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INTRODUCTION

Bacteria utilize dissolved organic matter (DOM) for
growth and respiration, thereby remineralizing inor-
ganic nutrients that are essential for phytoplankton
production and serving as trophic links within coastal
and marine systems (Azam et al. 1983, Carlson et al.

2007). In estuaries, DOM sources include allochtho-
nous inputs from the land through rivers and ground-
water as well as autochthonous inputs from primary
producers (namely phytoplankton and plants)
(Cauwet 2002, Aitkenhead-Peterson et al. 2003,
Bertilsson & Jones 2003, Goñi et al. 2003, Teira et al.
2009). The chemical composition of the estuarine
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ABSTRACT: In blackwater systems of the southeastern US, dissolved organic carbon (DOC) con-
tributes a major portion to the total dissolved organic matter pool. The primary DOC source is ter-
restrial vegetation, with phytoplankton contributing less. Thus, upland development may reduce
terrestrial DOC inputs, thereby affecting bacterial abundances. Conversely, development and
runoff may increase nitrogen (N) and phosphorus (P) inputs, fueling phytoplankton growth and
algal-derived DOC. Yet, the variability of DOC, bacteria, and phytoplankton has not been fully
assessed across diverse land uses. We investigated seasonal (July 2012 to May 2013) levels of
DOC, bacteria, and phytoplankton biomass (chl a) in response to N and P additions at 4 coastal
South Carolina sites: a forested/agricultural creek, an urbanized creek, a forested creek, and a
detention pond. DOC concentrations were highest at the least developed site (forested creek),
suggesting the influence of surrounding land. DOC was significantly and positively correlated
with precipitation but negatively correlated with salinity, suggesting that rainfall affected DOC
mobilization. Chl a was highest during summer and positively correlated with temperature,
whereas bacterial abundances were generally negatively correlated with salinity. During experi-
ments, chl a was often greater in addition treatments than controls, especially at the urbanized
creek and detention pond. In certain N-amended treatments, particularly those containing urea,
both DOC and chl a became elevated following incubation. These results indicate that urea stim-
ulated phytoplankton biomass and possibly a greater contribution of phytoplankton-derived DOC
to the total DOC pool. Our findings suggest that biogeochemical cycling of DOC may become
altered in developing coastal regions.
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DOM pool includes dissolved carbon (C), nitrogen
(N), and phosphorus (P) (Pinckney et al. 2001, Flynn
2008). Dissolved organic carbon (DOC) in particular
provides reduced C for heterotrophic bacterial
growth and respiration (e.g. Raymond & Bauer 2000,
2001). In fact, total DOM has a high C:N ratio, such
that increased DOC fluxes can lead to bacteria com-
peting with phytoplankton for inorganic N and P
(Steelink 1985).

Major sources of DOC to estuaries include the
breakdown of terrestrial vegetation, tannins, water-
shed runoff, zooplankton excretion, and phytoplank-
ton cell leaching and lysis (Malinsky-Rushansky &
Legrand 1996, Pinckney et al. 2001). Allochthonous
DOC in particular has been shown to contribute sub-
stantially to the overall DOC pool in estuarine sys-
tems (Goñi et al. 2003, Chow et al. 2013). For exam-
ple, many coastal regions in the southeastern US,
including systems in South Carolina (SC), are influ-
enced by colored ‘blackwater’ rivers (Smith & Benner
2005) that tend to have high DOC concentrations
(Leff & Meyer 1991, Moran et al. 1999, Mallin et al.
2004, 2009). A primary source of allochthonous DOC
to the SC coast is fresh and decomposed leaf litter
from plants in surrounding forested wetlands (Goñi &
Thomas 2000, Davis et al. 2006). For example, in
Winyah Bay, the surrounding cypress-tupelo wet-
lands are a primary source of DOC to the estuary
(Chow et al. 2013).

Surrounding land use further influences the source,
quantity, and quality of DOC, thus mediating the lev-
els and production rates of heterotrophic bacteria
(Carlson et al. 2007, Nagata 2008, Wear et al. 2014).
Certain regions along the southeastern US coastal
zone are undergoing rapid expansion such that rates
of land development often exceed rates of population
growth (Allen & Lu 2003, DiDonato et al. 2009,
Sanger et al. 2015). The urbanization of forested and
agricultural land has been shown to strongly influ-
ence the magnitude and composition of terrigenous
materials (Walsh et al. 2005, Hutchins et al. 2014). For
example, DOC concentrations have been shown to
be higher in runoff from forested compared to urban-
ized watersheds (Wahl et al. 1997), whereas runoff
from urbanized watersheds typically exhibits higher
concentrations of inorganic nutrients and total sus-
pended solids than runoff from forested watersheds
(Tufford et al. 2003, Mallin et al. 2009). Bacterial
community composition in Winyah Bay was more
correlated to DOM (including DOC) quality rather
than quantity (Wear et al. 2014), suggesting that DOM
source (i.e. composition) regulates bacterial assem-
blages. Thus, watershed development may affect

both DOC delivery and bacterial community struc-
ture in receiving estuaries.

Leaching from phytoplankton cells also contributes
to the overall DOC pool in coastal and marine sys-
tems, but the amount of phytoplankton-derived DOC
varies spatially and temporally (Hitchcock et al. 2010).
For example, phytoplankton extracellular release of
DOC accounted for <40% of the bacterial C require-
ment (derived from bacterial production) across sev-
eral freshwater and marine systems (Baines & Pace
1991) and ranged from 0 to 30% in several coastal
Atlantic ecosystems (reviewed by Bertilsson & Jones
2003). In SC, estuarine phytoplankton contributes 20
to 50% of organic matter in Winyah Bay (Goñi et al.
2003). Since phytoplankton blooms are often associ-
ated with eutrophication (reviewed by Anderson et
al. 2008, Heisler et al. 2008), it is plausible that phyto-
plankton-derived DOC levels would be greater in
developed and nutrient-enriched regions than in less
developed regions. However, the extent to which
phytoplankton affects DOC concentrations and bac-
terial levels along developing coastlines, such as SC,
has not been  thoroughly investigated.

Despite the growing literature evaluating bacterial
responses to DOC in coastal systems, fundamental
questions remain relating DOC, bacteria, and phyto-
plankton across sites with differing land use charac-
teristics. The present study examined seasonal levels
of DOC, bacterial abundances, and phytoplankton
biomass (chl a) across 4 coastal SC sites with distinct
land uses: urban, stormwater detention pond, forested/
agricultural, and forested/undeveloped. The overall
goal was to investigate whether trends in DOC and
bacterial concentrations followed phytoplankton bio-
mass responses to nutrient additions. Specific objec-
tives were to (1) quantify DOC concentrations, bacte-
rial abundances, and chl a concentrations at each site
and evaluate correlations between these parameters
and with relevant environmental metrics (tempera-
ture, salinity, precipitation), and (2) determine whether
bacterial abundances and/or DOC responses corre-
spond with chl a changes in N and P additions.

MATERIALS AND METHODS

Site descriptions

This study was conducted in tandem with nutrient
addition bioassays (Reed 2014) de ployed at 4 tidally
influenced sites along the SC coast (Fig. 1). These
sites included 3 tidal creek habitats and 1 stormwater
detention pond, as described below.
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Thousand Acre (TA; 33°17’56” N, 79°15’21” W) is
a forested and agricultural tidal creek situated within
Winyah Bay, a coastal plain estuary that receives
water from 5 rivers: Sampit, Black, Waccamaw, Little
Pee Dee, and Yadkin-Pee Dee (Goñi et al. 2003,
Buzzelli et al. 2004). Winyah Bay is the fourth largest
estuary on the southeast coast (Goñi et al. 2003,
2009), and surrounding land is characterized by
forested, natural, managed, industrial, and agricul-
tural wetlands (Buzzelli et al. 2004).

Bull Creek (BC; 32°49’38” N, 80°01’44” W) is an
urbanized tidal creek (Holland et al. 2004) located on
the southeastern end of the Ashley River, a 48 km
long coastal plain tidal river (South Carolina Depart-
ment of Natural Resources 2003). The Ashley River
basin (~2300 km2) drains a variety of landscapes
including marshes, forested wetlands, commercial,
and residential development before reaching the city
of Charleston (South Carolina Department of Natural
Resources 2003, South Carolina Department of
Health and Environmental Control 2005).

Kiawah Island (KI) Pond number 075 (K075; 32°
36’44” N, 80°03’01” W) is a storm water detention
pond (constructed water body acting as a catchment
for runoff) that is bordered by homes, roadways, and
a golf course (Brock 2006). Stormwater detention
ponds accumulate nutrients, have high residence
times, and tend to stagnate, thereby creating envi-
ronments conducive to phytoplankton blooms, in -
cluding harmful algal blooms (HABs) (Lewitus et al.
2003, 2008, Drescher et al. 2007). HABs reported in
KI ponds have included several algal taxa, particu-

larly raphidophytes (Lewitus et al. 2003, 2004, 2008),
dinoflagellates (Lewitus et al. 2008), and cyanobac-
teria (Lewitus & Holland 2003, Brock 2006, Siegel et
al. 2011, Greenfield et al. 2014).

Wimbee Creek (WC; 32°36’43” N, 80°41’11” W) is
a forested tidal creek located on the Combahee River
in the Ashepoo, Combahee, and Edisto Rivers (ACE)
Basin. The ACE Basin drains an area of nearly
8000 km2 (Noble et al. 2003). The area surrounding
WC is forested, and the headwaters are character-
ized by a network of waterfowl impoundments.

Nutrient addition bioassays

Detailed methods for conducting nutrient addition
bioassays considered here are provided in Reed
(2014). Briefly, at each site described above, bioas-
says were deployed in situ seasonally (2011−2013): in
summer (July to August), fall (October to November),
winter (January to February), and spring (April to
May). This study focused on Year 2 (July 2012 to May
2013) of the broader project. Bioassays were per-
formed in 1 l acid-cleaned (10% hydrochloric acid,
HCl, for 24 h) Nalgene® polycarbonate bottles, and
treatments (in triplicate) were as follows: (1) no addi-
tion (control, C); (2) orthophosphate (PO4

3−, P); (3)
ammonium (NH4

+, A); (4) NH4
+ + PO4

3− (AP); (5)
nitrate (NO3

−, N); (6) NO3
− + PO4

3− (NP); (7) urea (U);
(8) urea + PO4

3− (UP); and (9) all (NH4
+ + NO3

− + urea
+ PO4

3−, ALL). N and P were added at Redfield ratios
(16:1 as 20 µg per atom N and 1.25 µg per atom P;
Redfield 1958).  Bottles were randomized in mesh
bags that were attached by a rope to a cement weight
that anchored the experimental set-up. Bottles were
incubated in situ for 48 h at subsurface depths
(~0.2−0.3 m; Secchi depth at sites used here was typ-
ically 0.3−0.5 m) to avoid photoinhibition. This incu-
bation depth corresponded to an irradiance of
approximately 32% I0 (irradiance at 0 m).

Water quality measurements

A YSI 6600 data sonde was attached to the cement
weight to record environmental parameters (temper-
ature, salinity, dissolved oxygen, and turbidity) at
15 min intervals throughout the 48 h incubation. At
the beginning of each deployment (t0), 3 water sam-
ples (1 l each) were collected to assess initial concen-
trations of DOC, chl a, and bacterial abundances.
After 48 h, incubation bottles were retrieved and
immediately transported to the laboratory in the dark
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in coolers for analyses (≤2 h to transport samples).
Cumulative precipitation (mm) data 5 d prior to
deployments were obtained from the National Cli-
matic Data Center for the Georgetown Airport (TA),
the Charleston International Airport (BC), the Marine
Corps Air Station, Beaufort (WC), and the Kiawah
Island Community Association (K075).

DOC analyses

A Shimadzu TOC-VCSN analyzer with autosampler
ASI-V was used to determine DOC concentrations.
All glassware used for DOC analyses was acid-
washed (10% HCl), rinsed with distilled (DI) water,
dried, and combusted at 475°C for 4.5 h in a Barn-
stead Thermolyne 30400 furnace to remove residual
organic C. Subsamples (~17 ml) of each t0 and bio -
assay replicate were filtered through pre-combusted
(450°C for 4 h) 0.7 µm pore size Whatman™ glass
fiber (GF/F) filters into 20 ml acid-washed (10% HCl)
scintillation vials; samples were then acidified with
1 to 2 drops of 10% HCl and stored (4°C) until analy-
sis. Prior to each analysis batch (30−60 samples), a 6
point calibration curve was generated according to
standard protocols (Shimadzu TOC-VCSH/CSN User
Manual) as follows. A 1000 mg l−1 total organic car-
bon (TOC) stock solution was prepared by combin-
ing 2.125 g potassium acid phthalate with 2 ml
36.5−38.0% HCl and then diluting this solution to 1 l
with DI water in a volumetric flask. TOC standards
were then serially diluted to 100, 50, 25, 10, 5, and
2.5 mg l−1. Calibration curves were accepted if the R2

value was 0.99 or higher. Analysis batches consisted
of blanks (DI water) and C standards (low C standard
of 41−44 µM DOC, high C standard of 25 mg l−1

(2081 µM) from the stock solution, and an inorganic
C standard prepared by combining 2.202 g Na2CO3

and 1.7485 g NaHCO3 in a volumetric flask followed
by dilution to 500 ml with DI water) to monitor instru-
ment drift and accuracy.

Phytoplankton biomass

Whole water samples (up to 40 ml) from each repli-
cate were filtered through 0.7 µm pore size What-
man™ GF/F filters for total chl a as a proxy for phyto-
plankton biomass. Filters containing samples were
placed into acid-washed (10% HCl) 25 ml scintilla-
tion vials, and 1 ml of magnesium carbonate (MgCO3)
was added as a buffer to prevent acid degradation of
chl a. Samples were frozen (−20°C) until analysis, at

which time 9 ml of high-performance liquid chroma -
to graphy (HPLC) grade acetone (90%) were added to
each replicate, and chl a was extracted (−20°C for
36 h). Following extraction, chl a concentrations
(µg l−1) were quantified according to Welschmeyer
(1994) using a Turner TD 700  fluorometer.

Microbial quantification

Subsamples (~5 ml) from triplicate bioassay and t0

bottles were syringe-filtered through 5 µm Nitex®

cloth, and 1.5 ml of the filtrate was collected in 2 ml
cryovials. Formaldehyde (0.2 µm-filtered, 10% solu-
tion) was added to each cryovial to yield a 1.0% final
concentration. Samples were placed in a 4°C refrig-
erator to fix (~30 min); fixed samples were then flash
frozen in liquid nitrogen and stored at −80°C. Prior to
analysis, fixed samples were stained with SYBR®

Green I (SYBR-I) Nucleic Acid Gel Stain (Molecular
Probes®) to a final concentration of 10−4 of the com-
mercial stock solution. Samples were then incubated
in the dark for 30 min at room temperature. Just
before analysis, 14 µl of a bead stock (2.0 µm dia -
meter fluorescent beads) suspension were added to
the samples (Marie et al. 1997, 1999). Flow cytometry
was conducted with a MoFlo Astrios High Speed Cell
Sorter (Beckman Coulter®), and green fluorescence
was collected in the FL1 channel (600 nm).

Statistical analyses

Statistical analyses were performed using R (v.
2.14.2) statistical software. Data were initially tested
for normality (Shapiro-Wilk), and those that were not
normally distributed were log-transformed before
further analyses. All t0 data (DOC, bacterial abun-
dances, and chl a) were normally distributed. Follow-
ing incubation, most data remained normally distrib-
uted with the exceptions of spring DOC concentrations
at WC; bacterial abundances at TA during fall, BC
and K075 during winter and spring, and all seasons
at WC; and chl a concentrations at TA during sum-
mer, K075 during winter, and WC during fall and
spring. Differences in t0 DOC, bacterial abundances,
and chl a across sites and seasons were determined
using 2-way ANOVA. Pearson’s product-moment
correlation analyses were performed on mean t0

DOC, chl a, bacterial abundances, and water quality
parameters (temperature, salinity, precipitation) at
each site as well as across all bioassays (pooled). Sep-
arate 1-way ANOVAs were conducted on mean
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treatment DOC, bacterial abundances, and chl a fol-
lowed by post hoc Tukey’s HSD tests to determine
significant differences in treatment levels compared
to the control during each bioassay.

RESULTS

Ambient water quality

Seasonal differences in mean ± SD water tempera-
ture were observed across all sites: summer (29.6 ±
1.3°C), fall (16.0 ± 3.3°C), winter (13.1 ± 1.7°C), and
spring (21.7 ± 4.0°C), with K075 being the warmest
site and WC typically the coolest (Table 1). Sites were
polyhaline with comparable salinities, except for
winter at K075, when salinity was elevated (24.6 ±
2.3 psu) relative to the other 3 sites. The lowest salin-
ities usually followed periods of highest 5 d cumula-
tive rainfall. Warm temperatures were generally
associated with low dissolved oxygen, as mean dis-
solved oxygen was lowest during the summer at TA,
BC, and WC and during spring at K075. Mean turbid-
ity was lowest overall at K075 (4.2 ± 2.5 NTU) and
highest at TA (165.4 ± 288.2 NTU), coincident with
several extremely high values recorded during the
summer 2012 TA bioassay.

Initial (t0) DOC concentrations did not differ signif-
icantly across sites or seasons (p > 0.05). However,
the least developed site (WC) had the highest levels

(mean ± SD) of DOC (1648.2 ± 34.4 µM) compared to
the lowest value at BC (549.6 ± 121.5 µM), both
recorded during winter (Fig. 2A). Bacterial abun-
dances (cells ml−1) differed significantly across sites
(p < 0.05), but not seasons (p > 0.05), such that they
were highest at TA followed by BC, WC, and K075
(Fig. 2B) and did not coincide with trends in DOC
concentrations (Fig. 2). Chl a concentrations differed
significantly across sites (p < 0.05) and seasons (p <
0.05) and were highest at K075 and TA, lowest at
WC, and generally greatest during the summer
across sites (Fig. 2C).

Correlations between DOC, bacteria,
 phytoplankton biomass, and water quality

The t0 DOC, bacterial abundance, and chl a values
were at times highly, but not significantly, correlated
(Table 2; p > 0.05). Specifically, DOC and bacterial
abundances had a strong negative correlation at TA
(r = −0.87), but they were positively correlated at all
other sites, including a strong correlation (r = 0.80) at
WC. DOC and chl a were negatively correlated at the
less developed sites (TA and WC) but positively cor-
related at the more developed sites (BC and K075).
Bacterial abundances and chl a were weakly and
positively correlated at TA and BC, but negatively
correlated at K075 and WC. DOC was negatively cor-
related with salinity at all sites (r = −0.58). For sites
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Site   Season       ——— T (°C) ———     ——— S (psu) ———   —— DO (mg l−1) ——        ——— TB (NTU) ———       P (mm)
                            Mean (SD)     Range    Mean (SD)      Range     Mean (SD)     Range      Mean (SD)       Range         Total

TA     Summer     28.9 (1.4)     26.4−32.2   14.0 (1.9)     10.4−18.3     4.9 (1.6)      3.0−8.7   165.4 (288.2) 18.8−1291.2     19.8
          Fall             14.8 (1.3)     12.2−17.3   22.2 (3.2)     15.6−28.1     7.3 (0.5)      6.0−8.0     35.1 (21.4)     9.9−119.9         0.0
          Winter         10.9 (1.9)     7.2−14.1     5.9 (1.2)        3.5−8.3       8.8 (1.0)     6.4−11.8     31.6 (32.3)     8.0−147.8         5.1
          Spring         18.9 (1.7)     16.6−24.2    2.2 (0.9)        0.6−4.6       7.4 (1.1)      4.9−9.7     60.6 (49.3)     12.3−235.4       36.8
                                                                                                                                                                                                      
BC     Summer     30.1 (0.7)     28.5−31.8   15.5 (3.0)      0.2−20.8     3.9 (1.3)      2.1−8.4       17.5 (8.5)       3.1−55.4         1.3
          Fall             21.3 (2.0)     14.7−25.4   16.3 (7.3)      0.1−23.3     5.7 (1.6)     4.2−10.4     22.1 (23.3)     0.6−294.4         0.0
          Winter         14.1 (0.7)     13.1−16.6    9.6 (6.9)       0.0−21.8     8.1 (0.8)     6.8−11.0           nd                 nd             45.2
          Spring         18.8 (1.0)     16.2−21.4    7.5 (3.4)       0.0−14.5     6.2 (0.9)     4.7−10.4     19.9 (8.5)       0.0−71.1         21.8
                                                                                                                                                                                                      
K075 Summer     31.5 (1.0)     29.9−33.5   14.5 (0.5)     13.9−17.9     7.7 (1.4)     5.3−10.5       4.2 (2.5)         3.0−33.6         46.7
          Fall             15.4 (0.8)     14.1−16.8   25.2 (0.3)     24.2−26.0     7.3 (0.5)      5.8−8.4       0.4 (0.3)         0.0−1.9           9.7
          Winter         15.3 (1.5)     12.3−17.7   24.6 (2.3)     21.0−28.5     7.7 (0.9)      6.1−9.5       0.0 (2.5)         0.0−33.0         0.0
          Spring         27.4 (0.6)     26.6−29.4   16.0 (3.4)     11.4−24.8     4.0 (0.9)      2.4−6.1       6.6 (2.3)         4.1−17.3         0.0
                                                                                                                                                                                                      
WC   Summer     28.0 (0.3)     27.5−28.5   22.2 (2.9)     17.8−27.1     3.2 (0.3)      2.8−4.0     32.0 (43.0)     6.7−339.1         9.7
          Fall             12.3 (0.2)     11.9−12.8   26.7 (1.7)     24.0−30.0     7.5 (0.2)      7.2−7.8       10.1 (3.4)       3.0−30.9         0.0
          Winter         12.1 (0.7)     11.1−13.4    3.4 (3.0)       0.5−11.0     9.0 (0.2)      8.6−9.3     30.4 (11.2)       7.2−56.2         65.3
          Spring              nd               nd               nd                 nd               nd               nd                nd                 nd             34.3

Table 1. Mean (±SD) and ranges of ambient temperature (T), salinity (S), dissolved oxygen (DO), and turbidity (TB) throughout
each 48 h incubation (n range: 191−198), as well as precipitation (P) values. nd: no data. Study sites are shown in Fig. 1
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pooled, DOC and precipitation were significantly
and positively correlated (r = 0.51, p < 0.05), with a
pronounced and significant relationship at WC (r =
0.97, p < 0.05). Bacterial abundances tended to be
negatively correlated with salinity (except at TA), but
this correlation was only statistically significant at
WC (Table 2; p < 0.05). Bacterial abundances were
weakly and negatively correlated with temperature
at BC and WC, but positively correlated at TA and
K075. Chl a was positively, but not significantly, cor-
related with temperature across sites, particularly at
BC (r = 0.79) and WC (r = 0.74).

Bioassays

DOC. Final control concentrations were lower than
t0 concentrations at all sites except K075 during the
summer and WC during fall and spring (Figs. 3−6),
suggesting utilization of DOC (likely by bacteria)
during experimentation. DOC concentrations in
treatments containing urea (U, UP, and ALL) were
significantly greater than the controls during all
bioassays except the summer U and UP treatments at
K075 and the fall U treatment at WC (Table 3; p <
0.05). DOC concentrations were also significantly
greater in several inorganic nutrient additions com-

pared to the controls (e.g. A treatment at BC during
spring; P, A, AP, N, and NP treatments and A, AP, N,
and NP treatments at K075 during summer and win-
ter, respectively; AP and NP treatments at WC during
winter and spring, respectively; Table 3; p < 0.05).

Bacterial abundances. Final control bacterial
abundances were lower than t0 abundances at all
sites except TA and WC during the fall and K075
 during the winter (Figs. 3−6). However, final bacter-
ial abundances in treatments containing urea were
significantly higher than controls at BC and K075
during the summer, the UP treatment at BC during
the winter, and the ALL treatment at K075 during the
winter (Table 3; p < 0.05). Bacterial abundances were
also significantly higher in certain inorganic nutrient
additions compared to the controls (e.g. NP and N
treatments at BC during fall and winter, respectively;
Table 3; p < 0.05).
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Fig. 2. Mean (n = 3) (±SD) initial (A) dissolved organic car-
bon (DOC) concentrations, (B) bacterial abundances (BA),
and (C) chl a during each bio assay at each site. Study sites
are shown in Fig. 1. Symbols obscure each other in some 

instances

Site Response Chl a BA (×105 S T P 
measure (µg l−1) cells ml−1) (psu) (°C) (mm)

TA DOC −0.15 −0.87 −0.95 −0.71 0.39
Chl a 0.23 −0.14 0.67 0.45
BA 0.73 0.88 0.08

BC DOC 0.65 0.53 −0.81 0.66 −0.44
Chl a 0.09 0.09 0.79 −0.41
BA −0.74 −0.26 0.50

K075 DOC 0.20 0.42 −0.91 0.94 0.65
Chl a −0.56 0.12 0.14 0.24
BA −0.76 0.56 −0.28

WC DOC −0.27 0.80 −0.86 −0.15 0.97
Chl a −0.69 0.63 0.74 −0.51
BA −0.99 −0.24 0.90

Pooled DOC −0.07 −0.22 −0.58 0.08 0.51
Chl a 0.05 0.04 0.43 −0.21
BA −0.40 0.16 0.10

Table 2. Pearson’s product-moment correlation coefficients
between mean initial measurements from each site (n = 4)
and across all bioassays (N = 16). Values include bacterial
abundances (BA), salinity (S), temperature (T), and precipi-
tation (P). Numbers in bold represent significant corre -
lations (p < 0.05). Study sites are shown in Fig. 1. DOC: 

dissolved organic carbon
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Phytoplankton biomass. Final control chl a con-
centrations were higher than t0 concentrations at TA,
BC, and WC throughout the study (Figs. 3, 4 & 6).
Chl a concentrations generally followed trends in
DOC at BC and K075 (Figs. 4 & 5), with treatments
containing urea having significantly higher chl a and
DOC concentrations than other addi tion treatments
as well as the controls (Table 3; p < 0.05), and this dif-
ference was often highly significant (p < 0.001). In
particular, mean chl a at BC was highest during the
summer, reaching 277.5 ± 45.3 μg l−1 in the ALL treat-
ment compared to 34.3 ± 3.7 µg l−1 in the control, and
mean chl a levels were significantly greater than the
control in each N addition (Table 3; p < 0.05). At TA
during the summer, chl a in each N addition treatment
was significantly higher than the control (Table 3; p <
0.001), but concentrations were not significantly dif-
ferent during other seasons (p > 0.05). By compari-
son, at WC, chl a in the A treatment was significantly

greater than the control during the
spring (Table 3; p < 0.05), but not sig-
nificantly different in any other treat-
ment or season (p > 0.05). De tailed
descriptions of the taxonomic composi-
tion of associated phytoplankton com-
munities fall beyond the scope of the
present study, but are provided in a
companion study (Reed 2014).

DISCUSSION

We examined seasonal trends of
DOC, bacterial abundances, and chl a
in 4 coastal SC systems with differing
land uses. Concentrations of DOC,
bacteria, and chl a were not signifi-
cantly correlated with each other.
However, initial (t0) DOC was highest
overall at the least developed site
(WC), lowest at TA, and was signifi-
cantly and positively correlated with
precipitation as well as negatively cor-
related with salinity. Although trends
in DOC levels did not always coincide
with bacterial abundances, they often
followed chl a levels, which were
 further influenced by temperature,
particularly in treatments containing
urea. These findings indicate that tem-
perature, salinity, and precipitation
influenced microplankton abundances
within SC coastal systems, and that

elevated N inputs (primarily organic N) may increase
phytoplankton biomass that may, in turn, contribute
a greater proportion to total DOC.

DOC concentrations reported herein were within
the range of those previously reported for other
southeastern US estuaries. As examples, DOC con-
centrations at WC were typically >1000 µM, similar
to those found in the Ogeechee River estuary
(located in northern Georgia), which typically has
DOC concentrations of 12 mg l−1 (~1000 µM; Moran
et al. 1999). The Ogeechee River receives inputs from
the Piedmont and coastal plain regions (Moran et al.
1999), and the ACE Basin receives inputs solely from
the coastal plain region (Marion 2008). DOC concen-
trations at TA measured in this study were similar to
previously reported DOC levels at both TA (Buzzelli
et al. 2004) and other sites within the lower portion of
Winyah Bay (Goñi et al. 2003), but they were lower
than concentrations measured in an isolated cypress-
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tupelo wetland (Crabhaul) located in northern
Winyah Bay. The latter is not surprising because
Crabhaul receives significant DOC inputs from sur-
rounding leaf litter, with concentrations ranging from
42 to 55 mg l−1 (~3500 to 4580 µM) during peak litter-
fall months (Chow et al. 2013). The DOC concentra-
tions observed during the summer and spring at
K075 are consistent with DOC concentrations meas-
ured in 2 similar KI stormwater detention ponds (25
April and 5 July 2001), with mean concentrations in
each pond of 1094 and 1484 µM, respectively (Lewi-
tus et al. 2003). While there is no available literature
on DOC levels at BC, concentrations were within the
range of the levels measured at our other sites, albeit
with different seasonal maxima than TA and WC.

Our findings suggest that DOC concentrations may
have been influenced by a number of factors, includ-
ing surrounding land cover. The highest DOC con-
centrations were observed at the least developed site
(WC), consistent with prior studies reporting inverse

relationships between DOC concen-
trations and extent of surrounding
land development (Wahl et al. 1997,
Mallin et al. 2009). WC is primarily
surrounded by marsh grass and
forested wetlands (Reed 2014), and
this vegetation was likely a major
source of organic matter to the coast.
The influence of freshwater inflow for
transporting terrigenous matter, in -
cluding DOC, has been reported else-
where within the ACE Basin (Johnson
et al. 2006). Contrary to our expecta-
tions, sites BC and K075, characterized
by relatively greater development,
had the second and third highest
mean concentrations of DOC, respec-
tively, with TA having the lowest DOC
concentrations. The comparatively
lower DOC concentrations at TA were
primarily driven by summer and fall
levels and coincided with the highest
bacterial abundances, suggesting that
DOC was likely a primary resource for
bacterial growth and metabolism dur-
ing these seasons. Precipitation was
also a key factor influencing DOC lev-
els, as the generally significant and
positive correlations, combined with
the negative correlations between
DOC and salinity, suggest that rainfall,
not surprisingly, reduced salinity lev-
els and mobilized DOC delivery from

the land to the receiving study sites. For example,
WC received 65.3 and 34.3 mm of precipitation 5 d
prior to the winter and spring 2013 deployments,
respectively, contributing to the significant positive
correlation between DOC and precipitation. These
findings support prior studies in which precipitation
was shown to affect estuarine organic matter levels
and cycling (Mallin et al. 2009, Chow et al. 2013).
The exception was BC, where DOC and precipitation
were weakly and negatively correlated, despite neg-
ative correlations between DOC and salinity. Possi-
ble explanations could be that either other fresh-
water sources (such as urban runoff) contributed to
DOC inputs or that development reduced inputs of
terrestrially derived (e.g. leaf litter, marsh grass, etc.)
DOC to this system.

Since bacterial abundances were also generally
negatively correlated with salinity and positively cor-
related with precipitation, mobilization of terrestri-
ally derived DOC into the study systems by precipita-
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tion and enhanced freshwater flow likely fueled bac-
terial production and numbers, although we did not
measure flow rates. This idea is supported by previ-
ous studies showing that salinity gradients influence
both estuarine bacterioplankton community compo-
sition (Bouvier & del Giorgio 2002, del Giorgio & Bou-
vier 2002) and regulate trophic status, such as within
the Chesapeake Bay (Kemp et al. 1997). Similarly,
the generally positive correlations between t0 bacter-
ial abundances and DOC at all sites but TA under-
scored the importance of DOC supply for microbial
growth. However, trends in bacterial abundances
measured during bioassays did not always follow
DOC concentrations, possibly due to the relatively
short experimental duration or the bioavailability of
DOC to bacterial communities. DOM composition
and source (including DOC) have been shown to
affect bacterial community composition (Wear et al.
2014) and regulate nutrient cycling (Foreman &
Covert 2003, Carlson et al. 2007, Nagata 2008) in

other blackwater estuaries. The avail-
ability of organic substrates for bacter-
ial consumption is influenced by a
wide variety of factors including, but
not limited to, chemical composition
(Sun et al. 1997), the ratio of C:N
(Hunt et al. 2000), and irradiance
(Moran & Covert 2003, Smith & Ben-
ner 2005).

Although bacterial metabolic rates
were not evaluated in this study, posi-
tive correlations between bacterial
abundances and temperature at TA
and K075 support prior research
showing that heterotrophic bacterial
physiological processes are often facil-
itated at higher temperatures (Hoch &
Kirchman 1993, Shiah & Ducklow
1997, Pomeroy et al. 2000, reviewed
by Apple et al. 2008). Since tempera-
ture and bacterial abundances were
negatively correlated at BC and WC, it
is possible that microzooplankton
grazing within treatment bottles pre-
vented the bacterial community from
attaining higher abundances. As the
goal of this study was to evaluate net
microbial numbers and responses,
bioassay water was not filtered so
grazing may have been a factor. Alter-
natively, resource supply has been
shown to influence bacterial metabo-
lism more than temperature at higher

overall temperatures (Felip et al. 1996, Apple et al.
2006, 2008). Therefore, additional resources (other
forms of C, N, and P) may have also controlled bacte-
rial processes during warmer months at these sites.

Elevated chl a concentrations in N addition treat-
ments often coincided with higher DOC levels, par-
ticularly during the summer, in treatments contain-
ing urea, and at BC, K075, and TA. Previous studies
have described the importance of N for phytoplank-
ton assemblages and production in southeastern
coastal systems (Mallin et al. 2004, Piehler et al.
2004), including the stimulatory effects of urea in
both estuaries (Glibert et al. 2004, Reed 2014) and
stormwater detention ponds (Siegel et al. 2011, Reed
2014). DOC concentrations in treatments containing
urea were almost always higher than control and t0

concentrations throughout the study, coincident with
chl a levels often being significantly greater in treat-
ments containing urea than control and t0 concentra-
tions. Thus, N additions (especially urea) not only
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resulted in increased phytoplankton biomass, but
presumably a greater contribution by phytoplankton
to the total DOC pool. One implication of these find-
ings is that with continued land development and N
loadings to coastal systems, phytoplankton biomass
and bloom incidences are likely to increase and con-
tribute a greater proportion to the total DOC pool.
This could affect the biogeochemical cycling of C
within these systems. Even though bacterial abun-
dances and chl a were not significantly correlated,
increased phytoplankton production may provide
additional DOC for bacterial uptake, leading to
greater coupling between heterotrophic bacteria and
phytoplankton assemblages. This process has been
observed across a wide range of estuarine systems
(e.g. Fuhrman et al. 1980, Cole et al. 1988, Rooney-
Varga et al. 2005, Lonsdale et al. 2006, Apple et al.
2008).

Future studies are needed to further elucidate
interactions between DOC, bacterial abundances,

and chl a. For example, since
bioavailability of DOC is influenced
by numerous factors, it is possible
that some DOC was simply not
bioavailable to bacteria. Thus, studies
are needed to determine DOC source
(such as the relative contribution of
phytoplankton vs. allochthonous ter-
restrial matter to the total DOC pool)
and composition within our study
sites. Furthermore, future studies
should consider sampling along a
salinity gradient to examine DOC
transport and fate. Additionally, since
we reported overall bacterial abun-
dances, we could not distinguish het-
erotrophic vs. autotrophic production.
Measurements of specific C uptake
rates during long-term incubations
may elucidate how DOC is incorpo-
rated within microbial growth and
metabolic processes. Similarly, acces-
sory pigments are known to affect
algal chl a concentrations (e.g. Marra
et al. 2007 and others) as well as the
C:chlorophyll ratio (Cloern et al.
1995). Diatoms have been shown to
be the primary taxon contributing to
total chl a across sites considered
here, although biomass increases in a
wide range of phytoplankton taxa
also re sponded to N additions (Reed
2014). Since DOM release rates differ

among algal growth stages and species (e.g. Wetz &
Wheeler 2007), future research could explore spe-
cies-specific DOC production in sites considered
here. Finally, studies should evaluate the potential
role of grazing on bacteria and phytoplankton con-
centrations because the lack of significant correla-
tions between bacterial abundances and chl a may
have been related to different selective grazing
rates on bacteria vs. phytoplankton.

In conclusion, this study showed that temperature,
salinity, and precipitation were the primary environ-
mental factors influencing DOC concentrations, bac-
terial abundances, and chl a levels across the 4 study
sites. DOC concentrations were likely further influ-
enced by surrounding land use, with the least devel-
oped site generally exhibiting the highest DOC con-
centrations. Higher DOC concentrations in treat-
ments containing urea often corresponded with ele-
vated chl a, suggesting that phytoplankton biomass
was stimulated by organic N additions and likely
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contributed a greater proportion to total DOC.
Finally, this study has broader management implica-
tions, as continued alteration of the natural SC
coastal landscape will likely affect the inputs and
sources of DOM (including DOC) to coastal systems.
Consequently, allochthonous sources of DOC from
terrestrial matter will probably decrease in tandem
with coastal development, but N inputs associated
with development and runoff will increase. Since
certain N-forms (especially organic N) can stimulate
phytoplankton growth and blooms, this elevated
phytoplankton production may increase DOC inputs
from phytoplankton.
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