ABSTRACT: Photosynthetic picoeukaryotes (PPEs) can be important primary producers in the oligotrophic ocean and coastal waters at certain times of the year. In this study, we investigated the abundance and biodiversity of picoplankton, focusing on PPEs in the South China Sea (SCS) from the Pearl River estuary to SCS basin in January 2010, when the northeast monsoon prevailed. PPE abundance was quantified using fluorescent in situ hybridization associated tyramide signal amplification, and the biodiversity at 5 selected stations was determined using small subunit ribosomal RNA gene (18S rDNA) clone libraries. Our results showed that PPEs were most abundant in the Pearl River estuary (up to 8500 cells ml⁻¹), and that mamiellophycean picoplanktonic green algae, such as *Micromonas*, *Ostreococcus* and *Bathycoccus*, showed peaks of abundance in slope or coastal waters. The 18S rDNA phylogeny revealed that most of the PPEs belonged to prasinophytes, affiliating to 4 clades (Clade IX, Clade V, Clade VII, and Mamiellophycaceae). Phytoplankton pigment analysis clearly showed the difference in picophytoplankton community structure along the environmental gradient provided by the selected stations. Among the PPEs, prasinophytes and prymnesiophytes accounted for 18.7 and 41.5%, respectively, of the chlorophyll a biomass. Putting all the data together, we describe a complete picture of PPE assemblages along the coast-offshore gradient, showing that the prasinophytes and prymnesiophytes appear to be the key PPE components in this subtropical-tropical marginal sea.

KEY WORDS: Photosynthetic picoeukaryotes · Mamiellophycaceae · FISH-TSA · 18S rDNA · Community structure · South China Sea

INTRODUCTION

Picophytoplankton (both prokaryotic and eukaryotic phytoplankters with cell size smaller than 3 µm) are the dominant CO₂ fixation groups in oligotrophic areas of the ocean (Li 1994, Zubkov et al. 1998, Blanchot et al. 2001, Jardillier et al. 2010). Although photosynthetic picoeukaryotes (PPEs) are usually less abundant than photosynthetic prokaryotes such as the cyanobacteria *Prochlorococcus* and *Synechococcus*, PPEs can contribute significantly to phytoplankton biomass (e.g. Worden et al. 2004, Not et al. 2008).

To better understand the ecological role of PPEs, studies have been carried out at local or global scales to investigate the abundance and biodiversity of PPEs in various environments (Worden et al. 2004, Not et al. 2008, Collado-Fabbri et al. 2011, Kirkham et al. 2013).

The South China Sea (SCS) is the second largest marginal sea in the world, extending from the equator to 23°N and from 99°E to 121°E. The northeastern SCS is connected to the western Pacific by the deep Luzon Strait. As the key exchanging channel between the semi-enclosed SCS and the
Pacific Ocean (Shaw & Chao 1994), the Luzon Strait is strongly affected by seasonal incursions of the Kuroshio Current (Liang et al. 2008). The surface circulation of the SCS is subjected to the strong forcing of alternating seasonal monsoons (Liu et al. 2002); the winter northeast monsoon drives a large-scale cyclonic gyre over the entire deep basin. Despite the fact that PPEs are ecologically important (Li 1994, Worden et al. 2004), little is known about their distribution and diversity in the SCS. Previous molecular phylogenetic studies have revealed diverse planktonic protists in the northern SCS and the coastal waters of the Nansha Islands (Yuan et al. 2004, Li et al. 2010). However, the sequences obtained were dominated by heterotrophic groups, and few PPE sequences were retrieved.

In this study, we focused on PPEs. Our main objectives were (1) to determine the abundance and biodiversity of the dominant PPEs in the SCS, and (2) to clarify the relationship between the PPE assemblages and the physical factors in the marginal sea. We combined fluorescent in situ hybridization associated tyramide signal amplification (FISH-TSA), 18S rRNA gene (18S rDNA) libraries, and photosynthetic pigment analyses to investigate the abundance, diversity and community composition of the picoeukaryotes.

MATERIALS AND METHODS

Sampling

Sampling was conducted at 10 stations along a transect extending from the Pearl River estuary (Stn A9) to the basin of the SCS (at the SouthEast Asia Time-series Study [SEATS] station) (Fig. 1) from 6 to 30 January 2010 on board the RV ‘Dongfanghong 2’. Seawater samples were collected at 2 to 6 depths at each station using 20 l Niskin bottles mounted on a rosette. Temperature and salinity profiles at each station were determined using SBE-911 CTD (Sea-Bird Electronics). The water samples were pre-filtered through 3 µm pore-size polycarbonate filters (Millipore) to separate the picoplankton from larger organisms.

For FISH-TSA analysis, 75 to 200 ml pre-filtered seawater from all 10 stations was fixed with PBS buffered paraformaldehyde (1% final concentration) for 1 h at room temperature. Fixed samples were then filtered onto 0.2 µm polycarbonate filters (Millipore) under 200 mm Hg pressure. Filters were dehydrated in an ethanol series (50, 80 and 100%, 3 min each) and stored at −80°C until hybridization.

For biodiversity analysis, 3 stations (Stns A7, A1 and SEATS) were selected to represent 3 typical environments of the northern SCS: coast, slope and basin (Fig. 1). A total of 5 water samples were collected from these 3 stations: 1 from Stn A7, and 2 each from Stns A1 and SEATS: CC02A740 (Stn A7, 40 m), CC02A105 (Stn A1, 5 m), CC02A175 (Stn A1, 75 m), CC02SE05 (SEATS, 5 m) and CC02SE75 (SEATS, 75 m). More than 8 l of pre-filtered seawater for each sample was filtered onto GF/F filters (Whatman). The filters were then frozen in liquid nitrogen and stored at −80°C until analysis.

For high performance liquid chromatography (HPLC) pigment analysis, 8 to 11 l of pre-filtered seawater from each of the 5 water samples mentioned above were filtered onto 25 mm GF/F filters under 200 mm Hg pressure, and then were immediately frozen in liquid nitrogen and protected from light. In addition to the 5 pico-size samples, 2 bulk samples (Stn A1, 5 m and Stn A1, 75 m) were collected without pre-filtration.

Chlorophyll a and nutrients analyses

For the bulk chlorophyll a (chl a) analyses, 300 to 1200 ml of un-filtered seawater samples from each of the 10 stations was filtered onto GF/F filters. Filters were extracted in 90% acetone at −20°C in the dark for 24 h, and the chl a concentrations were measured on a Turner Designs fluorometer (Trilogy 040) following Welschmeyer (1994). Nutrient concentrations (including nitrate, nitrite, silicate and phosphate) were determined using a Technicon AA3 Auto-Anal...
lyzer (Bran-Lube, GmbH) onboard. The detection limits of nitrite plus nitrate (NO$_2^-$ + NO$_3^-$), silicate (SiO$_3^{2-}$) and phosphate (PO$_4^{3-}$) were 0.1, 0.6, and 0.08 µmol l$^{-1}$, respectively. Nutrient data beyond the continental shelf were reported in Du et al. (2013), and data on the shelf are provided by M. Dai (unpubl.; mdai@xmu.edu.cn).

FISH-TSA analysis

To quantify the whole picoeukaryotic community at all 10 stations, we used a combination of a general probe (EUK1209R) and 2 probes (CHLO01 and NCHLO01) that specifically targeted different groups (Not et al. 2008) (Table 1). Whole cell FISH was performed following Not et al. (2002). Briefly, filters with cells were hybridized for 3 h at 35°C in the hybridization buffer (with 40% deionized formamide). After several washing procedures, TSA (PerkinElmer Las) was performed by adding 15 µl TSA mix (1:1 40% dextran sulfate and amplification diluent) for 30 min at room temperature in the dark. To stop the enzymatic reaction, filters were washed in TNT buffer twice for 20 min at 55°C. Cells were briefly rinsed in Milli-Q water and counterstained with 4',6-diamidino-2-phenylindole (0.5 µg ml$^{-1}$ final concentration) mixed with anti-fading reagent AF3 (Citifluor). Slides were then stored in the dark at 4°C until observation under a Nikon Eclipse 90i microscope (Nikon Instruments) within 1 wk.

18S rDNA libraries and phylogenetic analysis

Genomic DNA was extracted from the water samples using the phenol:chloroform:isoamylalcohol (PCI, Sigma) method as described in Countway et al. (2005). The DNA yield was quantified for each sample using a NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies). The 18S rDNA was amplified following Not et al. (2009), using the universal eukaryotic primers Euk328f and Euk329r (Moon-van der Staay et al. 2001). Approximately 10 ng of DNA extract was used as template in a 50 µl PCR mixture containing 200 µM of each dNTP, 1.5 mM MgCl$_2$, 0.4 µM of each primer and 1.25 U of Go-Taq Flexible DNA Polymerase (Promega) with buffer supplied with the enzyme. The thermal PCR protocol consisted of an initial denaturation step at 94°C for 3 min, 35 cycles of 94°C for 45 s, 55°C for 1 min and 72°C for 3 min, and then a final extension at 72°C for 10 min. The 18S rDNA libraries were constructed using the TA cloning kit (TaKaRa) following the manufacturer’s recommendations. For each library, 100 to 110 clones were sequenced with 2 sequencing reactions per clone to get the expected size of amplified fragments (ca. 1800 bp) using the ABI 3730xl DNA Analyzer. Good quality sequences were analyzed with KeyDNAtools (www.keydnatools.com) for taxonomic affiliation and chimera detection. Each suspected chimera was then rechecked using BLAST (Altschul et al. 1990) with sequence segment separately. The sequences that passed chimeric screening were aligned using Clustal Omega (Sievers et al. 2011). Diversity and richness indices were calculated with Mothur (Schloss et al. 2009); the sequences were then grouped into operational taxonomic units (OTUs) using a 98% sequence similarity cut-off level based on Caron et al. (2009). Finally, the OTUs and the reference sequences were analyzed together using Gblocks (Castresana 2000), and poorly-aligned or difficult positions and divergent regions were eliminated with (1) a minimum block of 5 and (2) by allowing a gap position equal to half. Phylogenetic analyses were conducted in MEGA 5 (Tamura et al. 2007).
2011) using maximum likelihood and applying recommended parameters from the model test in MEGA 5. Bayesian analyses were also performed using MRBAYES 3.2.1 (Huelsenbeck & Ronquist 2001), run for one million generations and discarding the first 25% of 10,000 samples as ‘burn in’.

Nucleotide sequences obtained in this study were deposited in the GenBank database under accession numbers JX188276-JX188384 and KF031572-KF031942.

HPLC-based pigment analysis

Phytoplankton pigments were extracted with N,N-dimethylformamide following Furuya et al. (1998). Pigment analysis was conducted using an Agilent series 1100 HPLC system fitted with a 3.5 µm Eclipse XDB C8 column (Agilent Technologies). Solvent A was 80:20 (v/v) methanol:ammonium acetate (1 M); solvent B was methanol; and a gradient elution procedure was used. Pigments were quantified with the standards purchased from Danish Hydraulic Institute (DHI) Water and Environment (Denmark). Based on pigment data, the phytoplankton community was determined using CHEMTAX (Mackey et al. 1996).

Carbon conversion

To estimate the importance of different groups in terms of carbon biomass, we estimated from the flow cytometry (FCM) data and FISH-TSA data the mean intracellular carbon of 4 picophytoplankton types: the cyanobacteria *Synechococcus* and *Prochlorococcus*, PPEs from the Mamiellophyceae (corresponding to Cade II of the prasinophytes, Marin & Melkonian 2010); and non-Mamiellophyceae picoeukaryotes. The FCM data of the abundances of *Synechococcus* and *Prochlorococcus* has been reported in Chen et al. (2011). Different biomass conversion factors were used: 82 fg C cell−1 for *Synechococcus*; 39 fg C cell−1 for *Prochlorococcus*; and 530 fg C cell−1 for the FISH-TSA enumerated non-Mamiellophyceae picoeukaryotes (Worden et al. 2004, Cuvelier et al. 2010). For the 3 Mamiellophyceae genera detected using FISH-TSA (*Micromonas*, *Ostreococcus* and *Bathycoccus*), a conversion factor of 237 fg C µm −3 was used, which was based on carbon-hydrogen-nitrogen measurements of cultures (Worden et al. 2004). This factor was multiplied by the cell abundance obtained by FISH-TSA and the cell volume obtained from cell lengths. Cell lengths were obtained from Vaulot et al. (2004): 2 µm for *Micromonas*, 0.95 µm for *Ostreococcus*, and 2 µm for *Bathycoccus*. It should be noted that *Micromonas* biomass estimates might be over-estimated, based on smaller-sized strains observed in other regions (e.g. Lovejoy et al. 2007).

Statistical analyses

The relationships between environmental parameters (temperature, salinity, nitrates, phosphates, silicate), chl a and the abundances of PPEs were also analyzed. The statistical analyses were done by canonical correspondence analysis (CCA) using CANOCO 4.5.

RESULTS

Environmental data

During the sampling period, the upper (100 m) water column was mixed well, based on the physical and chemical parameters shown in Fig. 2. The transect was characterized by a trend of increasing surface temperature from estuary (16.8°C) to basin (24.7°C). Water masses with high salinity were found between the coast and basin in the upper 50 m of the water column. Based on the horizontal and vertical distribution of temperature and salinity, 3 distinct regions (coast, slope and basin) could be identified where the patterns of nutrients were different from their neighboring regions. Nitrate concentration ranged from below detection level (<0.1) to 12.1 µmol l−1, phosphate concentration below detection level (<0.08) to 0.88 µmol l−1, and silicate 0.98 to 12.96 µmol l−1. All maxima appeared at coastal Stn A9. Chl a concentration was between 0.014 µg l−1 and 6.591 µg l−1, and its pattern matched that of the physical and chemical parameters.

Picoeukaryotes abundance

Picoeukaryote abundance varied from 60 cells ml−1 (150 m at Stn A10) to 8516 cells ml−1 (5 m at Stn A4). In spite of uniform distribution in the upper (75 m) water column attributed to the patterns of nutrients, relatively high abundances were obtained in the slope—especially at Stns A4 and A2 (Fig. 3). On average, chlorophytes accounted for 44% of the total abundance of picoeukaryotes measured by FISH-TSA. Chlorophytes were more abundant at the slope stations (Stns A2 and A4), up to their highest abun-
dance (6947 cells ml⁻¹) at the surface of Stn A4, where they accounted for 82% of the total picoeukaryote abundance. In the open ocean regions (Stns A10 and SEATS), chlorophyte abundances were much lower. However, a relatively high abundance (3613 cells ml⁻¹) was observed at the SEATS station at a depth of 75 m, accounting for up to 58% of the total picoeukaryote abundance. The abundance of the other major eukaryotic lineages—the prymnesiophytes (<1000 cells ml⁻¹), Pelagophyceae (<300 cells ml⁻¹) and Bolidophyceae (<600 cells ml⁻¹)—were obtained using group-specific probes. On average, they contributed 9.7% (prymnesiophytes), 1.8% (Pelagophyceae) and 2.3% (Bolidophyceae) of the total picoeukaryote abundance along this transect.

Within the chlorophytes, the contributions of 3 genera belonging to Mamiellophyceae (prasinophytes), Micromonas, Ostreococcus and Bathycoccus, were estimated. On average, Micromonas represented 8.9% of the total picoeukaryote abundance with a maximum of 1400 cells ml⁻¹ in slope surface water (Stn A2); Ostreococcus and Bathycoccus contributed 8.8% (max. 1291 cells ml⁻¹) and 6.5% (max. 1628 cells ml⁻¹) to the total picoeukaryote abundance, with peaks observed at coastal Stn A9. Based on averages calculated from the depths sampled (2–6 m) at each station, the Mamiellophyceae made the greatest contribution to the total picoeukaryote abundance in different environments: the slope region for Micromonas (Stn A2, 14.5%), coastal Stn A9 for Ostreococcus (11.5%) and the basin region (SEATS, 10.67%) for Bathycoccus. A CCA was conducted to analyze the relationship between the PPE abundances and different environmental parameters (Fig. 4). The significant correlation between nutrient concentrations and abundances which was observed for Ostreococcus and Bathycoccus was not observed for Ostreococcus and Bathycoccus was not observed for Micromonas.

Fig. 2. Chemical and physical parameters along the sampling transect (Stns A9 to SEATS station). Contour plots indicate physical measurements—temperature (°C) and salinity (PSU)—or nutrient concentrations NO₂ + NO₃, PO₄ and SiO₃ (µmol l⁻¹), as well as bulk chlorophyll a (chl a) concentration (µg l⁻¹). Nutrient data on the shelf are provided by M. Dai (unpubl.; mdai@xmu. edu.cn), and data beyond the continental shelf were reported in Du et al. (2013). Black dots represent sampling points.
broadly grouped into 6 phylogenetic groups (alveolates group I, alveolates group II, dinoflagellates, novel marine stramenopiles (MAST), prasinophytes and radiolarians) (Fig. 5), accounting for 95.8% of the total sequences in all 5 libraries. The phylogenetic affiliation of the representative sequences of the 100 OTUs were determined using a BLAST search for each in GenBank (see Table S1 in the Supplement at www.int-res.com/articles/supp/a071p271_supp.pdf). Sequences affiliated with the aveolates group I were most abundant in all libraries, accounting for >50% of the total sequences in all but 1 sample (CC02A175).

Sequences belonging to photosynthetic organisms were mostly affiliated with the prasinophytes, and these sequences could be further divided into 4 clades following Guillou et al. (2004): Clades II (Mamiellophyceae), V, VII and IX (Fig. 6). Sequences in the Mamiellophyceae clade clustered with 3 well known genera — Micromonas, Ostreococcus and Bathycoccus — with 99 to100% similarity in nucleotide identity to the BLAST top-hit sequences from other

Fig. 3. Vertical and horizontal distribution of picoeukaryotes abundances (cells ml\(^{-1}\)) estimated using fluorescent in situ hybridization associated tyramide signal amplification (FISH-TSA) along the transect (Stns A9 to SEATS station). Black dots correspond to sampling points.
Picophytoplankton community structure

The phytoplankton pigments from 7 samples were measured using HPLC in different fractions. At Stn A1, bulk total chl a (total chl a = monovinyl chl a + divinyl chl a) at the surface (0.592 μg l$^{-1}$) was much higher than that at 75 m (0.207 μg l$^{-1}$), and the pico-size fraction (<3 μm) accounted for 64% (0.377 μg l$^{-1}$) and 30% (0.062 μg l$^{-1}$) of total chl a at these 2 depths. At the SEATS station, the pico-size chl a at 75 m (0.339 μg l$^{-1}$) was higher than at the surface (0.218 μg l$^{-1}$), and the value at coastal Stn A7 was 0.269 μg l$^{-1}$. Regarding the relative contributions of 8 major phytoplankton groups to the total chl a, prymnesio-phytes were the dominant eukaryotic group, and a significant contribution was made by prasinophytes in different regions of this transect (Fig. 7). Prokaryotic groups (Synechococcus and Prochlorococcus) dominated the pico-phytoplankton biomass in the surface water column (~70%) at the SEATS station, but prasinoxanthin, a diagnostic pigment of prasinophytes, was not detected. From slope to coast, dominance shifted from the cyanobacteria to the eukaryotes.
Fig. 6. Maximum-likelihood (ML) phylogenetic tree of the prasinophytes from all 5 libraries observed in the present study (bold face). Numbers in brackets indicate the numbers of clones for each phylotype retrieved in different libraries marked with color circles. The tree was constructed from 53 sequences of 1718 positions after Gblock processing. The evolutionary distances were computed using the Tamura-Nei model (gamma-distributed with invariant sites). ML bootstrap values above 50% (1000 replicates) are shown at the nodes, and Bayesian posterior probabilities higher than 0.90 are indicated with filled circles. Clade designations refer to Worden (2006) and Guillou et al. (2004). The tree was rooted using 2 *Amoebophrya* sequences (*Amoebophrya* sp. AY775284 and *Amoebophrya* sp. AY775285). The scale bar corresponds to 0.05 substitutions per base.
The carbon biomass of the different picoplankton groups showed a significant pattern of relative contribution along the transect for all 10 stations (Fig. 8A). *Prochlorococcus* dominated over *Synechococcus* and the picoeukaryotes at the SEATS station, accounting for 65% of picoplanktonic carbon biomass. In contrast, *Prochlorococcus* was absent at coastal Stn A9, without any contribution to carbon biomass. The contribution of *Synechococcus* was relatively stable along the transect (on average 31%), with 2 low values occurring at the SEATS station (6%) and Stn A9 (8%). Picoeukaryotes (including the Mamiellophyceae and non-Mamiellophyceae) accounted for 52% of picoplanktonic carbon biomass with a maximum of 94% at Stn A9, which contrasted significantly with that of *Prochlorococcus*. Among the 3 Mamiellophyceae genera, the contribution varied depending on abundance in different areas and cell size. In general, *Micromonas* and *Bathycoccus* contributed similarly to picoplanktonic carbon biomass—on average 7% and 6%, respectively. Because of its smaller cell size relative to the other 2 genera, *Ostreococcus* contributed little to picoplankton carbon biomass, with an average of less than 1%.

DISCUSSION

Abundance and biodiversity of major PPEs

In general, our FISH-TSA data showed that the distribution of PPEs was driven by various environ-
mental parameters (Fig. 3), and the clone libraries highlighted a considerable degree of biodiversity of the prasinophytes in different environments (Fig. 6). These 2 datasets matched well for all 5 samples. Our results confirmed that PPEs, including chlorophytes, pycnophytes, the Pelagophyceae and the Bolidophyceae, account for a significant fraction of the phytoplankton community in different marginal sea ecosystems.

Prasinophytes are reported to dominate the picoeukaryotic community in many waters (Not et al. 2004, 2005, 2007, Collado-Fabbri et al. 2011). A summary of the abundance of 3 genera within Mamiellophyceae estimated in different ocean regions is shown in Table 2. Within the Mamiellophyceae, species in the genus Micromonas are found to be abundant in many different areas, such as the western English Channel (Not et al. 2004), the Norwegian and Barents Seas (Not et al. 2005) and the Beaufort Sea (Balzano et al. 2012), and have even been found to bloom occasionally in the open ocean (Treusch et al. 2012). As a ubiquitous genus (Šlapeta et al. 2006), Micromonas is also present in quite distinct regions, including the southern Gulf of Mexico (Hernández-Becerril et al. 2012), the Mediterranean Sea (Marie et al. 2006), the Indian Ocean (Not et al. 2008) and the Arctic Ocean (Lovejoy et al. 2007). In our study, we also found higher abundance of Micromonas in the relatively nutrient-rich slope waters. However, unlike other reports (Not et al. 2004, Hernández-Becerril et al. 2012), Micromonas abundance was unexpectedly lower in coastal regions (Fig. 3). One possibility is that Micromonas spp., as pico-size phytoplankton, are weaker competitors compared with large-size phytoplankton such as diatoms in the eutrophic Pearl River estuary (Ning et al. 2004, Litchman et al. 2007). The Micromonas spp. sequences obtained in our study clustered with Clade II-A and II-B which included Micromonas pusilla strain RCC299, whose complete genome is available (Wor-
Ostreococcus is commonly reported in coastal waters in low abundance (Not et al. 2004, Zhu et al. 2005, Countway & Caron 2006). However, a bloom lasting less than 2 wk was observed in West Neck Bay (Long Island, New York) with an abundance of 10^5 cells ml$^{-1}$ (O’Kelly et al. 2003). The Ostreococcus abundance observed in our study was within the range of previous reports, with relatively higher numbers recorded in the estuary and slope region (Fig. 3). This distribution might result from the special nutrient loading of the Pearl River, which flows into the northern SCS with a much smaller discharge in winter. A particularly high N:P ratio (>33) has been observed in the Pearl River estuary due to eutrophication, and Ostreococcus might be better adapted to this ecosystem than Micromonas. On the other hand, low-light adapted strains such as Ostreococcus sp. RCC143 (Rodríguez et al. 2005, Demir-Hilton et al. 2011) may be more abundant in the low-light estuary—which results from good vertical mixing driven by the wind (northeast monsoon) and the resulting high turbidity, which decreases the light availability for phytoplankton growth (Harrison et al. 2008). Similarly, due to a relatively thicker mixing layer, higher abundances of Ostreococcus were present on the slope than in the basin at the SEATS station; a thicker mixing layer was also a confirmed critical factor for Ostreococcus blooms at the Bermuda Atlantic Time-series Study station (Treuensch et al. 2012).

The extremely low proportion of sequences of prymnesiophytes in all 5 libraries (Table S1 in the Supplement) contrast with the revealed high diversity of this group (Fuller et al. 2006, McDonald et al. 2007, Liu et al. 2009, Kirkham et al. 2011) and the considerable contributions of prymnesiophytes to both FISH-based and HPLC-based biomass (see below for further explanation). It has been reported that higher GC content of the rDNA of the prymnesiophytes contributed to the explanation of their low proportion in clone libraries, since GC-rich genomes are difficult to amplify using universal primers (Not et al. 2008, Liu et al. 2009). In addition to the bias of primers, the relatively larger cell size of prymnesiophytes may also result in the separation of their sequences from pico-sized samples (Not et al. 2005). Interestingly, 1 of the 2 retrieved sequences of prymnesiophytes shared a similarity of 99% with the common bloom-forming alga Phaeocystis globosa in the northern SCS (Chen et al. 2002), suggesting that the high proportion of chl a biomass attributed to prymnesiophytes may be contributed by this species.

Biomass contribution of PPEs

The picophytoplankton has been recognized as an important component of the marine plankton community, contributing largely to primary productivity (Li 1994, Jardillier et al. 2010) and primary producer biomass (DuRand et al. 2001). In the equatorial Atlantic, picophytoplankton contributes more than 60% to both the chl a biomass and primary production (Pérez et al. 2005). In the equatorial Pacific, picophytoplankton represents 60% of the total chl a in the surface water, and 45% in nitrate-replete waters (Mackey et al. 2002). The carbon biomass composition of the picophytoplankton community reported here was comparable to that in a previous study (Liu et al. 2007). Not surprisingly, prokaryotic picophytoplankton towards the coast.

According to HPLC-based and FISH-based picophytoplankton biomass estimation, community patterns changed significantly over the large environmental gradient (Figs. 7 & 8A). A significant chl a biomass contribution for the prasinophytes was also found based on pigments analysis. Using single layer analysis, we found that HPLC-based biomass estimation might have led to an underestimation of the Mamiellophyceae contributions in comparison with the FISH-based estimation. For example, the Mamiellophyceae accounted for 2 and 41% of the carbon biomass at the SEATS station at 5 and 75 m depth using FISH estimates, but only 0 and 13% in terms of the pigment-based biomass contributions. This underestimation of the Mamiellophyceae may result from a failure to detect small amounts of prasinoxanthin and uriolide in the extant prasinophyceans in the field (Not et al. 2007). The relative contribution of the Mamiellophyceae to total picoeukaryotic community standing stock carbon biomass was also lower than the contribution to total picoeukaryotes in terms of cell abundances (Fig. 8B). This is probably a consequence of the slightly smaller size of Mamiellophyceae compared with other picoeukaryotes, such as the prymnesiophytes (Not et al. 2005). Moreover, sequences of Clade VII lacking prasinoxanthin were retrieved frequently (Fig. 6) (Latasa et al. 2004), indicating that the relative contribution of all prasinophytes to chl a biomass might also be underestimated.

In the present study, HPLC pigment analysis suggested that the prymnesiophytes are an important component of the PPE community in all 5 samples. The importance of the chl a biomass contribution of
prymnesiophytes to the picophytoplankton has also been observed in most mesotrophic and oligotrophic waters (Moon-van der Staay et al. 2000, Cuvelier et al. 2010). In particular, prymnesiophytes contribute a large fraction (30 to 40%) of the chl a biomass in the upper layers of the water column of the equatorial Pacific (Mackey et al. 1998). Moreover, a significant contribution of small prymnesiophytes to primary productivity has been observed in the subtropical and tropical northeast Atlantic Ocean (Jardillier et al. 2010). It has been reported that mixotrophy occurs in some species of prymnesiophytes containing chloroplasts (Green 1991), suggesting that they can obtain energy via bacterivory (Zubkov & Tarran 2008). As an oligotrophic body of water in the western Pacific, the SCS is characterized by nutrient limitation (Chen et al. 2004), including the coastal waters affected by the Pearl River (Xu et al. 2008). The mixotrophic prymnesiophytes might be significantly more competitive than purely phototrophic groups such as prasinophytes, and this contributes to the explanation of its high proportion of chl a biomass based on 19'-hexanoyloxyfucoxanthin.

Traditionally, large phytoplankton such as diatoms are believed to control carbon flux from the surface ocean (Michaels & Silver 1988). Due to their small sizes, the sinking of picophytoplankton (such as the widespread Mamiellophyceae) is believed to be extremely slow. However, these small cells can be incorporated into large aggregates or rapidly-sinking fecal pellets of organisms at high trophic levels (e.g. Richardson & Jackson 2007). We suggest in our integrated study that picoeukaryotic phytoplankton such as prasinophytes and prymnesiophytes play an important role in oceanic carbon cycling, and proteins from the prasinophytes are abundant in particulate organic matter and dissolved organic matter collected from both the surface and mesopelagic layers in the SCS (Dong et al. 2010, Wang et al. 2011). Moreover, prasinophytes sequences have been found in the sedimenting material at 200 and 500 m in the eastern subtropical Atlantic (Amacher et al. 2009). The picoeukaryotic phytoplankton might play a more important role in primary production, and contribute more to oceanic carbon export from the surface ocean than is currently recognized.

Acknowledgements. We sincerely thank J. Hu, J. Zhu, and Z. Sun for providing the CTD data and Y. Zhang, Y. Xu, and L. Wang for providing the nutrient data. We also thank Dr. K. Chiang and Dr. B. Chen for their useful comments on the manuscript. We acknowledge organization of the cruise by the captain and crew of the RV ‘Dongfanghong 2’ and the chief scientists M. Dai, P. Cai, and W. Zhai. This work was supported by the Natural Science Foundation of China (NSFC 40925018, 41176112), National Basic Research Program (‘973’ program) of China through Grant 2009CB421203 (CHOICE-C), and the Ocean Public Welfare Scientific Research Project, State Oceanic Administration People’s Republic of China (NO. 201005015, 201105021, GASI-03-01-02-03). Professor J. Hodgkiss of The University of Hong Kong is thanked for his help with the English.

LITERATURE CITED

