
AQUATIC MICROBIAL ECOLOGY
Aquat Microb Ecol

Vol. 72: 17–31, 2014
doi: 10.3354/ame01682

Published online March 7

INTRODUCTION

Estuaries and coastal areas are highly productive
ecosystems that serve as critical habitats for many
marine organisms (Costanza et al. 1997). Anthropo -
genic activities and changes in coastal land use have

resulted in excess nitrogen loading and eutrophica-
tion, which pose a threat to the ecological integrity
of estuaries (Nixon 1995, Howarth et al. 2000). Two
microbial nitrogen removal processes, anaerobic
ammonium oxidation (anammox) and denitrification,
may play a mitigating role in the intensity and dura-
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gen removal processes that may play an important role in controlling the intensity and duration of
estuarine and coastal eutrophication. Sediment communities in the New River Estuary, North Car-
olina were investigated to determine the dynamics of anammox activity and community structure
in conjunction with environmental conditions. 15N tracer incubation experiments with sediment
slurries were used to measure anammox and denitrification rates and estimate anammox contri-
bution to total N2 production. Molecular analyses targeting the hydrazine oxidoreductase (hzo)
gene were conducted to examine the structure of anammox communities and quantify the abun-
dance of anammox bacteria in sediments. Potential anammox rates ranged from 0.02 to 1.4 nmol
N2 g−1 h−1, with the highest potential activities observed during winter and spring when the estu-
ary received large doses of nitrogen from the watershed. Anammox contributed up to 14.1% of
total N2 production in upstream estuarine sediments and abundance of anammox communities
ranged from 1.55 × 102 to 2.59 × 105 hzo gene copies g−1 sediment. Both activities and abundance
of anammox communities were correlated with percent sediment organics (%organics) and the
porewater concentrations of hydrogen sulfide. Based on hzo sequence analysis, anammox bacte-
ria related to ‘Candidatus Jettenia spp.’ were widespread in estuarine sediments, which may be
attributed to freshwater flushing and associated changes in environmental parameters as well as
the geomorphology of the estuary. This is the first study to describe a dominance of ‘Candidatus
Jettenia spp.’ in relation to %organics and hydrogen sulfide in an estuarine ecosystem driven by
meteorological forcing.

KEY WORDS:  Anammox · ‘Candidatus Jettenia spp.’ · ‘Candidatus Scalindua spp.’ · hzo genes ·
New River Estuary

Resale or republication not permitted without written consent of the publisher



Aquat Microb Ecol 72: 17–31, 2014

tion of estuarine eutrophication in response to high
nitrogen loading. Both microbial processes occur
simultaneously in estuarine sediments and are influ-
enced by biogeochemical factors as well as ecosys-
tem-scale controls, such as hydrological and geomor-
phological features of the system (Cornwell et al.
1999, Dalsgaard et al. 2005, Seitzinger et al. 2006).

Denitrification is an anaerobic respiratory process
that reduces 2 molecules of nitrate (NO3

−) to gaseous
N2 and mainly occurs in the sediments and in the
water column at the oxic−anoxic interface (Tuominen
et al. 1998). A phylogenetically diverse group of or ga -
nisms is capable of this respiratory process (Zumft
1997). Denitrification rates are generally influenced
by labile organic carbon and NO3

− availability, which
can vary spatially and temporally within an estuary
(Cornwell et al. 1999, Seitzinger et al. 2006).

Anammox, a more recently discovered pathway to
N2 production, is a process that couples the reduction
of 1 molecule of nitrite (NO2

−) with the oxidation of
1 molecule of ammonium (NH4

+) to produce N2 under
anaerobic conditions (van de Graaf et al. 1995).
Anammox, shown to occur in estuarine systems
around the world, also exhibits spatial and temporal
variations related to biological and geochemical
parameters, such as temperature, (Rysgaard et al.
2004), salinity (Rich et al. 2008), organic carbon con-
tent (Trimmer et al. 2003) and substrate availability
(Risgaard-Petersen & Meyer 2004, Trimmer et al.
2005, Rich et al. 2008, Nicholls & Trimmer 2009).
Higher potential anammox rates and contribution to
total N2 production (%anammox) have been consis-
tently observed in the oligohaline reaches of estuar-
ies, relative to higher salinities (Trimmer et al. 2003,
Meyer et al. 2005, Koop-Jakobsen & Giblin 2009,
Minjeaud et al. 2009).

Investigations of anammox bacterial communities
in estuarine sediments revealed spatial variation in
community structure in relation to an estuarine salin-
ity gradient. ‘Candidatus Scalindua spp.’ dominated
throughout the estuarine systems (Risgaard-Petersen
& Meyer 2004, Tal et al. 2005, Amano et al. 2007,
Rich et al. 2008, Dang et al. 2010, Hirsch et al. 2011),
while ‘Candidatus Brocadia’, ‘Candidatus Kuenenia’,
‘Candidatus Anammoxoglobous’ and ‘Candidatus
Jettenia’ were primarily detected in fresh to oligoha-
line sediment communities (Zhang et al. 2007, Dale
et al. 2009, Li et al. 2010, Amano et al. 2011, Hirsch et
al. 2011).

It has been suggested that variability in anammox
activities and contribution to local and regional N
loss are probably due to abundance, composition and
distribution of anammox bacteria (Dang et al. 2010),

which are in turn constrained by environmental
parameters, such as salinity and substrate availabil-
ity. If this is the case, shifts in anammox community
structure and activities should covary with environ-
mental parameters. However, the majority of studies
exploring anammox in estuaries reported either com-
munity structure based on 16S rRNA and hydrazine
oxidoreductase gene (hzo) analyses (Tal et al. 2005,
Amano et al. 2007, Rich et al. 2008, Dale et al. 2009,
Dang et al. 2010, Hirsch et al. 2011) or rate measure-
ments using 15N isotope incubation methods (Tham-
drup & Dalsgaard 2002, Trimmer et al. 2003, Ris-
gaard-Petersen & Meyer 2004, Meyer et al. 2005,
Koop-Jakobsen & Giblin 2009, Nicholls & Trimmer
2009). Thus, the coupling between community struc-
ture and activity rates of anammox communities
along with spatial and temporal gradients in estuar-
ine ecosystems has not been directly addressed.

Furthermore, geomorphological characteristics and
water residence time of a system influence nutrient
cycling and availability for biological use (Ensign &
Doyle 2006), as well as community composition
(Crump et al. 2004). Systems governed by periodic
anoxic events lead to spatial separation of the coupled
aerobic nitrification and anaerobic denitrification pro-
cesses, resulting in a strong temporal link between
the 2 processes (Seitzinger et al. 2006). In these sys-
tems, NO3

− is supplied primarily through advection of
high-nutrient waters and denitrification occurs con-
tinuously. Findings by Kana et al. (1998) suggest that
sediment denitrifying microbial populations remain
poised to use NO3

− and short-term temporal changes
in NO3

− concentrations in the overlying water control
denitrification rates in these communities.

The degree of meteorological forcing, such as
freshwater flushing, has also been shown to govern
biological activities in estuarine systems (Peierls et
al. 2012, Anderson et al. 2013, Hall et al. 2013). Dur-
ing moderate hydrologic forcing and high new nutri-
ent loads, a system tends towards higher productivity
and increased biomass. Excessively higher hydro-
logic forcing can overshadow nutrient availability
however by increasing freshwater discharge and
thereby reducing residence time, primary productiv-
ity and biomass, exerting a top-down control on com-
munity structure. As a result, it is important to con-
sider different estuarine systems and the potential
effects that meteorological forcing may have on
microbial community structure and activities. This is
especially true for slow-growing organisms, such as
anammox bacteria, which may adapt differently to
environments that experience periods of stagnation
followed by pulses of high-nutrient freshwater.
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Studies conducted on anammox activities and com-
munity structure in estuarine systems have captured
the dynamics of anammox in various estuarine set-
tings (Meyer et al. 2005, Rich et al. 2008, Nicholls &
Trimmer 2009), mangrove sediments (Meyer et al.
2005), coastal marine sediments (Rysgaard et al.
2004, Dalsgaard et al. 2005, Engström et al. 2005) and
anoxic marine systems (Jensen et al. 2008). Episodic
inflow events have been shown to cause a switch
from denitrification to anammox as the main form of
nitrogen loss in the Baltic Sea (Hannig et al. 2007);
however, limited studies have been conducted in
shallow estuarine systems that experience these dra-
matic shifts in environmental conditions.

The goal of this study was to investigate linkages
between the structure and activity of anammox com-
munities corresponding to spatial variations of envi-
ronmental conditions and episodic flushing events in
the New River Estuary, North Carolina, USA. A 4-fold
approach was used to define these linkages: (1) full
characterization of environmental parameters previ-
ously associated with anammox rates and community
structure were conducted; (2) 15N tracer incubation
experiments with sediment slurries were used to
measure the potential rates of anammox and denitri-
fication with respect to environmental conditions; (3)
molecular analyses of hzo genes were conducted to
examine composition and abundance of anammox
communities in sediments; and (4) multi-regression
and multidimensional statistical methods were em -
ployed to assess the nature and extent of covariance
among anammox community structure, activities of
anammox communities (in absolute terms and rela-
tive to denitrification) and environmental parameters
in the New River Estuary.

MATERIALS AND METHODS

Site description

The New River Estuary (NRE), Onslow Bay, North
Carolina, USA, is a coastal plain estuary consisting of
a series of shallow (<5 m deep), broad lagoons con-
nected by narrow channels. High concentrations of
humic materials and tannic acids (Dame et al. 2000,
Dafner et al. 2007) characterize the upper estuary and
the lower estuary is bordered by intertidal wetlands.
The NRE watershed encompasses a 1436 km2 area
draining mostly forest and agricultural lands in the
upper regions of the watershed (Burkholder et al.
1997, Mallin et al. 2005). Within the watershed are
over 138 registered swine facilities with 150 000 ani-

mals and poultry farms containing over 1 million
birds. The City of Jacksonville located in Wilson Bay
and the United States Marine Corps Base at Camp
Lejeune are also within the watershed. Barrier islands
at the mouth of the NRE restrict tidal exchange and
are likely responsible for the relatively long (64 d)
mean flushing time in this estuary (Ensign et al. 2004).
The North Carolina Division of Environmental Man-
agement has classified the NRE as ‘nutrient sensitive’
since 1998, with nitrogen being the limiting nutrient
of pelagic and benthic productivity in this eutrophic
coastal system (Mallin et al. 2000). Shifts in seasonal
wet and dry periods and episodic storm activity fur-
ther impact nutrient loads and water residence times,
leading to pulsed events that alter biological structure
and function of this estuary as a benthic filter (Peierls
et al. 2012, Anderson et al. 2013, Hall et al. 2013).

Seasonal sampling 

Sampling was conducted seasonally (summer, fall,
winter, spring) during 2009 to 2010 along nutrient
and salinity gradients from the headwaters to the
mouth of the estuary to capture intermittent flushing
events. Summer (June 2009) and fall (September
2009) sampling events were conducted under normal
conditions with rates of <1 and <5 m3 s−1 freshwater
discharge, respectively (Peierls et al. 2012). Winter
sampling (December 2009) followed several pulsed
discharge events ranging from <5 to >25 m3 s−1

freshwater discharge, leading to elevated levels of
new nutrients, likely from land-based sources, that
remained in the system for several months. Spring
sampling (April 2010) occurred at the tail end of
these winter and spring episodic events during what
was considered a relatively wet year, when fresh-
water discharge declined to <1 m3 s−1.

Seven sites were examined and included upper
estuary sites AA2 (34.76° N, 77.45° W), Jax (34.73° N,
77.43° W), M53 (34.72° N, 77.43° W), mid-estuary sites
M47 (34.68° N, 77.39° W), M39 (34.64° N, 77.36° W),
and lower estuary sites M31 (34.59° N, 77.40° W),
M15 (34.55° N, 77.35° W) (Fig. 1). All samples and
measurements were collected in the channel west of
the indicated channel markers.

Environmental parameter measurements

Environmental parameters, including water col-
umn depth, temperature, salinity and dissolved
 oxygen (DO), were measured in surface and bottom
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waters (when site was >1 m depth) at the time of
sampling using a 6820 multi parameter YSI data-
sonde (YSI). Surface and bottom waters were 0.7 µm
filtered and stored on ice prior to nutrient analysis.
Ammonium and NO3

− concentrations were measured
spectrophotometrically on a Bran Luebbe segmented
flow nutrient autoanalyzer using phenol hypochlo-
rite, and Cd-reduction and azo dye methods, respec-
tively, following modified standard Environmental
Protection Agency methods (Long & Martin 1997).

Sediment samples were collected using a petite
ponar grab (Wildco). The top 2 cm of sediment were
collected and used to pack full 50 ml centrifuge tubes
(BD Biosciences) and stored on ice. In the laboratory,
porewater was extracted by centrifugation and ana-
lyzed for ferrous iron (Fe2+; Stookey 1970) and hydro-
gen sulfide (H2S; Cline 1969). Porewater NO3

− + NO2
−

(NOx
−) was measured using vanadium (III) reduction

and chemiluminescent detection (Braman & Hendrix
1989). Sediment percent organic content was deter-
mined by loss on ignition of dried sediments (500°C
for 4 h). Sediment NH4

+ (free plus extractable) was
measured by phenol hypochlorite following KCl ex-
traction using a 1:1 ratio of KCl to sediments (Mackin
& Aller 1984). Benthic chlorophyll a analysis on 2 cm

thick sediment plugs was conducted as de scribed by
Whitney & Darley (1979). Mean sediment grain size
was determined after organic material was dissolved
with 35% H2O2 using a LS 200 Beckman Coulter Par-
ticle Sizer (Bechman Coulter). Sediments from each
site were stored at −80°C for molecular analysis.

15N tracer incubations

Sediment slurry incubation experiments with 15N
tracer were conducted to measure potential rates of
denitrification and anammox using a modified method
of Dale et al. (2009). Eight sediment slurries containing
2 g of homogenized sediment and porewater were
pre-incubated in helium-purged Exetainer tubes
(Labco) in the dark overnight to remove residual
NOx

−. After pre-incubation, 2 of the Exetainers were
sacrificed to measure residual NOx

− in sediment pore-
water (Braman & Hendrix 1989). The residual concen-
tration of NOx

− was used to correct the mole fraction
15N enrichment of the added 15NO3

− (Song & Tobias
2011) in subsequent rate calculations for anammox
and denitrification. Remaining Exetainer tubes with
sediment slurries were again purged with helium,
amended with 200 nmoles 15NO3

− and 200 nmoles
14NH4

+ and placed in the dark during incubations.
Time series incubations were carried out in duplicates
and the activities stopped by the addition of saturated
ZnCl2. Production of 29N2 and 30N2 was measured on
an Isotopic Ratio Mass Spectrometer (Delta V Plus,
Thermo Fisher Scientific) and used to calculate the
rate of anammox and denitrification following the
method of Thamdrup & Dalsgaard (2002) as modified
by Song & Tobias (2011). Percent anammox (%anam-
mox) was estimated based on the rates of anammox
and total N2 production in each sample.

DNA extraction

Sediment DNA was extracted using PowerSoil
DNA Kit (Mo-Bio Laboratories) following the manu-
facturer’s protocol with 2 modifications: (1) the amount
of wet sediment was increased to 0.6 g and (2) a
Thermo Savant Fast Prep FP 120 Cell Disrupter
(Qbiogene) was used for cell disruption.

Quantitative PCR amplification of hzo genes

Quantitative PCR (qPCR) of hzo genes was carried
out to measure the abundance of anammox bacteria
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Fig. 1. Sampling sites in the New River Estuary, North Car-
olina, USA. Seven sites were examined and included upper
(AA2, Jax and M53), mid- (M47 and M39) and lower (M31 

and M15) estuary sites
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in the NRE sediments following the method of Long
et al. (2013). The PCR mixture contained the HZAO-
QPCR1F and HZOQPCR1R primers, sediment DNA
(3 ng µl−1) and the Go-Taq qPCR Master Mix
(Promega). PCR specificity was monitored by analy-
sis of dissociation curves. The R2 values for the stan-
dard curves were >0.996 and the detection limit of
hzo qPCR was 78 hzo gene copies per sample.

PCR amplification, cloning of PCR products 
and sequencing

To examine the composition of anammox commu-
nities exposed to different freshwater discharge
rates, nested PCR of the hzo genes was conducted
with winter and summer samples using the Go-Taq
Master Mix (Promega) under the following PCR con-
ditions: 95°C for 5 min, 94°C for 1 min, 55°C for 1 min,
72°C for 1 min, 35 times, 95°C for 1 min, 55°C for
1 min, 72°C for 10 min. The initial PCR reaction was
conducted with the primers HZO4F and HZO1R
(Hirsch et al. 2011) to amplify a 1037 bp region of the
hzo gene. A second nested reaction was conducted
using the initial PCR reaction mixture as a template
and the primers hzocl1 F1 and hzocl1 R2 (Schmid et
al. 2008) to generate 470 bp fragments.

The nested PCR products were purified using Ultra -
Clean GelSpin DNA Purification Kit (Mo-Bio) and
cloned using Perfect Prep Cloning Kit (5 Prime). At
least 24 clones were picked for hzo gene library con-
structions. Sequencing was conducted with the Big
Dye Terminator version 1.1 and a 3130x Genetic
Analyzer sequencing machine (Applied Biosystems).

Phylogenetic analysis of hzo genes

The hzo gene sequences were assembled and
edited using the SeqMan program (DNASTAR Laser-
gene) and compared with hzo gene sequences avail-
able in the GenBank database (www. ncbi. nlm. nih.
gov). The hzo gene sequences were translated to
amino acid sequences using Transeq (European
Bioinformatics Institute www. ebi. ac. uk/ Tools/st/
emboss _ transeq/ ). Translated hzo sequences were
aligned with reference sequences using Mega 5.1. A
phylogenetic tree was constructed using the neigh-
bor-joining method with the Poisson model. Repre-
sentative hzo sequences were selected within the
sequences sharing 100% identity. The number of
sequences is denoted in parentheses of a representa-
tive sequence in the phylogenetic tree. Bootstrap

analysis of 1000 repetitions was used to test the con-
fidence of phylogenetic reconstruction with 50%
support threshold. Hzo protein similarity was deter-
mined using pairwise distance computation in
MEGA 5.1. The hzo gene sequences are available at
GenBank with the accession numbers KF192638 to
KF192691.

Statistical analysis

Several statistical evaluations of the data were con-
ducted. First, 2-way ANOVA was conducted to iden-
tify significant differences among anammox activi-
ties by location within the estuary and season using R
(version 2.15.3, R Foundation for Statistical Comput-
ing). Correlation analyses were also conducted to
identify relationships between anammox rates, anam-
mox gene abundance and community structure, and
environmental parameters, also using R (version
2.15.3, R Foundation for Statistical Computing). A
weighted principal components analysis (PCA) using
UniFrac (http:// bmf2. colorado. edu/ unifrac/ index .psp)
was conducted to examine anammox community
structure based on sequence dissimilarities between
sites in the estuary (Lozupone & Knight 2005).
UniFrac was also used to determine significant differ-
ences in community structure using cluster analysis
that was corrected for the number of pairwise com-
parisons using the Bonferroni correction. Non-metric
multidimensional scaling (NMDS) was then per-
formed to explore relationships between anammox
community structure and environmental parameters
in the NRE using the function meta-MDS in the
vegan package in R (version 2.15.3, R Foundation for
Statistical Computing).

RESULTS

Environmental characteristics 

Bottom water temperature was generally uniform
throughout the estuary during each season ranging
from 13.5 ± 2.5 (±SE) °C in the winter to 27.7 ± 0.6°C
in summer (Table 1). Salinity in the upper and mid
reaches of the estuary varied by a factor of 10
depending on river discharge (Table 1). The highest
salinities were encountered in fall and spring. Winter
sampling was coincident with large freshwater
inputs from the watershed that completely freshened
the uppermost station AA2. Elevated levels of bottom
water NO3

− and NH4
+ were observed throughout the
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estuary  during winter sampling, coincident with the
winter freshening event (Table 1). The highest bot-
tom water NO3

− and NH4
+ concentrations were at

upper and mid-estuary winter sites, reaching 68.61
and 14.89 µM, respectively. Bottom water hypoxia,
where DO levels were <5 mg l−1, was observed
throughout the estuary during summer and at upper
estuary stations during fall and spring (Table 1).

Iron (Fe2+) concentration in porewater varied be -
tween sites and seasons with the highest observed
concentration of Fe2+ exceeding 70 µM at the lower
estuary M31 station during the winter (Table 2).

 Hydrogen sulfide (H2S) concentrations ranged from
0.2 to 1100 µM, with elevated concentrations consis-
tently in the upper and mid-estuary (Table 2). Pore-
water NOx

− was greater throughout the estuary during
the spring; however, the highest overall concen tration
was observed in winter at the Jax station (Table 2).

Sediment %organics were highest at the upper and
mid-estuary sites during all seasons sampled. High
organic content was coincident with the highest pore-
water H2S concentrations at these sites (Table 3).
Extractable sediment NH4

+ concentrations were
below 0.5 µmol NH4

+ g−1 wet sediment in summer
and spring, while NH4

+ concen-
trations in the winter exceeded
1 µmol NH4

+ g−1 wet sediment at
4 sites (Table 3). Benthic chloro-
phyll a was highest in winter at
mid-estuary sites, with values
ranging from 13 to 24 µg chloro-
phyll a g−1 sediment (Table 3).
Sediment grain size increased
from fine sand and silt in the
upper estuary to fine-medium
grained sands towards the mouth
of the estuary (Table 3).
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Site          Temperature (°C)          Salinity                   Nitrate (µM)   Ammonium (µM)    Dissolved oxygen
                                                                                                                                                                              (mg l−1)
            Jun   Sep   Dec   Apr     Jun   Sep   Dec   Apr     Jun   Sep  Dec   Apr     Jun   Sep  Dec   Apr     Jun   Sep   Dec  Apr

AA2     28.8  24.0   nd   21.2     2.2   9.3  0.1   9.1     0.40   nd  68.61 0.44     9.05   nd 2.54 7.80     0.2   0.9     6.4   0.6
Jax       27.7  25.1   nd   21.2     12.3 13.6  5.7   17.8     0.64   nd  13.30 0.25     2.75   nd 14.89 0.75     3.0   2.2     7.0   4.1
M53     26.9  24.5   nd   21.1     13.2 14.1  6.6   18.6      nd     nd  9.00 0.19       nd    nd 14.66 1.01     4.0   4.7     7.0   3.4
M47     27.3  22.7  11.8   19.9     18.8 13.3  5.2   16.4     0.70   nd  13.78 0.37     1.27   nd 14.76 1.18     4.4   7.5   10.2   7.9
M39     27.2  23.4  11.7   20.0     20.8 16.6  10.2   22.0     1.05   nd  9.26 0.33     1.92   nd 9.28 0.92     3.0   7.0     9.5   7.9
M31     27.8  23.8   nd   19.2     23.3 20.5  12.3   27.0     0.17   nd  6.44 0.47     0.51   nd 9.41 1.45     nd    6.2     7.4   7.6
M15     28.1  23.1  17.0   17.8     31.0 29.3  29.8   33.6     0.65   nd  0.72 0.62     5.43   nd 1.12 1.32     nd    7.1     6.5   8.2

Table 1. Seasonal environmental parameters of New River Estuary bottom water; nd: not determined

Site          Ferrous iron (µM)    Hydrogen sulfide (µM)   Nitrate + nitrite (µM)
            Jun  Sep   Dec    Apr       Jun   Sep   Dec     Apr       Jun   Sep  Dec   Apr

AA2     1.92   nd   5.49 59.00    11.7   nd   16.4   0.9     0.37   nd   0.21   0.26
Jax       9.84   nd   1.71   3.03     973.4   nd   800.7   486.9     0.58  0.07 2.37   0.23
M53     6.99   nd   1.20   4.28     544.1   nd 1100.4  829.9     0.58  0.00 0.16   0.34
M47     0.67   nd   1.36   1.46     773.9   nd   398.6   249.9     0.16  0.02 0.07   0.54
M39     2.43   nd   1.11   1.56     734.3   nd   667.1   54.3     0.01  0.28 0.11   0.91
M31     4.35   nd 20.62  70.79    13.8   nd   5.3   3.2     0.03  0.06 0.07   0.33
M15     1.56   nd   3.72   1.55     0.7   nd   1.1   0.2     0.33  0.00 2.15   0.72

Table 2. New River Estuary sediment porewater characteristics; nd: not determined

Site Sediment organics (%)           Ammonium     Benthic chl a µg chl a Sediment grain size (µm)
                                                                 (µmol g−1 wet sed.)                 (g sed.)−1

                  Jun   Sep   Dec     Apr           Jun    Sep   Dec    Apr           Jun   Sep     Dec     Apr         Jun      Sep     Dec     Apr

AA2           3.21   nd  2.96  15.57         0.14     nd   0.20   0.06          0.00   1.83   0.00   7.75       35.8   121.9  344.1    23.5
Jax           14.71   nd  22.96  17.98         0.36     nd   1.24   0.21          5.98   3.54   4.68   4.34       35.7     75.7     54.7  105.7  
M53         17.17   nd  18.46  20.69         0.42     nd   1.22   0.33          5.17   0.00   14.54   0.00       24.2     37.7     30.3    17.9
M47         14.66   nd  17.62  18.95         0.50     nd   1.04   0.28          4.60   3.38   13.48   5.43       19.4     30.8     58.6    38.2
M39         11.66   nd  11.46  12.29         0.45     nd   0.47   0.24          4.25   0.00   25.41   8.32       29.1     34.8     30.6    35.8
M31           9.21   nd  9.51  10.19         0.19     nd   1.21   0.20          4.92   6.46   17.35   8.97       28.3     41.9     33.9    36.0
M15           0.34   nd  0.13  0.33         0.12     nd   0.13   0.04          4.03   4.98   7.84   5.36     181.8  244.8  251.4  291.0  

Table 3. New River Estuary sediment (sed.) characteristics; nd: not determined
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In summary, the low salinity upper estuary sites
(AA2, Jax and M53) were generally lower in DO and
higher in NO3

− and NH4
+ than the middle and lower

sites. These sites contained medium silt to fine sand
sediments that were moderately rich in organic con-
tent and variable in ferrous iron and sulfide. Mid-es-
tuary sites (M47 and M39) were representative of a
transitional salinity and DO gradient, while elevated
in H2S, NH4

+ and NO3
− concentrations. Lower estuary

sites (M31 and M15) were highest in salinity and DO,
and lower in NO3

− concentrations. They contained
medium silt to sandy sediments with higher ferrous
iron and chlorophyll a content. Overall, spatial varia-
tions in salinity and dissolved oxygen were observed
consistently throughout the estuary. Temporal vari-
ance among sites occurred, but did not show a
smooth seasonal cyclic pattern at any given site. In-
stead, seasonal trends were superseded by pulses of
nutrients that were observed and elevated throughout
a major portion of the estuary. The occurrence of
these pulses were evident in bottom water NO3

− and
NH4

+, H2S porewater and sediment NH4
+ concentra-

tions, where trends of elevated levels were observed
throughout large portions of the estuary following
 periods of high freshwater discharge events.

Anammox and denitrification activities and their
correlation to environmental parameters 

Production of 30N2 (denitrification) and 29N2 (anam-
mox) was immediately observed in the sediment
incubations and the 2 processes were positively and
significantly correlated with each other (p = 0.013, r =
0.624). Both N2-producing processes were detected
at all sites throughout the estuary during all 4 sea-
sons. Potential denitrification rates ranged from 0.4 to
31 nmol N2 g−1 h−1, while anammox rates were lower
at 0.02 to 1.4 nmol N2 g−1 h−1 (Table A1 in Appen-
dix 1). The overall average of %anammox for the
NRE was 5.2% and ranged from 1.8 to 14.1%; the
highest contribution of anammox occurred in the
AA2 sediment community during spring (Table A1).

For all seasons, the distribution of denitrification
and anammox rates as well as %anammox along the
estuary was variable. There was, however, a spatial
trend of higher activities in the upper estuary relative
to lower activities towards the mouth of the estuary
(p = 0236, p = 0.0018 and p = 0.031 for denitrification,
anammox and %anammox, respectively; Fig. 2). Sea-
sonal fluctuations in anammox and denitrification rates
were also observed in the NRE with significant differ-
ences observed during spring relative to the other

seasons (p = 0.021, p = 0.00453 and p = 0.0153 for de-
nitrification, anammox and %anammox, respectively).

Potential denitrification rates were positively cor -
related with H2S (p = 0.002, r = 0.5139), %organics
(p = 0.009, r = 0.5936) and extractable sediment NH4

+

(p = 0.002, r = 0.2635). Anammox rates also signifi-
cantly correlated with increasing levels of porewater
H2S (p = 0.009, r = 0.5681) and sediment %organics
(p = 0.005, r = 0.6829), but were negatively correlated
with salinity (p = 0.004, r = −0.3956), while %anam-
mox showed a negative correlation with DO levels
(p = 0.004, r = −0.5364). This is the first reporting of a
significant positive correlation between anammox
activity and porewater sulfide in sediments.

Anammox bacterial abundance and its correlation
to environmental parameters

Based on hzo gene qPCR, spatial and temporal
abundance of anammox bacteria were compared in
the sediment samples collected in summer and win-
ter. Abundance of hzo genes ranged from 1.55 × 102

to 2.59 × 105 copies g−1 sediment (Fig. 3, Table A2).
These values fell within the lower ranges of previ-
ously published values for hzo gene abundance in
the environment (Dang et al. 2010, Hong et al. 2011).
The lowest anammox bacterial abundance was found
in the summer at M15, corresponding to relatively
lower activities. Seasonal variation in anammox
abundance was observed, with the highest values
observed during summer at AA2, Jax, M47 and M39,
and during winter at M53, M31 and M15.

Anammox bacterial abundance was significantly
and positively correlated with anammox activities
(p = 0.033, r = 0.4336), porewater H2S concentrations
(p = 0.0456, r = 0.5412) and sediment %organics (p =
0.033, r = 0.5715). Independent positive relationships
between the covarying estuarine conditions (pore-
water H2S and sediment % organics) with hzo gene
abundance and potential anammox N2 production in
the NRE may demonstrate that environmental condi-
tions influence anammox abundance, which in turn
influences potential anammox activities. This associ-
ation was explored further in anammox community
composition based on sequence analysis of hzo genes.

Spatial and temporal variation of anammox 
community composition

Nested PCR amplified 470 bp fragments of hzo
genes in the summer and winter samples. Eighty-
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seven sequences of the hzo genes were obtained and
translated to amino acid sequences prior to phyloge-
netic analysis. All hzo sequences showed high simi-
larity (>69.7% amino acid similarity) to the translated
hzo genes in hzo cluster 1 (Schmid et al. 2008). In
general, hzo sequences found throughout the NRE
formed 2 clusters, designated ‘Jettenia’ and ‘Scalin-
dua’ clusters, dominated by ‘Jettenia-like’ anammox.

A discernible spatial pattern of anammox sequences
was not observed in the NRE. Most sequences de -
tected in the upper and mid-estuary sites, as well as
the M15 winter sample, were assigned to the Jettenia
cluster as they showed >88.9% hzo amino acid
sequence similarity with the ‘Candidatus Jettenia’
enrichment culture clone ANAHZO3 (Fig. 4). A com-
bined group of sequences from the upper and mid-
estuary site samples collected in summer and winter,
as well as lower estuary (M15) winter sequences,
closely associated with the hzo sequences detected in
North Carolina aquifers, freshwater sites of Cape
Fear River Estuary (Hirsch et al. 2011) and the
ANAHZO3 sequence from an activated sludge reac-

tor (Quan et al. 2008). One sequence related to the
hzo sequence of a Kuenenia enrichment culture was
found in the M53 summer sample. Hzo sequences
from M31 winter and M15 summer samples formed
the Scalindua cluster, with >88.5% similarity to the
hzo sequence of ‘Candidatus Scalindua sp.’, Mai Po
Mangrove (Li et al. 2010), South China Sea (Hong et
al. 2011) and Jiaozhou Bay (Dang et al. 2010).

A sharp change of anammox community composi-
tion was observed at the M15 site and corresponded
to changes in environmental conditions in the NRE.
The M15 sediment sequences clustered with the
Scalindua hzo sequences during the summer when
the estuary was experiencing low-flow conditions.
During the winter sampling, a higher diversity of
phylotypes was seen at this site, all closely related to
‘Candidatus Jettenia spp’. During the winter, the
estuary experienced high freshwater inputs that led
to elevated concentrations of NO3

− throughout the
estuary (Table 2). These nutrient data in conjunction
with the hzo sequences suggest that a winter flush-
ing of the NRE brought anammox bacteria present at
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upper estuary sites throughout the estuary to the
most saline site, during which potential activities in -
creased, which suggests that the presence of Jettenia
in these sediments led to greater nitrate removal. The
hzo gene abundance and potential anammox activi-
ties at sites where ‘Candidatus Jettenia spp.’ domi-
nated were positively correlated (r = 0.635), although
the observed relationship was not significant (p > 0.05).

Overall, non-Scalindua organisms were shown to
be the dominant anammox bacterial group in the
NRE. The hzo sequences typically associated with
Jettenia-like sequences found in fresh and oligoha-
line environments were widely distributed through-
out the NRE. Additionally, anammox communities in
the lower estuary site, M15, showed unique seasonal
changes from Scalindua- to Jettenia-like organisms
that have not yet been observed in other studies.

Determination of environmental factors that
influence anammox community composition

Anammox hzo sequences were further analyzed to
determine the environmental parameters influencing
community composition. The UniFrac analysis enabled
comparison of phylogenetic differences in anammox
communities detected in the NRE through the appli-
cation of PCA. PCA explained 90.83% of the varia-
tion observed in NRE anammox communities (data
not shown). PC1 (x axis) explained 82.27% of the
variation in communities, while PC2 (y axis) accounted
for 8.56% of the variation in communities. Com mu ni -
ties appeared to form 2 distinct clusters that were not
significantly  different from one another following Bon -
ferroni correction (p > 0.05), likely due to the highly
conserved hzo gene sequences between anammox

groups. However, the PCA clearly
demonstrated a difference among the
sites that were dominated by Jettenia-
and Scalindua-like organisms.

NMDS analysis was applied to the
community structure matrix generated
by UniFrac and compared with envi-
ronmental parameters (Fig. 5). This
enabled visualization of the influence
of environmental parameters on the
anammox communities in the NRE.
The strongest relationship between
the anammox community structure
and environmental parameters was
observed with salinity (p = 0.054, R2 =
0.6274). Relationships between anam-
mox community composition and envi-

ronmental parameters were not deemed to be signif-
icant, likely due to a lower sample number for the
sequence analysis in this study. However, weak rela-
tionships between salinity, porewater H2S and sedi-
ment %organics with anammox community composi-
tion are consistent with observations from anammox
activity and abundance analyses.

DISCUSSION

Potential activities of denitrification and anammox
and %anammox observed in the NRE were dynamic
but consistently higher at fresh to oligohaline sites
and especially elevated during the spring. Rates and
%anammox observed in this study were on the same
order of magnitude as those reported in other shal-
low coastal ecosystems that also describe upstream
rate maxima (Thamdrup & Dalsgaard 2002, Trimmer
et al. 2003, Risgaard-Petersen & Meyer 2004, Meyer
et al. 2005, Rich et al. 2008, Dale et al. 2009, Koop-
Jakobsen & Giblin 2009, Nicholls & Trimmer 2009).
In these studies, spatial differences were attributed
to availability of NO3

− and NO2
− in the suboxic zone

of sediments with higher activity measurements in
upper estuary sites (Trimmer et al. 2003, Risgaard-
Petersen & Meyer 2004, Meyer et al. 2005, Rich et al.
2008, Koop-Jakobsen & Giblin 2009, Nicholls & Trim-
mer 2009). Anammox and denitrification in the NRE
also showed temporal variability, with higher activi-
ties in spring, consistent with other aquatic studies
(Risgaard-Petersen & Meyer 2004, Hietanen & Kupa -
rinen 2007, Minjeaud et al. 2009).

In this study, the positive relationship of anammox
activities and abundance with sediment %organics
and porewater H2S demonstrates an interplay among
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Fig. 4. Phylogenetic tree of translated hzo gene sequences depicting seasonal variation of anammox communities in New River
Estuary sediments. Neighbor-joining trees were constructed and bootstrap analysis with 1000 replicates was used to estimate
confidence. The outgroup sequence is the translated ‘Candidatus (Ca) Kuenenia sp.’ hzo gene sequence. Bootstrap values of
>50% (from 1000 replicates). Clusters are marked by brackets and labeled according to the most closely related genus or gen-
era. Sequences with 100% identity detected more than once are indicated by the number of times detected in parentheses.
New River Estuary sites are labeled according to the site names and a symbol denoting location in the estuary; an upward-fac-
ing triangle indicates upper estuary sites (AA2, Jax and M53), a diamond is used for mid-estuary sites (M47 and M39) and a
downward-facing triangle represents downstream sites (M31 and M15). Labels are also distinguished by season; summer 

(black) and winter (gray). Scale bar indicates 10% sequence difference
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environmental conditions, bacterial community struc-
ture and activities. Hu et al. (2011) reported a domi-
nance of ‘Candidatus Brocadia’ and ‘Candidatus Kue-
nenia’ in the Qiantang River, China and also
demonstrated a positive correlation between sediment
organic carbon and anammox bacteria, where organic
carbon significantly influences anammox bacterial di-
versity. Dang et al. (2010) also showed sediment or-
ganic material was among the most influential envi-
ronmental parameters related to the distribution of
anammox bacteria in the hypernutrified Jiaozhou
Bay, China. The positive correlation of sediment %or-
ganics with anammox activities and abundance, in
particular to Jettenia-like organisms, might indicate
that anammox bacteria can use organic matter as an
electron donor or carbon source. This proposal is sup-
ported by previous studies where anammox bacteria
were able to anaerobically remove ammonia in the
presence of organic matter in bioreactors (Güven et
al. 2005, Sabumon 2007). The ability of anammox bac-
teria to use organic acids, such as acetate and propi-
onate, as supplementary carbon sources has been
demonstrated in ‘Candidatus Kuenenia stuttgartiensis’,

‘Candidatus Anammoxoglobus propi-
onicus’, and ‘Candidatus Brocadia
fulgida’ enrichment cultures (Strous et
al. 2006, Kartal et al. 2008). This study
provides further support that anammox
bacteria may be capable of capitalizing
on organic carbon, which may be of
particular interest in the future when
examining anammox bacteria in or-
ganic-rich estuarine systems.

An alternative explanation for the
relationship between anammox and
sediment %organics includes the posi-
tive association with porewater H2S
and points to a coupling of the nitro-
gen and sulfur cycles in the NRE.
Micromolar concentrations of H2S
were initially reported to inhibit activ-
ity of anammox (Jensen et al. 2008),
possibly due to direct inhibition (Dals-
gaard et al. 2003). However, a more
recent study examining the influence
of H2S by Wenk et al. (2013) suggests
otherwise. Several modes of fixed
nitrogen removal were examined in
the water column of an alpine lake.
Anammox activities were shown to
coincide with sulfide-dependent deni-
trification and were even enhanced
with the addition of H2S in incuba-

tions. It has been suggested that NH4
+ for the anam-

mox process may be provided by sulfate (SO4
2−) re -

duction coupled to organic matter oxidation, as was
observed in Chilean waters where an active coupling
of the sulfur and nitrogen cycles was observed in a
NO3

−-rich, oxygen-free zone (Canfield et al. 2010).
This coupling was proposed to generate up to 22% of
the NH4

+ necessary to support observed activities of
anammox in this oxygen-depleted system.

Although not explicitly examined in this study,
anammox communities in the NRE may be supported
through remineralization of organic matter by sul-
fate-reducing communities in these sulfide-rich sedi-
ments. Elevated levels of H2S were observed in the
mesohaline reaches of the estuary at the mid-estuary
stations, concurring with a rich supply of sediment
%organics and higher potential activities. A coupling
between anammox and other nitrogen cycling pro-
cesses, in particular denitrification and dissimilatory
nitrate reduction to ammonia (DNRA), might also
explain the correlation between anammox activities,
H2S and %organics. Under the incubation conditions
used in this study, intermediates produced during
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heterotrophic denitrification driven by carbon avail-
ability or chemolithotrophic denitrification by H2S
observed in some aquatic systems (Cardoso et al.
2006) may provide the substrate that supports anam-
mox via NO2

− production. Likewise, H2S or organic
matter could provide reducing power for the reduc-
tion of NO3

− to NH4
+ via DNRA and would also cause

a dependency of anammox on another respiratory
processes for substrate. This dependency of anam-
mox on denitrification or DNRA for substrate might
be driving the observed correlation of anammox with
%organics and H2S observed in the NRE.

The positive correlation between denitrification
and porewater H2S still suggests that a coupling
between the nitrogen and sulfur cycles might exist in
the NRE, as denitrifying bacteria are capable of using
reduced sulfur species as electron donors for the
reduction of NO3

−. Given the fact that anammox
activities were observed in the presence of high lev-
els of H2S and organic matter, the results suggest that
these environmental parameters do not inhibit anam-
mox or denitrification as previously thought. Further-
more, DNRA is an important mechanism for retaining
N within saline systems, such as estuaries (Koike &
Hattori 1978, Tobias et al. 2001, Giblin et al. 2013)
and it may be of interest in future studies to examine
the relationship between DNRA and anammox in
estuarine sediments.

Studies of anammox bacterial communities in estu-
arine sediments generally report the dominance of
Scalindua-like organisms, as described in Chesa-
peake Bay, USA (Rich et al. 2008), Yodo River Estu-
ary, Japan (Amano et al. 2007), Jiaozhou Bay, China
(Dang et al. 2010) and the Cape Fear River Estuary,
USA (Dale et al. 2009, Hirsch et al. 2011). While
Scalindua-like groups were detected in the lower
reaches of the NRE, ‘Candidatus Scalindua spp.’
were not the dominant anammox bacteria in the
NRE. Jettenia-like anammox dominated 71% of the
clones obtained seasonally throughout the NRE. This
is the first time that an estuarine environment was
shown to have a dominance of Jettenia-like anam-
mox. Previous studies of anammox activity measure-
ments in batch incubations containing ‘Candidatus
Brocadia anammoxidans’ or ‘Candidatus Kuenenia
stuttgartiensis’ resulted in activities 4 times higher
than ‘Candidatus Scalindua spp.’ enrichments under
similar conditions (Schmid et al. 2003). The presence
of ‘Candidatus Jettenia spp.’ and the increase in
activities at M15 coinciding with the shift away from
‘Candidatus Scalindua spp.’ at this site may provide
some evidence to support the differences in nitrogen
removal efficiency of anammox groups in a natural

system. This notion may have implications for nitrate
removal in estuaries that tend to favor one group over
another, particularly in organic-rich, high-nutrient
systems such as the NRE.

Finally, as mentioned earlier, a degree of meteoro-
logical forcing has been shown to govern biological
activities in estuarine systems (Peierls et al. 2012). In
this study, a dramatic increase of freshwater dis-
charge during the winter sampling event supported
bottom-up effects on anammox communities in the
NRE. During this freshening event, anammox com-
munity structure in the downstream site M15 shifted
to closely resemble upstream areas of the estuary.
Two possible mechanisms may be responsible for this
occurrence: the advection of upstream anammox
organisms to the lower estuary or changes in envi-
ronmental conditions as a result of the long-term
freshening of the estuary throughout the winter
enabled small populations of ‘Candidatus Jettenia
spp.’ anammox to become dominant. It is still unclear
how to determine whether dispersal or environmen-
tal conditions affect composition of microbial com-
munities due to the covariance of changing environ-
mental conditions during rainfall events responsible
for advection of microbes (Crump et al. 2007). Thus,
the species-sorting perspective can be used to pro-
vide an explanation for the presence and dominance
of ‘Candidatus Jettenia spp.’ throughout the NRE.
The species-sorting perspective emphasizes the con-
trol of environmental conditions on community struc-
ture and dispersal (Leibold et al. 2004, Crump et al.
2007). This is important because it sets the commu-
nity from which the dominant assemblage will
develop. In the case of the NRE, ‘Candidatus Jettenia
spp.’ may have been transported throughout the
estuary and favorable environmental conditions
allowed for the proliferation of the bacteria. In -
creased substrate availability and a shift in commu-
nity structure allowed for higher anammox activity at
this site and further support the linkage between
environmental parameters, anammox community
composition and activities in an estuarine system.

CONCLUSIONS

Anammox and denitrification activities were de -
tected throughout the 7 sites during all seasons and
denitrification was the dominant N2-producing path-
way in the NRE. Anammox contributed up to 14% of
total N2 production and activities were positively cor-
related with abundance of the hzo genes, both of
which were positively correlated with porewater H2S
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concentrations and %organics. These correlations
can be explained by the ability of anammox bacteria
to use organic material as a carbon substrate or
through the coupling of the nitrogen, sulfur and car-
bon cycles. Phylogenetic analysis of hzo sequences
revealed that Jettenia-like organisms were dominant
throughout the NRE. A freshening of the estuary dur-
ing the winter distributed upstream anammox com-
munities to downstream sites and increased anam-
mox activities. This study provides evidence that an
episodic flushing event may have influenced the
widespread distribution of Jettenia-like organisms,
and together with the geochemical conditions of the
system governed anammox bacterial community
structure and activities in this temperate estuarine
ecosystem.
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(a) Denitrification (nmol 30N2 g−1 wet sediment h−1)
Site          Jun               Sep               Dec                Apr

AA2   4.29 ± 0.43 11.43 ± 0.07  5.06 ± 0.10  4.66 ± 0.11
Jax     9.92 ± 0.91   6.14 ± 4.10  16.20 ± 2.12  12.13 ± 0.95
M53   7.27 ± 0.30   1.79 ± 0.06  14.13 ± 0.15  30.98 ± 3.00
M47   9.91 ± 3.00   3.37 ± 0.45  0.89 ± 0.20  9.37 ± 0.31
M39   4.63 ± 1.35   3.40 ± 0.47  16.08 ± 0.74  21.29 ± 7.11
M31   3.10 ± 0.01   4.15 ± 0.03  11.21 ± 1.67  5.41 ± 0.27
M15   0.45 ± 0.05   2.16 ± 0.27  1.77 ± 0.13  0.36 ± 0.10

(b) Anammox (nmol 29N2 g−1 wet sediment h−1)
Site          Jun               Sep               Dec                Apr

AA2   0.35 ± 0.02   0.86 ± 0.03   0.55 ± 0.00    0.76 ± 0.05
Jax     0.80 ± 0.09   0.26 ± 0.17   0.89 ± 0.14    1.05 ± 0.18
M53   0.48 ± 0.00   0.07 ± 0.00   0.70 ± 0.06    1.40 ± 0.41
M47   0.68 ± .016   0.08 ± 0.01   0.02 ± 0.00    0.61 ± 0.03
M39   0.15 ± 0.05   0.07 ± 0.01   0.55 ± 0.10    0.50 ± 0.22
M31   0.08 ± 0.00   0.07 ± 0.00   0.42 ± 0.08    0.31 ± 0.02
M15   0.03 ± 0.00   0.10 ± 0.01   0.11 ± 0.01    0.02 ± 0.00

Table A1. Potential N2 production by (a) denitrification
and (b) anammox and (c) percent anammox calculated
from 15N isotope pairing experiments on sediment slurry 

incubations

Site hzo mean copy number g−1 sediment
                              Jun                                     Dec

AA2        2.40E+05 ± 7.12E+04       6.75E+04 ± 1.17E+04
Jax          2.54E+05 ± 5.64E+04       2.09E+05 ± 3.27E+04
M53        1.20E+05 ± 1.56E+04       1.69E+05 ± 7.46E+04
M47        2.45E+05 ± 7.85E+04       1.92E+05 ± 3.32E+04
M39        2.59E+05 ± 9.30E+04       2.16E+05 ± 3.61E+04
M31        1.22E+05 ± 6.10E+04       2.42E+05 ± 6.65E+03
M15        1.55E+02 ± 2.94E+00       7.48E+02 ± 3.43E+03

Table A2. Abundance of anammox bacteria in New River
Estuary sediments determined by hzo gene quantitative PCR 

Appendix 1. Potential activities and gene abundance for dentrification and anammox in the New River Estuary. 
All values are mean ± SE

(c) %anammox
Site          Jun               Sep               Dec                Apr

AA2   7.61 ± 0.23   7.02 ± 0.18   9.78 ± 0.20  14.08 ± 1.01  
Jax     7.43 ± 0.13   4.11 ± 0.07   5.20 ± 0.13    7.96 ± 0.65
M53   6.16 ± 0.20   3.91 ± 0.04   4.74 ± 0.37    4.29 ± 0.81
M47   6.51 ± 0.41   2.26 ± 0.01   1.98 ± 0.38    6.11 ± 0.07
M39   3.10 ± 0.14   2.14 ± 0.02   3.30 ± 0.41    2.27 ± 0.24
M31   2.49 ± 0.04   1.66 ± 0.01   3.62 ± 0.10    5.41 ± 0.12
M15   7.26 ± 0.19   4.41 ± 0.06   4.75 ± 0.30    6.29 ± 1.34
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