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ABSTRACT: Zooplankton support distinct bacterial communities in high concentrations relative to
the surrounding water, but little is known about how the compositions and functionalities of these
bacterial communities change through time in relation to environmental conditions. We conducted
a year-long field study of bacterial communities associated with common zooplankton groups as
well as free-living bacterial communities in the York River, a tributary of Chesapeake Bay. Bacterial
community genetic fingerprints and their carbon substrate usage were examined by denaturing
gradient gel electrophoresis (DGGE) of amplified 16S rDNA and by Biolog EcoPlates, respectively.
Zooplankton-associated communities were genetically distinct from free-living bacterial communi-
ties but utilized a similar array of carbon substrates. On average, bacteria associated with different
zooplankton groups were genetically more similar to each other within each month (65.4 % similar-
ity) than to bacterial communities of the same zooplankton group from different months (28 to 30 %
similarity), which suggests the importance of ambient environmental conditions in shaping resident
zooplankton-associated bacterial communities. Monthly changes in carbon substrate utilization
were less variable for zooplankton-associated bacteria than for free-living bacteria, suggesting that
the zooplankton microhabitat is more stable than the surrounding water and supports specific
bacterial groups in the otherwise unfavorable conditions in the water column.
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INTRODUCTION

Zooplankton represent dynamic microhabitats for
bacteria within aquatic systems, often supporting
bacterial concentrations ranging from 107 to 10! cells
ml~! body volume which match or even exceed those
in the surrounding water (Tang et al. 2010). Live zoo-
plankton continually deliver organic matter into their
guts through feeding, and produce dissolved organic
matter through sloppy feeding and excretions, all of
which can supplement the growth of zooplankton-
associated bacteria (Carman 1994, Tang et al. 2001,
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Tang 2005, Moller et al. 2007). Zooplankton-associ-
ated bacterial communities may be seeded via the
attachment of free-living bacteria or ingestion of
free-living and food-associated bacteria (Hansen &
Bech 1996), whereby the physical conditions created
within the zooplankton microenvironment may select
for a specific bacterial community, i.e. a specific sub-
set of the free-living and food-associated bacterial
communities (Tang et al. 2010). While similar bacter-
ial groups may be found on zooplankton and in the
water column (Magller et al. 2007), the zooplankton-
associated bacterial community, as a whole, can be
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quite dissimilar from the free-living one (Grossart et
al. 2009). Prior studies have focused primarily on bac-
teria associated with bulk zooplankton (Heidelberg
et al. 2002, Parveen et al. 2011) or a single zooplank-
ton species (Mgller et al. 2007, Tang et al. 2009a,
Freese & Schink 2011, Homonnay et al. 2012). The
few studies that have investigated co-occurring zoo-
plankton found each zooplankton group supporting a
different bacterial community (Niswati et al. 2005,
Grossart et al. 2009, Brandt et al. 2010). Nevertheless,
little is known about how bacterial community com-
positions (BCCs) of zooplankton co-occurring in the
same habitat compare to each other and to free-liv-
ing bacterial communities, or how their compositions
change through time.

A number of studies have investigated temporal
variability of free-living or total BCCs and the factors
driving these changes. A recent review and meta-
analysis showed that freshwater bacterial communi-
ties were highly correlated with pH and the ratio of
dissolved organic carbon (DOC) to total phosphorus
(Newton et al. 2011). Temporal patterns of estuarine
and riverine free-living BCC have been related to
temperature and chl a concentration (Kan et al. 2006)
and river discharge (Crump & Hobbie 2005). In their
long-term study in lakes, Rosel et al. (2012) found
consistent differences among re-occurring patterns
of free-living and particle-associated bacteria. In par-
ticular, particle-associated bacteria were much more
variable over time and their community composition
was often directly related to phytoplankton and zoo-
plankton dynamics. Moreover, Fuhrman et al. (2006)
concluded that the distribution and abundance of
specific microbial groups in a marine system can be
predicted from environmental conditions such as
temperature, oxygen, salinity, virus abundance and
dissolved nitrate. Given that environmental para-
meters strongly influence the free-living bacterial
community structure and that there is a constant
exchange between zooplankton-associated and free-
living bacteria (Mgller et al. 2007, Grossart et al.
2009, 2010), zooplankton-associated bacterial com-
munities may be directly or indirectly shaped by
environmental conditions as well and consequently
exhibit seasonal changes.

In addition to environmental conditions, each zoo-
plankton group may shape its own BCC due to differ-
ences in their lifestyle. For example, copepods and
cladocerans collected from the same lake at the same
time exhibited very different bacterial communities
(Grossart et al. 2009). When the same cladocerans
were transplanted into a different lake, they retained
>83 % of their BCC, indicating a rather stable bacter-

ial assemblage regardless of the environment. In con-
trast, the copepod-associated bacteria were greatly
influenced by the surrounding environment (Grossart
et al. 2009). There are likely complex interactions
between the environment and zooplankton them-
selves which may help to select for specific bacterial
communities.

Generally, zooplankton-associated bacteria have
higher production rates than their free-living coun-
terparts (Carman 1994, Mpoller et al. 2007), but the
underlying mechanisms such as carbon substrate
utilization supporting this elevated production are
largely unknown. Biolog EcoPlates™ offer an effi-
cient method for assessing the ability of a mixed
microbial assemblage to utilize 31 common carbon
substrates. EcoPlates have been used to delineate
carbon substrates utilized by free-living estuarine
bacteria and bacteria associated with organic aggre-
gates which function as microbial hotspots in aquatic
systems and support bacteria that are more metabol-
ically active and diverse than their free-living coun-
terparts (Tang et al. 2006, Tang & Grossart 2007,
Lyons et al. 2010, Lyons & Dobbs 2012).

The goal of this study was to assess the community
compositions and functionalities of bacterial commu-
nities associated with multiple zooplankton groups
and the free-living bacterial community over time
within a temperate estuary. We hypothesized that
each zooplankton group would support a genetically
and functionally distinct bacterial community. Addi-
tionally, we sought to determine whether and which
environmental conditions influence zooplankton-
associated bacterial community composition and
functionality, causing seasonal changes. To address
these goals, we conducted a year-long field study in
the York River, a tributary of Chesapeake Bay on the
east coast of the United States. The genetic and func-
tional components of bacteria associated with the
dominant meroplanktonic and holoplanktonic zoo-
plankton groups were assessed each month, com-
pared to the free-living bacteria, and related to envi-
ronmental conditions.

MATERIALS AND METHODS
Sample collection

Zooplankton were collected on a monthly basis
from May 2010 to April 2011 at a fixed station in the
York River, Virginia (37° 14' 50.36" N, 76°29' 58.03" W),
with a 0.5 m mouth diameter, 200 pm mesh net. All
samples were collected at high or near high tide dur-
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ing daylight hours, and transported immediately
back to the laboratory. In the lab, each sample was
split into 4 equal fractions. Each fraction was gently
concentrated onto a 200 pm mesh sieve and trans-
ferred to sterile filtered Instant Ocean® artificial sea-
water (ASW), where the zooplankton were allowed
to clear their guts overnight to eliminate food-associ-
ated bacteria. After gut clearance, sub-samples were
used to assess (1) zooplankton-associated bacterial
genetic fingerprint via denaturing gradient gel elec-
trophoresis (DGGE) of 16S rDNA amplified using
eubacterial primers, (2) zooplankton-associated bac-
terial functionality via carbon substrate usage meas-
ured by Biolog EcoPlates, and (3) zooplankton com-
munity composition. The fourth subsample was used
for additional zooplankton-associated bacterial meas-
urements and will be reported elsewhere.

The sub-sample for zooplankton community com-
position was filtered onto a 200 pm nitex mesh dish
and frozen at —40°C until analysis. Zooplankton were
identified to the lowest practical taxon. Relative per-
centages of each zooplankton group within the sam-
pled community were calculated for each month.

Water samples were collected at the same time as
the zooplankton; water temperature, salinity, chl a,
ammonium, phosphate, and abundance and commu-
nity composition of free-living bacteria were deter-
mined. Chl a was extracted from the filters with 90 %
acetone and measured fluorometrically. Ammonium
concentrations were measured in duplicate on a
Shimadzu UV-1601 spectrophotometer following
the phenol hypochlorite method (detection limit
0.05 umol N 17%; Koroleff 1983). Phosphate concentra-
tions were run in duplicate on a Lachat QuikChem
8500 autoanalyzer (detection limit 0.05 pmol 1-%; Par-
sons et al. 1984). Free-living bacterial abundance was
counted in triplicate by DAPI direct counts (Porter &
Feig 1980). To assess the genetic composition of free-
living bacteria, approximately 60 ml of 5 pm pre-
filtered York River water was filtered on to a 0.2 pm
pore size polycarbonate membrane filter and stored
at —40°C until analysis.

DNA extraction and DGGE

After gut clearance, zooplankton were gently con-
centrated onto a sterile 200 pm mesh sieve and rinsed
3 times with sterile filtered ASW to remove any free-
living or loosely attached bacteria. Zooplankton were
back-rinsed into a sterile Petri dish and narcotized
with sodium bicarbonate. Preliminary experiments
indicated that narcotization with sodium bicarbonate

did not influence the abundance of zooplankton-
associated bacteria. Two or 3 replicates of 5 to 10 indi-
viduals of the same zooplankton species were trans-
ferred to a sterile microcentrifuge tube, preserved in
95 % molecular biology grade ethanol and stored at
—40°C until analysis. Consistent DGGE banding pat-
terns have been attained previously regardless of the
number of individuals used for analysis (Brandt et al.
2010). Zooplankton samples were centrifuged for
2 min at room temperature at 17 000 x g to pellet out
the zooplankton and any bacteria that may have de-
tached from the zooplankter during the preservation
process. Excess ethanol was pipetted off after centri-
fugation and discarded. Zooplankton-associated and
free-living bacterial DNA was extracted using the
phenol-chloroform-isoamylalcohol method with smol-
dered zirconia beads (Zhou et al. 1996). Extracted
DNA was checked for quality and quantity on a UV/
VIS Spectrophotometer (NanoPhotometer™ Implen).
PCR amplified for DGGE using eubacterial primers
341f-gc with a 5" GC clamp (6' CGC CCG CCG CGC
CCC GCG CCC GTC CCG CCG CcCcC CccaG ccc
GCC TAC GGG AGG CAG CAG 3') and 907r
(5" CCG TCAATT CMT TTG AGT TT 3') (Muyzer &
Ramsing 1995). Each 50 pl PCR reaction contained
5 pl 10x PCR buffer, 2.5 pl 50 mM MgCl,, 5 pl of
2.5 mM dNTP, 10 pmol of each primer, 0.5 pnl BSA,
0.5 pl red-Tag DNA polymerase (Bioline), 2 to 3 pl of
template DNA (approximately 20 ng DNA template)
and was brought to volume with PCR water. The PCR
cycling program was as follows: initial denaturation
for 3 min at 95°C followed by 35 cycles of 1 min denat-
uration at 95°C, 1 min annealing at 54°C, 2 min exten-
sion at 72°C with a final extension at 72°C for 10 min.

DGGE was performed according to Tang et al.
(2009b). An average of 540 ng PCR product was
loaded into each well of a 7% acrylamide gel with 40
to 70 % denaturing gradients (formamide and urea).
Gels were run at 100 V for 18 h then stained with 1X
SYBR-gold for 30 min, destained with Milli-Q water
and imaged on a UV light table. Due to limited space
on each DGGE gel, only 1 replicate of each sample
was run on the analyzed gels. Preliminary analyses
indicated a high degree of similarity among replicate
samples (average of 90.5% similarity), with the
exception of samples from June.

Carbon substrate utilization
For samples collected from August 2010 to April

2011, Biolog EcoPlates were used to assess each bac-
terial community's ability to utilize a variety of car-
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bon substrates. EcoPlates contain triplicate wells of
31 carbon substrates, and control wells with no sub-
strate addition to account for any carbon substrates
added with the inocula. Each well also contains min-
imal growth media and the redox dye, tetrazolium
violet, which changes from colorless to purple in the
presence of electron transfer, indicating bacterial
usage of the respective substrate (Bochner 1989). Car-
bon sources can be grouped into the larger biochem-
ical categories of polymers, carbohydrates, carboxylic
acids, amino acids, amines and phenolic compounds
(see Table 3 below; Choi & Dobbs 1999).

After they cleared their guts, zooplankton were
concentrated onto a sterile sieve, rinsed and back-
rinsed into a sterile Petri dish as described previously
but without narcotization. Twenty-five to 35 individ-
uals of each of the most abundant zooplankton groups
were picked and transferred to sterile 15 ml cen-
trifuge tubes with 5 ml of sterile filtered, autoclaved
York River water. Preliminary experiments indicated
the number of individuals used did not impact sub-
strate usage patterns (S. Bickel, unpubl. data). To
assess the free-living bacterial community, 5 ml of
5 pm filtered York River water was added to a sterile
15 ml centrifuge tube. Each sample was sonicated for
40 s on ice with an ultrasonic homogenizer at 4 W
output power to break apart zooplankton bodies and
dislodge any attached bacteria (modified from Tang
2005). Microscopic inspection verified that sonication
effectively dislodged bacteria from the zooplankton
tissue. Samples were brought to 15 ml final volume
with sterile filtered, autoclaved York River water and
centrifuged for 10 min at 102 x g to precipitate any
zooplankton debris. The supernatant was gently
pipetted into a sterile loading chamber and 150 pl of
supernatant was added to each well of the EcoPlate.
Free-living bacterial samples were processed in the
same manner as zooplankton samples. Optical den-
sity (OD) (A= 590 nm) of each well was measured
immediately with a BioTek EXL800 plate reader and
again after a 7-d incubation at 19°C in the dark. Final
OD measurements of each well were adjusted by
subtracting initial OD for each well and the average
absorbance of the control was subtracted from the
average absorbance of each substrate. Individual
substrate usage was expressed as the average sub-
strate color development (ASCD). The ASCD was
calculated by dividing the OD of the substrate by the
sum of ODs from all substrates and averaging the
triplicate values for each substrate. ASCD was then
expressed as a percent. This accounts for differences
in inoculum densities, the triplicate measurements of
each substrate on the Ecoplate, and any color devel-

opment in control wells (Montserrat Sala et al. 2006).
A substrate was considered used if it contributed to at
least 2% of the total absorbance of all substrates
(Montserrat Sala et al. 2006, Lyons & Dobbs 2012).
The total number of substrates utilized by the micro-
bial community was used as a measure of functional
potential of the heterotrophic community (Zak et al.
1994). Each individual zooplankter supported approx-
imately 10° bacteria (see 'Results’) which led to an
initial inoculum density of 10° cells m1~* for zooplank-
ton-associated bacteria. Likewise, free-living bacte-
ria inoculum densities were 10° ml~!. While this is at
the very low end of recommended inoculum densities
(Konopka et al. 1998), Christian & Lind (2006) demon-
strated that inoculum density had no impact on aver-
age well color development after 72 h of incubation.

Statistical analyses

Cluster analysis of DGGE banding patterns was
performed with GELCOMPAR 1II, v.3.5 (Applied
Maths) using the unweighted pair group method
with arithmetic averages. Cluster analysis of carbon
substrate utilization patterns was performed in
PRIMERG6 (PRIMER-E), also using the unweighted
pair group method with arithmetic mean (UPGMA).
Pairwise similarity matrices were calculated for pres-
ence/absence of both DGGE banding patterns and
carbon substrate utilization patterns using the Dice
similarity index (Dice 1945). Multidimensional scal-
ing (MDS) was performed in PRIMER6 using the
Dice similarity matrices to determine the genetic and
functional similarities of the different bacterial com-
munities based on their distances from each other on
a 2-dimensional plot. Significance of the observed
similarities and differences was assessed with analy-
sis of similarity (ANOSIM) in PRIMERG6. Water qual-
ity parameters were analyzed with the multivariate
statistical method of canonical correspondence ana-
lysis (CCA) to determine which environmental para-
meters contributed to the presence or absence of spe-
cific DGGE bands, or use of particular substrates
among zooplankton-associated and free-living bac-
terial communities. The environmental parameters
included temperature, salinity, chl a, ammonium,
phosphate, free-living bacterial abundance and zoo-
plankton-associated bacterial abundance. All CCA
analyses were performed with the vegan package
(Oksanen et al. 2012) in R statistical software (version
2.15.2, R Core Team 2012). All explanatory variables
were initially included in CCA analyses and then
tested for collinearity by examining variance infla-
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tion factors (VIF) in R. If VIFs were greater than 10,
the variable with the highest VIF was removed from
the model until all VIFs were less than 10 (Borcard et
al. 2011).

RESULTS
Environmental parameters

Water temperatures were lowest in winter (3.5°C in
January), increased through spring and early sum-
mer to a peak of 30.5°C in July, and then decreased
again in fall (Table 1). Salinity was typically between
20 and 24.5, with the exception of May 2010, when it
was only 17.5 (Table 1). Ammonium reached its high-
est concentration in late summer (6.92 pmol 17! in
August). In contrast, phosphate was lowest in late
spring and peaked in December (0.56 pmol 171). Chl a
concentration was lowest in December, increased

during late winter and peaked in early spring. Free-
living bacterial abundance followed a trend similar to
temperature, with highest abundances in summer,
decreasing through fall to lowest values in winter
(Table 1).

Zooplankton community composition and
associated bacterial abundances

The calanoid copepod Acartia sp. was present year-
round and comprised 23 to 99% of the zooplankton
community (Table 2). The barnacle nauplius Balanus
sp. was the second most common zooplankter,
presentin 10 of 12 mo and comprising 5 to 55 % of the
zooplankton community. Other common zooplankton
included polychaete larvae, harpacticoid copepods,
the cladoceran Podon sp., and the calanoid copepods
Parvocalanus sp., Pseudodiaptomus sp. and Cen-
tropages sp. (Table 2). The average number of

bacteria per individual zoo-
plankter was on the order of 10°
with peaks in abundances ob-
served in August and Decem-

Table 1. Monthly water quality measurements and free-living bacterial abundances
for the York River, Virginia, USA, during the field study. BLD: below level of detection

Date Water  Salinity Ammonium Phosphate Chla Free-living bacte- ber/January. The highest aver-
temperature (umol 1Y) (umoll™') (pgl™?) rial abundance age abundance per individual
) 6 -1 . .
e (10° cells mI™) was 8.25 x 10° on harpacticoid
May 2010 22.5 17.5 0.56 BLD  2.69 3.65 copepods in August Sand the
Jun 2010 28.0 22.0 3.87 BLD 3.52 3.27 lowest was 0.15 x 10 on the
Jul 2010 30.5 22.0 1.11 0.21 2.48 1.42 calanoid copepod Pseudodia-
Aug 2010 28.5 23.5 6.92 0.36 2.71 3.90 ptomus Sp. 1n JanuarY. The av-
Sep 2010 26.0 24.0 3.76 0.22 0.71 3.76 .
T number of I T
Oct2010  16.0 23.0 3.08 031  0.18 2.31 erage number of bacteria pe?
Nov 2010  13.0 22.0 1.62 049  4.15 1.71 Acartia ranged from 0.67 x 10
Dec 2010 4.0 24.5 1.64 0.56 0.03 1.20 in January to 5.71 x 10° in Au-
Jan 2011 3.5 24.0 0.39 0.45 0.38 0.94 gust. The average number of
Feb 2011 9.0 23.0 0.45 0.03 3.69 1.04 bacteria per individual Balanus
Mar 2011 11.0 21.0 1.03 0.08 3.22 1.05 df 0.25 10° in M
Apr2011  16.0 20.0 0.54 003 634 0.91 ranged trom ©.20 x 1071 May
to 7.41 x 10° in January.

Table 2. Zooplankton community composition in the York River, Virginia, USA, in monthly samples taken between May 2010

and April 2011

Taxon/group % total zooplankton

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Acartia 27.12 8771 99.08 75.18 50.68 30.34 94.34 91.74 6747 48.23 23.09 38.26
Balanus 55.02 5.53 0.00 16.31 23.24 8.72 0.00 496 24.15 1571 5279 53.62
Polychaete larvae  5.50 0.00 0.00 0.00 0.25 1.25 0.21 0.41 1.45 8.65 0.29 0.50
Podon 9.27 0.00 0.00 0.00 5.19 0.09 0.00 0.21 0.16 0.24 0.00 1.19
Harpacticoids 0.58 0.00 0.00 0.71 0.00 7.38 0.00 0.41 0.64 0.12 0.00 0.40
Parvocalanus 0.48 0.00 0.23 142 12.61 13.79 0.00 0.41 1.45 5.36 3.82 0.50
Pseudodiaptomus  0.39 0.00 0.69 2.84 4.45 35.77 4.19 1.65 0.48 1.83 7.79 4.46
Centropages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.38  19.00 8.68 0.50
Other 1.64 6.76 0.00 3.55 3.58 2.67 1.26 0.21 0.81 0.85 3.53 0.59




6 Aquat Microb Ecol 72: 1-15, 2014

12

Number of DGGE bands

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
2010/2011

Fig. 1. Total number of denaturing gradient gel electropho-

resis (DGGE) bands present in monthly samples of zoo-

plankton-associated and free-living bacterial communities

in the York River, Virginia, USA: (@) Acartia; (O) Balanus;
(V) free-living bacteria

Bacterial community composition

There was a large month to month variation in the
number of DGGE bands in each of the zooplankton-
associated bacterial communities. The Acartia-asso-
ciated bacterial community ranged from only 1
band in December and February to 7 bands in Octo-
ber. Similarly, Balanus-associated bacteria ranged
from 1 band in February to 7 bands in August. Free-
living bacteria ranged from 2 bands in January to 10
bands in February (Fig. 1). The patterns of DGGE
band abundance were similar for Acartia and Bal-
anus, with the highest number of DGGE bands
observed in the late summer and fall and the lowest
numbers observed in winter, with the exception of
June Balanus (Fig. 1). During some months, different
zooplankton groups supported a similar number of
DGGE bands (e.g. mysid, crab zoea and Acartia each
supported 4 DGGE bands in July; data not shown),
while the number of bands per zooplankton group
were drastically different in other months (e.q.
Pseudodiaptomus contained 4 DGGE bands and
Acartia supported 7 bands in October; data not
shown). On an annual average, the free-living bac-
terial community contained more DGGE bands,
with 5.27 bands per month, while Acartia- and Bal-
anus-associated bacterial communities had 3.91 and
3.80 bands, respectively.

Although the zooplankton-associated and free-
living bacterial communities contained similar num-
bers of DGGE bands, the composition of the bacter-
ial community (determined by the position of the

DGGE bands within the gel) was notably different.
Cluster analysis (Fig. 2A) and MDS (Fig. 2B) indi-
cated that free-living bacterial communities were
dissimilar (<10% similar) from all zooplankton-
associated bacterial communities. ANOSIM confirmed
the dissimilarity between zooplankton-associated
bacteria and free-living bacteria (R = 0.372, p <
0.001). Within the free-living bacteria there were
2 main groups: a winter/spring group (December
through April) and a summer/fall group (May
through November). Within each month, similarities
among bacterial communities associated with differ-
ent zooplankton groups ranged from 22 % in June to
100% in February (Fig. 2A, average 65.4 %), and
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Fig. 2. (A) UPGMA dendrogram of similarities among DGGE
banding patterns for monthly samples of zooplankton-
associated and free-living bacterial communities collected
from the York River, Virginia, USA, from May 2010 to April
2011. Dendrogram abbreviations show taxon/group and
month of sampling. CR = crab zoea; all other abbreviations
are the same as those used in Table 3. (B) MDS plot for
DGGE banding patterns of zooplankton-associated and
free-living bacteria. @: Acartia (n = 12); O: Balanus (n = 10);
V: free-living bacteria (n = 11); O0: crab zoea (n = 1); W
Pseudodiaptomus (n = 1); X: mysid (n =1)
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the differences in bacterial communities of different
zooplankton were not significant (ANOSIM, global
R =-0.116, p = 0.939). Although there were no dis-
tinct seasonal groupings among the zooplankton-
associated bacteria, there were significant difference
in zooplankton-associated bacterial communities
among months (ANOSIM, global R = 0.835, p =
0.001).

Bacterial substrate usage

Substrate usage was highest in October for Acar-
tia-associated, Balanus-associated and polychaete
larvae-associated bacteria (28, 29 and 27 substrates,
respectively; Fig. 3) and in November for free-
living bacteria (20 substrates; Fig. 3). Substrate
usage was lowest in August for both Acartia-associ-
ated (14) and Balanus-associated bacteria (13);
polychaete larvae-associated bacteria used 15 sub-
strates in September. Free-living bacteria used 17
substrates in March and April (Fig. 3). Within each
month, zooplankton-associated bacteria used a sim-
ilar number of substrates as free-living bacteria
(Fig. 3). On an annual average, Acartia-associated
bacteria used 18.4 substrates, Balanus-associated
bacteria 17.1 substrates, polychaete larvae-associ-
ated bacteria 18.6 substrates, and free-living bacte-
ria 18.0 substrates. Free-living bacteria and Acar-
tia-associated bacteria regularly utilized substrates
from all of the tested biochemical categories. Bal-
anus and polychaete-associated bacteria also regu-
larly utilized all biochemical categories except phe-

30
28
26
24 4

22 1
20
18 1
16 -
14
12

Number of substrates used

Aug Sep Oct Nov Dec Jan Feb Mar Apr
Fig. 3. Total number of carbon substrates utilized by zoo-
plankton-associated and free-living bacteria communities
collected between August 2010 and April 2011. @: Acartia;
O: Balanus; V: free-living bacteria; M: calanoid copepods;
@: polychaete larvae; X: mysid

nolic compounds (Table 3). The most commonly
used substrates among all samples were the car-
boxylic acid pyruvic acid methyl ester, the polymer
Tween 40 and the carbohydrate N-acetyl-D-
glucosamine (Table 3). There was some overlap of
carbon substrate utilization patterns between free-
living bacteria and zooplankton-associated bacteria
(Fig. 4B). Substrate utilization patterns of free-
living bacteria from February and November were
72 to 74% similar to substrate usage of all zoo-
plankton collected in October (Fig. 4A). Substrate
usages by free-living bacteria from January, March
and April were approximately 59 % similar to those
of Acartia-associated bacteria in April and Novem-
ber (Fig. 4A). Within a particular month, the aver-
age similarity of substrate usage between free-liv-
ing bacteria and any zooplankton-associated bacteria
was 57.7 %. ANOSIM indicated no significant differ-
ence in substrate usage profiles between free-
living and zooplankton-associated bacteria (global
R =0.055, p = 0.242). Within each month, substrate
usage profiles for bacteria associated with different
zooplankton groups were not significantly different
(global R = -0.077, p = 0.804), with 35.3 to 94.0%
similarity (average 69.4 %; Fig. 4). However, sub-
strate usage by zooplankton-associated bacterial
communities was significantly different among
months (global R = 0.301, p = 0.002). When both
DGGE and substrate usage patterns were consid-
ered, both Acartia- and Balanus-associated bacteria
had fewer DGGE bands but used a similar number
of substrates as free-living bacteria.

Relationship with environmental factors

Measured environmental parameters accounted
for 37.6% of genetic variability in all zooplankton-
associated bacteria (Fig. 5A). The first 2 canonical
axes accounted for 10.8 and 9.7 % of the variability,
respectively. Three DGGE bands (18, 21 and 26)
were related to high salinity, high phosphate and
high zooplankton-associated bacterial abundance.
Many of the bands were not related to measured
environmental parameters. A higher proportion of
the variation (65.8 %) among Acartia-associated bac-
teria (Fig. 5B) was explained by environmental con-
ditions. Again, Bands 21 and 26 were linked to high
salinity and high phosphate, and a number of bands
were not explained by measured environmental vari-
ables. Free-living bacterial abundance was removed
from CCA analyses of DGGE banding for free-living
bacteria due to collinearity. Among the free-living



Aquat Microb Ecol 72: 1-15, 2014

Table 3. Monthly carbon substrate utilization by zooplankton-associated and free-living bacteria of the York River, Virginia,

USA, sampled between August 2010 and April 2011. Black squares indicate the substrate was used. Carbon substrates are

grouped according to their biochemical category (‘P.C." indicates phenolic compounds). Substrate numbers correspond to

numbers used in canonical correspondence analysis (CCA) of the EcoPlate data (see Fig. 6). Samples are coded by taxon/

group and month of sampling; not all zooplankton groups were present in all months. A: Acartia; B: Balanus; Po: polychaete
larvae; Ps: Pseudodiaptomus; C: Centropages; M: mysid; FL: free-living

Substrates

1]2]3]4]s]e]7][8]9]10]1

~

12] 13] 14] 15] 16] 17] 18]

19] 20] 21] 22] 23] 24] 25] 26 27] 28] 29] 30] 31

Carboxylic acids Polymers

Carbohydrates P.C. Amino acids Amines

Pyruvic acid methyl ester
p-glucosaminic acid
p-galacturonic acid
y-hydroxybutyric acid
Itaconic acid
a-ketobutyric acid
p-malic acid

Tween 40

Tween 80
a-cyclodextrin
p-cellobiose
a-p-lactose

A_AUG
A_SEP
A_OCT
A_NOV
A_DEC
A_JAN
A_FEB
A_MAR
A_APR
B_AUG
B_SEP
B_OCT
B_DEC
B_JAN
B_FEB
B-MAR
B_APR
Po_AUG
Po_SEP
Po_OCT
Po_FEB
Po_MAR
Ps_NOV
Ps_JAN
M_DEC
C_FEB

Acartia

Balanus

Polychaete

Free-living

bacteria (Fig. 5C), environmental parameters ac-
counted for 52.2% of the variability in the bacterial
community composition, with the first and second
axes contributing 24.7% and 11.6%, respectively.
Four DGGE bands (4, 5, 11 and 20) were linked to
high chl a concentrations. Another group of bacteria
(Bands 2, 17 and 35) was linked to high temperatures.

Due to high degrees of collinearity with measured
environmental parameters, free-living bacterial abun-

3-methyl-p-glucoside

N-acetyl-p-glucosamine
D,L- a-glycerol phosphate
p-Galactonic acid y-lactone
2-hydroxy benzoic acid
4-hydroxy benzoic acid
Glycyl-L-glutamic acid

... Phenylethylamine

i-Erythritol
p-mannitol
L-argenine
L-asparagine
L-phenylalanine
L-threonine
Putrescine

L-serine

dance and zooplankton-associated bacterial abun-
dance were removed from CCA analyses of carbon
substrate usage. Measured environmental parameters
explained only 25.2% of variability in substrate
usage among all zooplankton-associated bacteria
(Fig. 6A). The first 2 canonical axes accounted for
14.7% and 4.4 %, respectively. The use of 8 sub-
strates (2 carbohydrates, 2 phenolic compounds, 2
amino acids, 1 carboxylic acid and 1 amine) was
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Fig. 4. (A) UPGMA dendrogram of carbon substrate usage
profiles for zooplankton-associated and free-living bacterial
communities collected from the York River, Virginia, USA,
between August 2010 and April 2011. Dendrogram abbrevi-
ations show taxon/group and month and are the same as
those used in Table 3. (B) MDS plot of carbon substrate us-
age profiles for zooplankton-associated and free-living bac-
teria: @: Acartia (n = 9); O: Balanus (n = 8); V: free-living
bacteria (n = 5); +: Centropages (n = 1); l: Pseudodiaptomus
(n =2); X: mysid (n = 1); ®: polychaete larvae (n = 5)

linked to high chl a concentrations, while the use of 4
substrates (2 carboxylic acids, 1 amino acid and 1 car-
bohydrate) was linked to high phosphate levels.
When only Acartia-associated bacteria were exam-
ined (Fig. 6B), 78.5% of variation in substrate usage
was explained by measured environmental condi-
tions, with the first 2 axes accounting for 44.0 % and

Fig. 5. CCA biplots illustrating the relationship between en-
vironmental variables and presence of DGGE bands from (A)
all zooplankton-associated bacteria, (B) Acartia-associated
bacteria and (C) free-living bacteria. DGGE bands present in
the gel were arbitrarily numbered 1 through 36. Bact: free-
living bacterial abundance; Zoobact: zooplankton-associated
bacterial abundance; Sal: salinity; Chl: chlorophyll a, PO4:
phosphate; NH4: ammonium; Temp: temperature
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13.2%, respectively. Again, 8 substrates were linked
to chl a concentration (2 carbohydrates, 2 phenolic
compounds, 2 carboxylic acids 1 amino acid and
1 amine). Usage of L-argenine, o-D- lactose and
phenylethylamine was tied to high phosphate con-
centrations Use of D-L-o0 glycerol phosphate was
linked to ammonium concentrations and higher tem-
peratures. Measured environmental conditions ex-
plained all variations (100 %) among substrate usage
by free-living bacteria (Fig. 6C). Usage of Tween 80
was linked to higher salinity, while the usage of
D-glucosaminic acid and Itaconic acid was linked to
phosphate. The most commonly used substrates
among all sample types (pyruvic acid methyl ester,
Tween 40 and N-acetyl D-glucosamine) did not
exhibit a strong association with any measured envi-
ronmental conditions.

DISCUSSION

Comparison of zooplankton-associated
bacterial communities

Previous DGGE analyses of zooplankton-associated
bacteria showed distinctly different banding patterns
among different zooplankton groups (Niswati et al.
2005, Grossart et al. 2009, Brandt et al. 2010); how-
ever, none of these studies quantified the level of
similarity among the bacterial communities. The
results of the current study are similar to those of
Gerdts et al. (2013) who found no significant differ-
ences in the bacterial communities associated with 4
different calanoid copepods in the North Sea. The
small differences in BCC of co-occurring zoo-
plankton suggest that zooplankton-specific charac-
teristics such as food preference or excretion rates
may still influence the associated bacterial commu-
nity composition. During the exchange between free-
living, food-associated, and zooplankton-associated
communities (Harris 1993, Grossart et al. 2010,
Grossart & Tang 2010), the microenvironment cre-
ated by each zooplankter may act as a selective filter,
concentrating a specific, distinct bacterial commu-
nity, which ultimately depends on the initial bacterial
community to which the zooplankter was exposed.

Fig. 6. CCA biplots illustrating relationship between environ-

mental conditions and the usage of specific carbon substrates

by (A) all zooplankton-associated bacteria, (B) Acartia-asso-

ciated bacteria and (C) free-living bacteria. The substrates

were denoted as S1 through S31 as defined in Table 3. See
Fig. 5 legend for definitions of other abbreviations
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Temporal changes in
zooplankton-associated bacteria

With one exception (Gerdts et al. 2013), previous
studies provided a limited snapshot of zooplankton-
associated bacterial communities. Consequently,
temporal changes and impacts of changing environ-
mental conditions have not been fully explored. Bac-
terial communities associated with calanoid cope-
pods in the North Sea showed no change across
seasons (Gerdts et al. 2013); however, environmental
conditions within the North Sea region (e.g. temper-
ature and salinity; Reiss & Kroncke 2005) may not
fluctuate as widely as in the York River. The large
monthly changes we observed in composition (Fig. 2)
and functionality (Fig. 4) of bacteria associated with
each zooplankton group suggest that the physical,
chemical and biological conditions of the ambient
environment are largely responsible for shaping the
bacterial communities, which are then further re-
fined by the zooplankton microenvironment.

The most commonly used substrates were respon-
sible for the similarities in substrate usage through
time and suggest that zooplankton-associated bacte-
ria are able to utilize both ambient and zooplankton-
derived substrates. Both pyruvic acid methyl ester
and Tween 40 are used by bacteria isolated from
coral (Ritchie & Smith 1995) and marine aggregates
(Lyons et al. 2010, Lyons & Dobbs 2012), and by
free-living bacteria in marine and estuarine systems
(Montserrat Sala et al. 2005, 2006, Lyons & Dobbs
2012). N-acetyl-D-glucosamine is the structural mo-
nomer of chitin and is used in the formation of pepti-
doglycan in bacterial cell walls. Autoradiography
indicated that N-acetyl-glucosamine is used by bac-
teria in all freshwater systems studied (Nedoma et al.
1994), and chitinase gene diversity was correlated
with crustacean zooplankton biomass in a mesotro-
phic lake (Beier et al. 2012). Many marine bacteria
also have the ability to utilize N-acetyl-D-glucosamine
as a potential carbon and nitrogen source (Riemann
& Azam 2002).

During October, November, March and April, less
commonly utilized substrates such as phenolic com-
pounds 2-hydroxybenzoic acid and 4-hydroxyben-
zoic acid were responsible for the temporal differ-
ences in substrate usage by zooplankton-associated
bacteria (Fig. 4, Table 3). Both phenolic compounds
are components of lignin contained in the seagrass
Zostera marina (Klap et al. 2000), which grows in
dense beds in the York River near the sampling site
(Moore 2009). Seagrass beds in this area typically die
back during late September (Moore et al. 2000), but

degradation of lignin is slow: only 10 % of lignin was
mineralized after a 23-d incubation (Benner et al.
1984). A second pulse of lignin may be added to the
system via allochthonous material with the spring
freshet, which typically occurs in the York River
around March and April (Marshall & Alden 1990,
Kniskern & Kuehl 2003).

While these carbon substrates may potentially be
broken down by the zooplankter's digestive enzymes
(Mayzaud 1986), cleavage by digestive enzymes alone
would not produce a color change of the redox dye.
The colorless tetrazolium violet acts as an alternative
electron acceptor in the electron transport chain and
is reduced to purple formazan (Seidler 1991), which
is then quantified spectrophotometrically. Therefore,
unless the substrate is broken down to fuel cellular
respiration, a color change will not occur.

Environmental influence on bacterial communities

Temporal changes in zooplankton-associated BCC
(Fig. 2) suggested that ambient environmental condi-
tions were a stronger selective force on zooplankton-
associated bacteria than zooplankton-specific selec-
tive forces. Likewise, Kan et al. (2007) noted a similar
bacterial composition throughout Chesapeake Bay at
any given point in time. However, large seasonal
changes in the bacterial communities indicated that
environmental conditions with strong seasonality,
such as temperature, played a larger role in shaping
the microbial community than any region-specific
characteristics. The community composition of aquatic
free-living and particle-associated bacteria can be
shaped by biological, chemical and physical parame-
ters such as temperature (Muylaert et al. 2002, Fuhr-
man et al. 2006, Kan et al. 2006, Roésel et al. 2012),
chlorophyll concentration (Muylaert et al. 2002, Kan
et al. 2006), nitrogen and phosphorus concentrations
(Muylaert et al. 2002, Fuhrman et al. 2006, Longmuir
et al. 2007, Leflaive et al. 2008, Rosel et al. 2012), and
grazing pressure (Muylaert et al. 2002). Our results
indicate that environmental conditions also act directly
on the zooplankton-associated communities, shaping
them as they do free-living bacterial communities.
Alternatively, the influence may be indirect, with
environmental conditions shaping the free-living and
particle-associated bacterial communities, which ulti-
mately serve as sources for zooplankton-associated
bacteria.

The variation in BCC explained by measured envi-
ronmental conditions (37% for all zooplankton-
associated bacteria, 65.8% for Acartia-associated)
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was within the range of previous studies of free-
living bacteria in lakes (Lindstrom 2000, Longmuir et
al. 2007, Muylaert et al. 2002). Other unmeasured
parameters such as DOC may also impact BCC.
However, a large portion of the riverine DOC is likely
refractory (Raymond & Bauer 2001), and by compari-
son DOC produced by zooplankton excretions tends
to be of high quality (Mgller 2005, Mgller et al. 2007).
The relative importance of ambient and zooplankton-
produced DOC for zooplankton-associated bacteria
remains to be investigated.

Physical properties of the study system likely also
contributed to changes in zooplankton-associated
BCC. Water residence time in the York River near our
sampling site is approximately 11 d (Shen & Haas
2004). The rapid movement of water can continually
move free-living bacteria into and out of the system,
preventing the establishment of a stable estuarine
bacterial community (Crump et al. 1999). Since the
external surfaces of zooplankton must be recolonized
by a subset of the free-living bacteria after each molt-
ing event, the turnover of zooplankton-associated
bacterial communities in a dynamic estuary may be
much faster than in more stable freshwater or marine
systems.

Zooplankton-associated versus free-living bacteria

The number of DGGE bands detected in this study
within the free-living bacterial community is low
compared to literature values for Chesapeake Bay
(Kan et al. 2006, 2007). The low DGGE band numbers
could be due to the dominance of a few phylotypes
within the system, as DGGE only detects phylotypes
that contribute >1% of the total DNA (Muyzer et al.
1993). Additionally, DGGE primers may have created
a bias against some bacterial groups such as Gamma-
proteobacteria (Alonso-Saez et al. 2007, Gerdts et al.
2013), which comprised a number of the DGGE bands
detected by Kan et al. (2006, 2007) with a different
set of primers. Future studies should utilize a differ-
ent set of primers or use multiple methods to investi-
gate BCC (Alonso-Sédez et al. 2007, Gerdts et al.
2013). Despite the potential bias, the numbers of
DGGE bands recovered from zooplankton were sim-
ilar to those observed in previous studies (Mgller et
al. 2007, Tang et al. 2009a, Brandt et al. 2010), and
comparisons can still be made among the different
samples.

The significant difference between zooplankton-
associated and free-living bacterial communities
(Fig. 2) underpins the idea that zooplankton create

microhabitats supporting a bacterial community dif-
ferent from that in the surrounding water (Grossart &
Tang 2010). Of the 36 DGGE bands detected, 13 were
unique to zooplankton-associated communities, 11
were found only in free-living bacterial communities,
and 12 were shared by both communities. These
results support the notion of an active exchange
between free-living and zooplankton-associated
bacterial communities (Mgller et al. 2007, Grossart et
al. 2010).

The average month-to-month similarity in sub-
strate usage among zooplankton-associated bacteria
(63.9%, Fig. 4) was slightly higher than that among
free-living bacteria (55.1%). Free-living bacteria in
the York River previously showed distinct changes in
the carbon substrate usage patterns between winter/
spring and summer/fall bacterial communities
(Schultz & Ducklow 2000). In the Mediterranean Sea,
bacteria within a eutrophic harbor showed stable,
consistent substrate usage through time (Montserrat
Sala et al. 2006). The authors hypothesized that a
stable DOC supply allowed a stable bacterial com-
munity to establish and use a limited number of sub-
strates. While the present study indicates that zoo-
plankton-associated bacteria can be influenced by
ambient environmental conditions, zooplankton
themselves constantly produce large amounts of
DOC and nutrients (e.g. Gaudy et al. 2000, Mgller
20095), creating a stable baseline microenvironment.
Thus, the impacts of ambient environmental fluctua-
tions on bacterial communities may be buffered in
the zooplankton microenvironment. This unique zoo-
plankton microenvironment could allow certain bac-
teria to persist in a system even when ambient water
conditions are not conducive for their growth (Tang
et al. 2011).

The lower number of DGGE bands but similar
number of substrates utilized by zooplankton-associ-
ated bacteria suggests that zooplankton-associated
bacteria may exhibit a larger degree of functional
plasticity, while free-living bacteria are more func-
tionally redundant. Bacterial colonization of the
macroalga Ulva australis has been described by the
competitive lottery model (Burke et al. 2011), where
a number of bacterial species with the same func-
tional capacity are present within a source commu-
nity, and specific niches in the Ulva ecosystem are
randomly filled by whichever species from the source
community arrived first (Burke et al. 2011). Our find-
ings support the suggestion of Gerdts et al. (2013)
that zooplankton may be colonized in the same man-
ner, with functional niches filled by a subset of a
more genetically diverse free-living bacterial com-
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munity. The functionality of free-living bacteria is
limited by the availability of substrates in the water
column. In contrast, bacteria associated with zoo-
plankton would have access to substrates in the
water column as well as substrates generated by the
zooplankter via ingestion, excretion and sloppy feed-
ing. Thus, the zooplankton-associated bacterial com-
munity would have the opportunity to exploit a wider
array of substrates.

CONCLUSIONS

This study demonstrates that seasonal changes in
ambient environmental conditions impact the com-
munity composition and functionality of zooplankton-
associated bacteria. Zooplankton create microenvi-
ronments within the water column that allow certain
bacterial groups to flourish, increasing their overall
presence and importance within an aquatic system.
Taking into account zooplankton-associated bacteria
will not only lead to better estimations of total bacte-
rial abundance within a system, but also of the sys-
tem's overall bacterial diversity and functionality.
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