>
<td>0.51 ± 0.70</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.02</td>
<td>0.004 ± 0.002</td>
</tr>
<tr>
<td>Phase 7 (n = 5) Spring onset</td>
<td>0.31 ± 0.19</td>
<td>0.24 ± 0.12</td>
<td>4.47 ± 2.28</td>
<td>0.62 ± 1.21</td>
<td>0.03 ± 0.01</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Whole sampling period (n = 47)</td>
<td>0.25 ± 0.22</td>
<td>0.12 ± 0.12</td>
<td>2.47 ± 1.41</td>
<td>0.39 ± 1.11</td>
<td>0.05 ± 0.05</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.02</td>
</tr>
</tbody>
</table>
(78 ± 12% of APP biomass) during summer and autumn (Phases 1 to 3), shared dominance with autotrophic picoflagellates after Phase 4.

Although autotrophic nanoflagellates (ANF) accounted for 92 ± 9% of ANP biomass, other phytoplankton made up important contributions to this autotrophic plankton fraction on some occasions (Fig. 6c). Flagellates like Heterosigma akashiwo and Eutreptiella sp. accounted for 20 ± 10% of the ANP biomass at the beginning of the summer stratification (Phase 1), and small (<20 µm) diatoms (small centric diatoms and single cells of small Chaetoceros spp.) represented 38% of the ANP biomass at the beginning of the summer upwelling (Phase 2). The contribution (19% of the ANP biomass) of small dinoflagellates Prorocentrum minimum and Heterocapsa niei was also important during the winter upwelling of Phase 4. In contrast, the increase in AC registered at the beginning of the new growth season (Phases 6 and 7, Fig. 3a) was mostly due to ANF, with minor contributions of large diatoms (Table 2, Fig. 6b,c).

The seasonal variability of integrated chl a was rather similar to that of AC (Table 1, Fig. 7a). In fact, both variables were significantly correlated (r = 0.72, p < 0.001), although 3 chl a values (2 in winter and 1 in spring) deviated from the general pattern (Fig. 7a). When these 3 pairs of values with low AC to chl a ratios of 26 ± 1 (weight:weight) were not considered, the regression between integrated AC and integrated chl a (Fig. 7b) provided an AC:chl a ratio = 56 ± 5 (slope) with a non-significant intercept (−0.11 ± 0.37). This relationship between chl a and AC was basically driven by ANP and diatoms >20 µm, as is illustrated by the regression obtained considering only the autotrophic carbon due to these 2 phytoplankton groups (ACanpd) and total chl a: ACanpd = (−0.37 ± 0.34) + (53 ± 5)chl a (r² = 0.75, p < 0.001); the intercept was not significant.

During the stratified Phase 1, AC in the SCM represented 67 ± 13% of the water column integrated AC, whereas chl a accounted for a higher fraction (76 ± 17%). Consequently, the average AC:chl a ratio in the SCM was slightly lower (44 ± 8) than that recorded for the whole sampling (Fig. 7b). However, differences between the size structure and composition of the autotrophic community in the SCM and the water column above were not detected (0.21 < p < 0.87, t-test for 2 samples). In fact, the size structure in the SCM, with ANP accounting for 78 ± 7% of AC and APP and autotrophic microplankton representing 12 ± 9% and 9 ± 4%, respectively, did not differ from the size structure reported for the whole sampling period (0.16 < p < 0.89).

Structure and variability of the heterotrophic community

The heterotrophic community was dominated by pico- and nanoplankton cells (Table 3), with heterotrophic nanoplankton (HNP) accounting for the largest fraction of HC (61 ± 10%) and heterotrophic bacteria (HB) representing 24 ± 7%. Heterotrophic picoflagellates (HPF) accounted for a smaller fraction (5 ± 3%) of HC. The remaining HC (10 ± 10%) belonged to heterotrophic microplankton (HMP), with large (>20 µm) heterotrophic dinoflagellates (HD) representing 5 ± 5% of HC. Heterotrophic nanoflagellates made up the largest contribution (81 ± 9%) to HNP, with nanodinoflagellates and nanociliates accounting for the remaining HNP biomass. Seasonal variability was evident in HNP (Fig. 8a) and HD (Fig. 8b), though marked differences existed in the temporal evolution of the biomasses of these 2 heterotrophic plankton groups. HNP gradually de-
creased (Fig. 8a, Table 3) from summer stratification (Phase 1) to the IPC (Phase 5). Later on, HNP showed a significant increase (p < 0.05, t-test for 2 samples) between winter mixing (Phase 6) and the spring onset (Phase 7), when HB increased from 0.58 ± 0.26 to 1.41 ± 0.42 g C m⁻² (Table 3). Although the biomass of HPF was slightly higher during summer stratification and spring onset (Fig. 8b, Table 3), changes between hydrographic phases were not significant.

There were no differences between the composition of the heterotrophic community found in the SCM and that recorded in the upper layers during Phase 1 (0.35 < p < 0.98, t-test for 2 samples). Also, the size structure of the heterotrophic community in the SCM was similar to the size structure reported for the whole sampling period (0.22 < p < 0.78). HNP dominated in the SCM, accounting for 64 ± 10% of HC, with HPP and HMP representing 26 ± 8 and 11 ± 12%, respectively.

DISCUSSION

The present seasonal study conducted at the NW Iberian shelf clearly shows that both autotrophic and heterotrophic microbial plankton communities in shelf waters of this upwelling system are basically composed of nano- and picoplankton cells. The present study also indicates that microplankton cells are added to or removed from this baseline community according to the prevailing hydrographic regime. Thus, the addition of diatoms >20 µm occurs during summer upwelling events (Fig. 6b), whereas HMP, fundamentally HD, are important components of the microbial community during summer stratified periods (Figs. 5c & 8b). Both autotrophic and heterotrophic microplankton virtually disappear from the water column following the seasonal upwelling-downwelling transition of Phase 3 in autumn (Fig. 5c). In addition, the present study reveals that the spring bloom (Phases 6 and 7) begins with pig-

<table>
<thead>
<tr>
<th>Hydrographic phase</th>
<th>Biomass (g C m⁻²)</th>
<th>HB</th>
<th>HNP</th>
<th>HD</th>
<th>LHF</th>
<th>HCil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (n = 16)</td>
<td></td>
<td>1.03 ± 0.24</td>
<td>3.39 ± 1.24</td>
<td>0.36 ± 0.32</td>
<td>0.38 ± 0.92</td>
<td>0.11 ± 0.07</td>
</tr>
<tr>
<td>Phase 2 (n = 4)</td>
<td></td>
<td>0.89 ± 0.20</td>
<td>2.83 ± 0.91</td>
<td>0.59 ± 0.28</td>
<td>0.14 ± 0.12</td>
<td>0.22 ± 0.10</td>
</tr>
<tr>
<td>Phase 3 (n = 5)</td>
<td></td>
<td>0.62 ± 0.26</td>
<td>2.01 ± 0.72</td>
<td>0.14 ± 0.05</td>
<td>0.03 ± 0.01</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>Phase 4 (n = 4)</td>
<td></td>
<td>0.70 ± 0.16</td>
<td>1.72 ± 0.39</td>
<td>0.09 ± 0.03</td>
<td>0.01 ± 0.01</td>
<td>0.07 ± 0.07</td>
</tr>
<tr>
<td>Phase 5 (n = 8) IPC</td>
<td></td>
<td>0.67 ± 0.16</td>
<td>1.29 ± 0.37</td>
<td>0.05 ± 0.02</td>
<td>0.01 ± 0.003</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Phase 6 (n = 5)</td>
<td></td>
<td>0.58 ± 0.26</td>
<td>1.56 ± 0.43</td>
<td>0.07 ± 0.04</td>
<td>0.02 ± 0.01</td>
<td>0.08 ± 0.06</td>
</tr>
<tr>
<td>Phase 7 (n = 5)</td>
<td></td>
<td>1.41 ± 0.42</td>
<td>2.92 ± 1.25</td>
<td>0.15 ± 0.11</td>
<td>0.03 ± 0.01</td>
<td>0.11 ± 0.17</td>
</tr>
<tr>
<td>Whole sampling period</td>
<td></td>
<td>0.88 ± 0.35</td>
<td>2.45 ± 1.23</td>
<td>0.23 ± 0.26</td>
<td>0.14 ± 0.55</td>
<td>0.10 ± 0.07</td>
</tr>
</tbody>
</table>

Table 3. Average (±1 SD) biomass of heterotrophic plankton integrated over the photic layer (0.1% of surface irradiance) for the 7 hydrographic phases identified and the whole sampling period. HB: heterotrophic bacteria; HPF: heterotrophic picoflagellates; HNP: heterotrophic nanoplankton; HD: large (>20 µm) heterotrophic dinoflagellates; LHF: large (>20 µm) heterotrophic flagellates other than dinoflagellates; HCil: large (>20 µm) heterotrophic ciliates; n = number of samples; IPC: Iberian Poleward Current.
mented nanoflagellates, with large diatoms making up a minor contribution (Fig. 6). Therefore, we can hypothesize, following Landry (2002) and Barber & Hiscock (2006), that the pelagic food web in this coastal upwelling ecosystem is essentially multivorous (Legen dre & Rassoulzadegan 1995). The microbial loop (picoplankton) exists as a permanent feature in the system to which the diatom food web is added during upwelling (Barber & Hiscock 2006, Teixeira et al. 2011). During summer upwelling, when diatoms are relatively abundant, their potential HD grazers (Sherr & Sherr 2007, Teixeira et al. 2011) also appear in the water column (Figs. 5c & 8b). The corollary for this structure of the microbial community is that regenerated production and recycling always fuel the pelagic system in the NW Iberian shelf, with new production and export being added during upwelling events. In fact, the only study conducted on the NW Iberian shelf addressing microbial metabolism (Teira et al. 2001) supports this view, revealing that the system is net autotrophic only during upwelling events, whereas it is in balance during summer stratification and shifts to heterotrophy under downwelling conditions.

Unfortunately, the metabolic balance of the microbial community was not directly determined during the present study, but it can be estimated using the metabolic theory of ecology (Brown et al. 2004, López-Urrutia et al. 2006), which is based on body size, temperature and resources as main factors determining metabolic rates (López-Urrutia et al. 2006, Cermeño et al. 2008). Thus, following López-Urrutia et al. (2006), phytoplankton metabolic rates (P, mmol O₂ m⁻³ d⁻¹), specifically gross primary production (GPP) and autotrophic respiration (AR) were estimated using their combined model:

\[P = \frac{1}{V} \cdot P_0 \cdot e^{-E_a/kT} \cdot \frac{\text{PAR}}{\text{PAR} + K_m} \cdot \sum_{i} M_i^{\alpha_i} \]

where \(P_0 \) is a normalization constant that is different for GPP and AR but independent of body size, temperature and light, \(E_a \) is the activation energy, \(k \) is Boltzmann’s constant (8.62 × 10⁻⁵ eVK⁻¹), \(T \) is the ambient absolute temperature, PAR is the photosynthetic active radiation (mol photons m⁻² d⁻¹), \(K_m \) is the Michaelis-Menten half saturation constant, \(\alpha_i \) is the allometric scaling exponent for body size, and \(n_i \) is the number of autotrophic organisms in the volume V (m³) with individual carbon biomass \(M_i \) (pg C). \(E_a, K_m, \alpha_i, n_i \) are the same for GPP and AR (Table 1 in López-Urrutia et al. 2006). PAR was determined at each sampled depth from the incident light at the sea surface and light attenuation profiles recorded on each sampling day (see ‘Materials and methods’). Light is the only resource that is explicitly included in the model, whereas nutrients are implicitly considered through cell abundances \(n_i \) and biomasses \(M_i \) with higher biomass or abundance meaning more available nutrients (Cermeño et al. 2008).

The same equation was used to estimate heterotrophic respiration, except bacterial respiration. For this case, the term PAR(PAR+K_m) was removed, and the autotrophic parameters \(E_a \) and \(\alpha_a \) were substituted by those corresponding to heterotrophs \((E_h, \alpha_h) \) (see Table 1 in López-Urrutia et al. 2006).

Bacterial respiration (BR) was estimated from bacterial abundance and the equation given by López-Urrutia & Morán (2007) that relates cell-specific bacterial respiration (BR, fg C cell⁻¹ d⁻¹) to temperature, taking into account resource availability:

\[BR_t = 3.21 \times 10^{11} e^{-0.589/kT} \]

Carbon units of BR were converted to oxygen units using a respiration quotient of 0.89.

Keeping in mind that this is a general modelling approach with uncertainties in the outcomes, the net community production (NCP) was calculated by subtracting respiration rates (AR, heterotrophic respiration and BR) from GPP, and then the volumetric values were integrated over the photic layer. The resulting pattern points to an autotrophic microbial community during summer upwelling and spring onset (Table 4). Heterotrophy was mainly located in the picoplankton fraction, where bacteria accounted for 85 ± 7% of total respiration. In contrast, autotrophy was nearly persistent in the microplankton fraction, due to the presence of diatoms. Thus, the 2 hydrographic phases in which microplankton was slightly heterotrophic or almost in balance (autumn downwelling and IPC, respectively) (Table 4) corresponded to phases without diatoms (Table 2). Seasonality was the most evident feature in the metabolic balance of the nanoplankton fraction (Table 4), which showed heterotrophy from autumn downwelling to the end of the IPC (Phases 3 to 5) and autotrophy during the rest of the year. Considering the whole sampling period, the model outcome indicates that the metabolic balance of nano- and microplankton exhibited higher variability than the metabolic balance of picoplankton. This circumstance leads us to conclude that fluctuations in autotrophic biomass, mainly diatoms and nanoflagellates, and the consequent changes in primary production control the transition from net heterotrophy to net autotrophy (Duarte et al. 2001, Aristegui & Harrison 2002, McAndrew et al. 2007, Arbones et al. 2008) in the NW Iberian upwelling.
The level of GPP needed to maintain a balanced metabolism of the microbial community can be obtained by solving the equation describing the relationship GPP vs. NCP (Fig. 9) for NCP = 0. This value of GPP, determining the transition from net heterotrophy to net autotrophy, was 288 mmol O$_2$ m$^{-2}$ d$^{-1}$ and is equivalent to a mean value of 4.9 mmol O$_2$ m$^{-3}$ d$^{-1}$ in an average photic layer of 59 ± 14 m. It is also equivalent to a carbon fixation of 3.5 to 2.5 g C m$^{-2}$ d$^{-1}$, estimated considering a photosynthetic quotient ranging from 1.0 to 1.4. Similar threshold values of GPP have been reported for other coastal upwelling systems (Duarte et al. 2001) and other coastal areas around the world (Duarte et al. 2004, Duarte & Regaudie-de-Gioux 2009) in general, but it is considerably higher than the values reported for the oligotrophic ocean (Arístegui & Harrison 2002, McAndrew et al. 2008, Duarte & Regaudie-de-Gioux 2009).

The threshold of carbon fixation derived from the allometric model is well above the mean annual value of primary production given for the continental shelf of NW Iberia, which lies around 1 to 1.5 g C m$^{-2}$ d$^{-1}$ (Joint et al. 2002, Arístegui et al. 2006). Therefore, it can be concluded that the zone during the present annual study was net heterotrophic. Autotrophy in this region will depend on the frequency and intensity of upwelling events, which could promote an increase in carbon fixation mainly due to diatoms and so fuel the entire metabolism of the microbial community. However, in a possible future scenario with low upwelling intensity and frequency (Álvarez-Salgado et al. 2008), this upwelling zone would become heterotrophic. In this case, the microbial community on the continental shelf should be powered by allochthonous organic inputs, with export from the nearby Rías Baixas, where autotrophy predominates (Arbones et al. 2008), playing a pivotal role.

Table 4. Average (±1 SD) net community production (NCP) of the total microbial community (Total), picoplankton community (Pico), nanoplankton community (Nano) and microplankton community (Micro) integrated over the photic layer (0.1% of surface irradiance) for the 7 hydrographic phases identified and the whole sampling period; n = number of samples. NCP was estimated following the allometric model based on the metabolic theory of ecology proposed by López-Urrutia et al. (2006). IPC: Iberian Poleward Current

<table>
<thead>
<tr>
<th>Hydrographic phase</th>
<th>Total NCP (mmol O$_2$ m$^{-2}$ d$^{-1}$)</th>
<th>Pico NCP (mmol O$_2$ m$^{-2}$ d$^{-1}$)</th>
<th>Nano NCP (mmol O$_2$ m$^{-2}$ d$^{-1}$)</th>
<th>Micro NCP (mmol O$_2$ m$^{-2}$ d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (n = 16) Summer stratification</td>
<td>-61 ± 115</td>
<td>-92 ± 27</td>
<td>2 ± 73</td>
<td>29 ± 79</td>
</tr>
<tr>
<td>Phase 2 (n = 4) Summer upwelling</td>
<td>100 ± 266</td>
<td>-70 ± 21</td>
<td>60 ± 175</td>
<td>110 ± 88</td>
</tr>
<tr>
<td>Phase 3 (n = 5) Autumn downwelling</td>
<td>-102 ± 34</td>
<td>-54 ± 14</td>
<td>-42 ± 26</td>
<td>-5 ± 3</td>
</tr>
<tr>
<td>Phase 4 (n = 4) Winter upwelling</td>
<td>-65 ± 29</td>
<td>-62 ± 9</td>
<td>-11 ± 20</td>
<td>8 ± 12</td>
</tr>
<tr>
<td>Phase 5 (n = 8) IPC</td>
<td>-78 ± 31</td>
<td>-59 ± 19</td>
<td>-17 ± 16</td>
<td>-2 ± 1</td>
</tr>
<tr>
<td>Phase 6 (n = 5) Winter mixing</td>
<td>-29 ± 26</td>
<td>-47 ± 21</td>
<td>4 ± 20</td>
<td>15 ± 21</td>
</tr>
<tr>
<td>Phase 7 (n = 5) Spring onset</td>
<td>9 ± 83</td>
<td>-101 ± 26</td>
<td>61 ± 44</td>
<td>49 ± 113</td>
</tr>
<tr>
<td>Whole sampling period (n = 47)</td>
<td>-44 ± 113</td>
<td>-74 ± 29</td>
<td>4 ± 71</td>
<td>26 ± 68</td>
</tr>
</tbody>
</table>

Fig. 9. Net community production (NCP) vs. gross primary production (GPP) estimated according to the allometric model based on the metabolic theory of ecology proposed by López-Urrutia et al. (2006). Continuous line is the regression NCP = ($-155.88 ± 18.19$) + ($0.54 ± 0.07$)GPP ($r^2 = 0.57$, p < 0.001, n = 47). The threshold of GPP (vertical dashed line) for net autotrophic production is 288 mmol m$^{-2}$ d$^{-1}$. The horizontal dashed line shows net metabolic balance (NCP = 0).

Acknowledgements
We thank the captain and crew of the RV ‘Mytilus’ and the members of the Oceanography group at the Instituto de Investigaciones Marinas who participated in the cruise. This work was funded by the Spanish DYBAGA project (MAR99-1039-C02-01). B.G.C. was supported by a CSIC-ESF I3P fellowship during the experimental work and by a Juan de la Cierva contract from the Spanish ‘Ministerio de Ciencia e Innovación’ during the writing phase. O.E.-G. was supported by a Mideplan fellowship from the government of Chile.

LITERATURE CITED

Editorial responsibility: Hans-Georg Hoppe, Kiel, Germany

Submitted: December 13, 2011; Accepted: July 11, 2012

Proofs received from author(s): September 6, 2012