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INTRODUCTION

Sulfate-reducing microorganisms (SRMs) are a tax-
onomically diverse group involved in the biogeo-
chemical cycles of carbon, sulfur (Jørgensen 1982)
and mercury (Gilmour et al. 1998). They are anaero-
bically respiring microorganisms, which couple the
degradation of organic compounds to the reduction
of sulfate as a terminal electron acceptor (Rabus et al.
2006), resulting in the production of sulfide (Muyzer

& Stams 2008). SRMs have been found in a variety of
ecosystems, including freshwater wetlands (Li et al.
1999, Pester et al. 2012), estuarine sediments (Jiang
et al. 2009) and extreme environments (Dhillon et al.
2003, Fishbain et al. 2003); they have also been found
in high abundances in polluted sites (Pérez-Jiménez
& Kerkhof 2005) and associated with metals (Naka-
gawa et al. 2002).

Six phylogenetic lineages constitute the cultured
representatives of known SRMs, with 4 of them
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belonging to the bacterial (Delta -
proteo bacteria, Nitrospirae, Fir mi cu -
tes, Thermodesulfo bacteria) and 2 to
the archaeal domain (Eury archaeota,
Crenarchaeota) (Muyzer & Stams
2008, Müller et al. 2015). Due to their
polyphyletic nature, 16S rRNA gene
based analysis cannot sufficiently de -
scribe the SRMs and functional gene
markers should be used instead for the
assessment of their abundance and
diversity (Wagner et al. 2005).

Sulfate reduction is a reaction found
in sulfate-reducing prokaryotes and
other organisms, such as plants, algae
and fungi, and it can be further distin-
guished into assimilatory and dissimi-
latory sulfate reduction (Madigan et
al. 2012). The final step of the latter,
namely the reduction of (bi)sulfite to
sulfide, is catalyzed by the dissimila-
tory (bi)sulfite reductase (dsr ) which is
encoded by the dsrAB gene (Kondo & Butani 2007,
Liu et al. 2009). Therefore, the dsrAB gene is consid-
ered a key functional marker for mole cular analysis
and detection of SRMs (Wagner et al. 1998, Dar et al.
2007) and its application has revealed a great diver-
sity of organisms that are not closely related to
known and recognized SRMs. However, it should be
interpreted with caution since dsrAB, in reverse, is
also involved in the oxidative steps of the biogeo-
chemical sulfur cycle (Müller et al. 2015).

In the present study, the chosen technique for the
identification and enumeration of SRMs was pyro -
sequencing (Ronaghi et al. 1998) of the dissimilatory
sulfite reductase β-subunit (dsrB) gene. Pyrosequen -
cing is a molecular technique that has been widely
applied in the field of microbial ecology, mostly tar-
geting hypervariable regions of the 16S rRNA gene
(e.g. Thompson et al. 2011, Wang et al. 2012) in -
stead of functional marker genes (e.g. Pelikan et al.
2016).

The site under investigation was the lagoonal
 complex of the Amvrakikos Gulf (Ionian Sea, western
Greece), one of the largest semi-enclosed embay-
ments of the Mediterranean Sea, which is charac -
terized by a fjord-like oceanographic regime (Feren -
tinos et al. 2010). The structure and function of
lagoonal ecosystems is largely determined by the
input of organic matter from terrestrial and marine
environments, as well as from the atmosphere (e.g.
Viaroli et al. 2008). The subsequent decomposition
and removal of organic matter (Tagliapietra et al.

2012) defines the structure and function of lagoonal
ecosystems.

The study aimed to identify SRMs, and specifically
to test (1) whether the SRM communities in the stud-
ied lagoons exhibit biogeographic patterns and (2)
the extent to which these patterns are associated
with environmental factors.

MATERIALS AND METHODS

Location and general characteristics of the lagoons
and sampling sites

The lagoons of the Amvrakikos Gulf (38° 59’ N,
20°57’ E) are protected by the Ramsar convention
and are listed in the Natura 2000 network. The Gulf
is connected with the Ionian Sea via a narrow chan-
nel, the Preveza (Aktio) Strait (Kapsimalis et al.
2005). The lagoonal complex at the northwest part of
the Amvrakikos Gulf is formed by the rivers Arach -
thos and Louros (Poulos et al. 1995).

Five lagoons of the Amvrakikos Gulf were sam-
pled for the purposes of this study: Logarou, Rodia,
Tsou kalio, Mazoma and Tsopeli. In each lagoon, 2
sampling stations were chosen at the extremes of
the confinement gradient: the first station was
located at the inner part of the lagoon and the sec-
ond near the channel connecting the specific lagoon
with the Gulf (Fig. 1). Sampling was carried out in
February 2011.
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Fig. 1. Amvrakikos Gulf in the Ionian Sea, indicating the location of lagoons
(Logarou, Rodia, Tsoukalio, Mazoma and Tsopeli) and sampling stations (2
per lagoon) used for study of the diversity and abundance of sulfate-reducing
microorganisms. Filled symbols are stations inside the lagoons; empty sym-

bols are stations in the channel connecting each lagoon to the gulf
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Sampling methodology

Sediment samples were collected from all stations
by means of a modified manually operated box-
corer, with a sampling surface of 156.25 cm2 and a
sediment penetration depth of 25 cm. Cylindrical
sampling corers, with an internal sampling surface
of 15.9 cm2, were placed inside the box-corer and
sub-samples of the sediment’s upper layer (0 to
0.2 cm) were collec ted from them. Three replicate
units were taken from each sampling station, to
determine variability within and among stations.
Samples for molecular analysis (each consisting of
about 15 cm3 of sediment) were placed in 50 ml fal-
con tubes (Sarstedt) and were stored at −20°C until
further processing in the laboratory.

In addition, a variety of environmental variables
were measured both in the sediment and in the water
column (for a detailed description see Pavloudi et al.
2016, Vasileiadou et al. 2016).

DNA extraction, PCR amplification and
 pyrosequencing of the dsrB gene

DNA was extracted using the UltraClean® Soil
DNA Isolation Kit (MO BIO Laboratories), according
to the ‘alternative protocol for maximum yields’, as
recommended by the manufacturer. About 0.5 g
(±0.2 g) of wet sediment from each sample were
used.

PCR amplification was performed with newly de -
signed primers, based on genomes of known SRMs
and targeting part of the dsrB gene. Primer design
was done in accordance with the recommendations
of Roche (manufacturer of the GS FLX Titanium) and
specifically guided by the advice that amplicons
should cover the sequence of interest within the first
400 bp of sequencing. Primer coverage was tested a
posteriori with the ARB Probe Match tool (Ludwig et
al. 2004) against the 1292 core nucleotide sequences
from the reference database (Müller et al. 2015),
using perfect match and one weighted mismatch.

The primers used were 1595f (5’-YCA YGA RAT
CCT BGA RCC-3’) and 1905r (5’-CTG GGT RTG
RAC GAT RTT G-3’). The primers were comple-
mented with the 454 adapters (Lib-A Chemistry)
and with sample-specific 5 bp barcodes (nucleotide
‘keys’) downloaded from VAMPS (Huse et al. 2014).
Six different primer pairs were used, each one bear-
ing a specific barcode which enabled the separation
of the different samples after the sequencing (de -
multiplexing).

The amplification reaction mix contained 6 µl 5X
KAPAHiFi Fidelity buffer, 0.9 µl KAPA dNTP Mix
(10 mM), 1.5 µl from each primer (10 µM), and 0.6 µl
KAPAHiFi HotStart DNA polymerase (1 U µl−1) in a
final volume of 30 µl per reaction. DNA template con-
centration was about 50 ng µl−1. The PCR protocol
used as follows: 95°C for 5 min; 30 cycles at 98°C for
20 s, 54°C for 15 s, 72°C for 30 s; 72°C for 5 min.
Amplifications were carried out using MyCycler
(BIORAD) and DNA Engine DYAD (Peltier Thermal
Cycler, MJ Research). Samples were purified using
Agencourt AMPure XP (Becker Coulter). Amplicons
were quantified with the Picogreen assay (Molecular
Probes), mixed in equimolar amounts and sequenced
using the 454 GS FLX Titanium Series (Roche) hosted
at IMBBC (HCMR), in compliance with the recom-
mendations of the manufacturer and using 4 lanes of
the sequencing plate. Sequencing of one amplicon
(sample M_01_A; see Table S1 in Supplement 1 at
www.int-res.com/ articles/ suppl/ a079 p209_ supp1. pdf)
was considered to be faulty, resulting in a high num-
ber of errors. Therefore this sample was not included
in further analyses.

All raw sequence files of this study were submitted
to the European Nucleotide Archive (ENA) (Lei no -
nen et al. 2011) with the study accession number
PRJEB3370 (available at www.ebi.ac.uk/ ena/ data/
view/ PRJEB3370).

Sequence processing

The raw sequence reads retrieved from all sedi-
ment samples were processed with the Amplicon-
Noise algorithm for removal of 454 sequencing er -
rors, PCR single base errors and chimeras (Quince et
al. 2011), as described in Pavloudi et al. (2016).

In addition to filtering and denoising, a further
level of error correction was employed by translating
nucleotide sequences into amino acids. The clustered
high quality nucleotide sequences, using the 90%
nucleotide similarity cut-off (Kjeldsen et al. 2007,
Angermeyer et al. 2016), were translated to protein
using FrameBot (Wang et al. 2013); detection and
correction of frameshift errors in the reads were done
using a set of known dsrB protein sequences.

As described in Pelikan et al. (2016), the translated
amino acid sequences of the present study were
aligned to the dsrAB reference sequence alignment
in MEGA 6 (Tamura et al. 2013) using MUSCLE
(Edgar 2004) and they were placed into the reference
tree using the Evolutionary Placement Algorithm
(EPA; Berger & Stamatakis 2011) in RAxML (version
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8.0.23) (Stamatakis 2014) and the PROTGAMMA -
AUTO option which automatically chooses the best
protein model for the data provided. The EPA
derived OTUs classification was compared to the
classification of the core dsrAB dataset of Pelikan et
al. (2016) for the taxonomic inference of the OTUs.

Furthermore, the nucleotide sequences of the
OTUs that were translated into protein were used as
an input to the Seqenv pipeline (Sinclair et al. 2016),
using the unique isolation option, in an attempt to
link the 100 most abundant OTUs with descriptive
environmental terms and determine in which envi-
ronments they have been previously observed.

Statistical processing

Lagoons were assigned to salinity categories based
on their salinity ranges following the Venice system
(International Symposium on the Classification of
Brackish Waters 1958), with the (mixo-) mesohaline
domain (salinity 5 to 18 psu) further divided as de -
scribed by Pavloudi et al. (2016). Hence, the 3 cate-
gories comprised the (1) (mixo-) polyhaline (salinity
18-30 psu), (2) (mixo-) b-mesohaline (salinity 8 to
18 psu) and (3) (Mixo-) a-mesohaline (salinity 5 to
8 psu) domains.

The number of sequences belonging to each OTU
was considered representative of OTU abundance.
Subsequently, a matrix of the OTU abundance was
constructed, with the microbial OTUs as variables and
sampling stations as samples. Nucleotide se quen ces
that failed to translate to amino acids were excluded
from the matrix. The OTU abundance matrix was
used for the calculation of the triangular similarity
matrix using the Bray-Curtis similarity coefficient
(e.g. Clarke & Warwick 1994). In order to investigate
the bacterial community pattern in the area under
study, non-metric multidimensional scaling (nMDS)
(Clarke 1993) and permutational multivariate analysis
of variance (PERMANOVA) (Anderson 2001) were
performed. The design considered 4 factors: ‘lagoon’,
‘location’, ‘lagoon and location’ and ‘salinity category’
(999 permutations). Due to data limitations that did
not allow for a successful 4-factor design to be tested,
each factor was tested separately (under a design of
unrestricted permutation of raw data).

In order to test the second hypothesis, an abun-
dance matrix was constructed with the sampling sta-
tions as samples and the 38 environmental terms
found associated with the OTUs as variables, which
was also treated as mentioned previously. In addi-
tion, BIO-ENV analysis was applied, thus permitting

investigation of all potential correlations between
the biotic and abiotic matrices, by employing the
weighted Spearman rank coefficient ρw (Clarke &
Ainsworth 1993). Environmental variables that were
highly correlated (−0.9 > ρw > 0.9, p < 0.05) were
mutually excluded from further analyses (Clarke &
Ainsworth 1993). The RELATE routine (Clarke &
Gorley 2006) was applied to test for the significance
of the correlated patterns, as calculated by the BIO-
ENV analysis. This was performed between the bio -
tic similarity matrices and those produced by subsets
of the environmental parameters, as identified by the
BIO-ENV analysis in each case.

OTU richness was estimated via extrapolation
using the Chao-1 (Chao 1987, Chiu et al. 2014) and
the Abundance Coverage Estimator (ACE) (O’Hara
2005). In addition, a suite of diversity indices (Mar-
galef’s species richness, Pielou’s evenness, Shannon-
Wiener; Pielou 1969) was calculated. The diversity
indices, as well as the relative abundance percent-
ages of the SRM OTUs, were tested for significant
differences between the different salinity categories
and lagoons by means of the nonparametric analysis
of variance Kruskal-Wallis test (Kruskal & Wallis
1952). The nonparametric Mann-Whitney U-test
(Mann & Whitney 1947) was used for the post hoc
pairwise comparisons; a Bonferroni-correction was
applied and the level of significance for the results of
the Mann-Whitney pairwise tests was lowered from
0.05 to 0.017 in the case of the salinity categories, and
from 0.05 to 0.01 in the case of the lagoons. In addi-
tion, the Mann-Whitney U-test was used to test for
significant differences between the locations.

The DIVERSE routine (Clarke & Warwick 1994) of
the PRIMER (v.6) package (Clarke & Gorley 2006)
was used for the calculation of diversity indices. The
same software was used for the BIO-ENV analysis
and the RELATE routine. nMDS and PERMANOVA
were performed with the R virtual laboratory (RvLab)
(Varsos et al. 2016). Chao-1 and ACE estimator were
calculated using the EstimateR function of the vegan
package (Oksanen et al. 2016). Mann-Whitney U and
Kruskal-Wallis tests were conducted with the IBM
SPSS Statistics for Windows (Version 22.0). The Venn
diagrams were constructed using the jvenn
JavaScript library (Bardou et al. 2014).

RESULTS

The coverage of the primers is presented in
Table 1. The forward primer did not have as many
positive hits as the reverse one; however, a substan-
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tial percentage of the dsrAB core dataset could have
been amplified when tested in silico. Therefore, one
could make the assumption that the results of the
present study are indicative of the SRM community
in the study area, although representatives of the
community may exist for which amplification was not
successful.

The results of the processing of the sequences dur-
ing the noise removal are shown in Table S1 in Sup-
plement 1. The 148 626 initial raw sequences were
clustered into 18 655 high quality sequences, which
corresponded to 5912 OTUs at the 90% similarity cut-
off; out of those, 2167 were translated to amino acid
sequences. The automatic protein model assignment
algorithm of RAxML resulted in a log likelihood of
−247 061.75. The labelled reference tree including
branch labels and query sequences (Supplement 3 at
www.int-res. com/articles/ suppl/a079 p209_ supp3.pdf)
and the classification results (Table S2 in Supplement 2
at www.int-res.com/articles/ suppl/ a079 p209_ supp2. xls)
show that the majority of the observed OTUs (74%)
belong to the Deltaproteobacteria supercluster, within
which the most abundant is the family Desulfobacter-
aceae (33%), with the Environmental supercluster 1
being second in terms of abundance (25%) (Fig. 2a).
However, when the abundance of the OTUs was
taken into consideration, the difference between the
groups was augmented (Fig. 2b); the most abundant
OTUs belong, as expected, to the Deltaproteobacteria
supercluster (83%) followed by the Environmental
supercluster 1 (16%).

This pattern was similar when each lagoon was
regarded separately (Fig. S1 in Supplement 1). Al -
though representatives from the Environmental super -
cluster 1 were present in all lagoons (21 to 25%), their
abundance was relatively lower (11 to 20%), while
the Deltaproteobacteria supercluster showed higher
abundance, which reached 88% in the case of Rodia
lagoon. In addition, although the Desulfatiglans ani -
lini lineage was present in similar percentages in all

lagoons (18 to 27%), its abundance was greater in the
a-mesohaline lagoons, i.e. in Tsoukalio and Rodia,
and especially in the latter (40%), while levels were
the same in the polyhaline and b-mesohaline sam-
pling stations. In the case of the Desulfobacteraceae
family, the lowest presence (25 to 28%) and abun-
dance (12 to 17%) were found in the a-mesohaline
lagoons; by contrast, in the other sampling stations
the aforementioned family exhibited a higher pres-
ence (33 to 38%) and abundance (22 to 39%). Al -
though the presence of the Syntropho bacteraceae
family was very low in all lagoons (1 to 2%), it
showed higher abundance in Logarou (11%) and
Rodia (8%) lagoons. The abundance of the unclassi-
fied OTUs of the Deltaproteobacteria supercluster
was higher in all lagoons (12 to 27%) than their pres-
ence (7 to 9%). However, none of the aforementioned
variations in the relative abundance percentages of
the SRM OTUs were statistically significant (Kruskal-
Wallis: p > 0.05 for all cases); this could be attributed
to the use of data at the phylum level for the Kruskal-
Wallis test while differences may be exhibited at a
lower taxonomic level.

The number of OTUs that were commonly shared
among the lagoons (90% similarity cut-off) is shown
in Fig. 3. A total of 149 OTUs were commonly shared
by all 5 lagoons, corresponding to less than 7% of the
total number of observed OTUs.

nMDS of the bacterial OTUs spatial pattern (Fig. 4)
showed that the bacterial community pattern differs
by lagoon and salinity category. The PERMANOVA
test produced significant results for the factors
‘lagoon’ (F.Model = 3.5936, p < 0.01), ‘lagoon and
location’ (F.Model = 3.3443, p < 0.01) and ‘salinity
category’ (F.Model = 4.0402, p < 0.01). This is also
depicted in the Venn diagram for the 3 salinity cate-
gories (Fig. 5). In addition, salinity and ammonium
ions (NH4

+) (Table 2) were the abiotic variables with
the highest correlation to the SRM community pat-
tern (ρw = 0.575).
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Primer Direction Sequence (5’−3’) Length Degen- Coverage Average 
name (nt) eracy of core dataset coverage of 

dsrAB (%) core dataset 
dsrAB (%)

1595f Forward YCAYGARATCCTBGARCC 18 48 3.17−14.86 8.01
1905r Reverse CTGGGTRTGRACGATRTTG 19 8 12.93−40.94 23.90

Table 1. Coverage of the primers used to detect the presence of sulfate-reducing microorganisms (SRMs) in the lagoons of
Amvrakikos Gulf (Ionian Sea). Design of the primers was based on genomes of known SRMs, targeting the β-subunit of the
dissimilatory sulfite reductase gene (dsrB). Coverage of the primers was calculated using the ARB Probe Match Tool. Degener-
acy is given as the number of oligonucleotides that comprise the primer. Coverage is calculated as the percentage of 

positive hits against the 1292 core dataset

http://www.int-res.com/articles/suppl/a079p209_supp3.pdf
http://www.int-res.com/articles/suppl/a079p209_supp2.xls
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Based on nMDS of the environmental terms that
are associated with the SRM OTUs (Fig. S2 in Sup-
plement 1), and according to the PERMANOVA test,
the samples can be differentiated by all tested factors
(lagoon: F.Model = 2.2625, p < 0.01; location: F.Model
= 2.5827, p < 0.05; lagoon and location: F.Model =
4.0728, p < 0.01; salinity category: F.Model = 5.0393,
p < 0.01). This is also evident from Table 3, where it
is shown that the abundance of the associated envi-
ronmental terms varied among the sampling stations.
Undoubtedly, the most abundant term in all the

lagoons was ‘sediment’ (~44%). The SRM OTUs found
in the a-mesohaline la goons, i.e. in Tsoukalio and
Rodia, were associated with the term ‘wetland’ in
higher abundances (~14 to 25%) compared with the
other la goons (~1 to 3%). Similarly, the terms ‘hydro -
thermal vent’ and ‘acid mine drainage’ were found in
much lower abundance in the polyhaline and b-
mesohaline lagoons (~2 to 5%) than in Tsou kalio and
Rodia (~16 to 25%). In addition, Tsopeli lagoon was
the only lagoon associated with the terms ‘lake’ and
‘reservoir’ (~12%).
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Fig. 2. Taxonomic classification of the sulfate-reducing microorganism operational taxonomic units (SRM OTUs) retrieved 
from all the samples based on (a) the presence/absence and (b) the abundance of OTUs
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All diversity indices, except for the total SRM rela-
tive abundance values (N), were significantly differ-
ent be tween the 3 salinity categories and the 5 lagoons
(Kruskal-Wallis: p < 0.05 for all cases) (Tables S3 & S4
in Supplement 1). The post hoc comparisons showed
that the diversity in di ces, in the case of salinity cate-
gories, did not differ significantly be tween (mixo-) b-
mesohaline and (mixo-) poly haline samples (Table S5
in Supplement 1). However, only Pielou’s evenness
index (J ’) was significantly different between the 2
locations (Mann- Whitney: p < 0.05) (Table S6 in Sup-
plement 1).

DISCUSSION

The majority of the observed OTUs were identi-
fied as uncultured; al though there are known rep-
resentatives of sulfate-reducing microorganisms for
which sequence data are deposited in public data-
bases, there are still many more that remain to be
cultured and described. As expected, the vast
majority of SRMs were affiliated to the Deltapro-
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teobacteria su per  cluster, and in particular Desulfo -
bacteraceae, which have been shown to exhibit
high abundances in marine (Leloup et al. 2009),
saline and hypersaline (Foti et al. 2007) and deep

sea sediments (Kaneko et al. 2007). However, the
abundance of the Desulfobacteraceae family fluctu-
ated ac cor ding to the salinity, i.e. its abundance
was lower in the a-mesohaline lagoons and higher
in the more saline lagoons, although it has also
been reported from freshwater sediments (Wang et
al. 2012).

The high abundance of sequences be longing to
Environmental supercluster 1, which comprises se -
quences from uncultured microorganisms (Müller et
al. 2015), is indicative of the lack of knowledge of
SRM diversity in the sampling sites and in lagoonal
habitats in general. In addition, the effect of salinity
on the distribution of SRM in the studied habitat is
evident from the abundance of family-level Lineage
9 that is composed of many sequences from the
marine environment (Müller et al. 2015) and from
the absence (Lineages 6 and 10) or very low abun-
dance (Lineage 8) of lineages often detected from
freshwater wetlands (Pester et al. 2012). Apart from
these findings, when analyzing each lagoon sepa-
rately, there were certain differences in the abun-
dance of the groups present. Specifically, the Desul-
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        Water Sediment ρw

  Salinity NH4
+ NO2

− MD Phaeo- σ1
        pigments

       + + 0.575
       + 0.558
       + + + 0.537
       + + + 0.523
       + + + + 0.521
       + + 0.519
       + + + + + 0.518
       + + + 0.518
       + + + 0.513
       + + + + 0.510

Table 2. Environmental variables best correlated with the
sulfate-reducing microorganism community diver sity pattern
(p < 0.01). NH4

+: ammonium ion; NO2
−: nitrite ion; MD: median

diameter; σ1: sorting coefficient; ρw: weighted Spearman 
rank correlation coefficient

ENVO terms Mazoma Logarou Tsopeli Tsoukalio Rodia Lagoons 
combined

aquifer 7.24 5.75 3.66 9.65 5.19 6.05
biofilter 0.28 0.62 0.08 0.06 0.19
borehole 6.87 5.68 3.24 9.65 5.16 5.95
coast 0.05 0.03 0.12 0.02 0.02
depression 2.57 1.39 0.75 0.46 0.52 0.93
seamount 0.23 0.18 0.02 0.07
ground water 0.08 0.36 0.67 0.24 0.26
harbor 0.78 0.23 1.26 2.15 0.29 0.68
inlet 1.96 0.09 0.24 0.39 0.45
landfill 0.08 0.36 0.67 0.24 0.26
leachate 0.08 0.36 0.67 0.24 0.26
lentic water body 0.78 0.04 12.20 0.36 1.26
lotic water body 3.57 1.72 5.40 16.11 24.92 15.21
marine biome/sediment/water body 10.51 4.00 2.25 4.14 1.41 3.40
microbial mat 0.23 0.04 0.40 0.09
gold mine 6.87 5.68 3.24 9.65 5.16 5.95
mud 0.16 0.08 0.03
saline water 0.16 0.03 0.03
sea coast 1.96 0.16 0.09 0.24 0.42 0.49
sediment 52.35 72.47 64.54 31.05 30.41 43.76
sludge 0.04 0.15 0.08
soil 0.08 0.10 0.22 0.13
terrestrial biome/habitat 0.72 0.16 0.84 0.06 0.21
wetland 2.87 1.45 1.08 14.04 24.52 14.24

Table 3. Abundance percentages of the environmental terms based on Environment Ontology (ENVO) vocabulary associated
with the SRM OTUs (90% similarity cut-off) at each lagoon and at all lagoons combined. depression: includes the ENVO terms
‘canyon’, ‘continental shelf’, ‘drainage basin’, ‘trough’, ‘back-arc basin’. lentic water body: includes the ENVO terms ‘lake’,
‘reservoir’. lotic water body: includes the ENVO terms ‘hydrothermal vent’, ‘acid mine drainage’. marine biome/ sedi ment/
water body: includes the ENVO terms ‘sea’, ‘marine habitat’, ‘ocean water’. saline water: includes the ENVO terms ‘saline water’, 

‘sea water’. sea coast: includes the ENVO terms ‘bay’, ‘fjord’. wetland: includes the ENVO terms ‘saline marsh’, ‘fen’
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%
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fatiglans anilini lineage exhibited greater abun-
dance in lower salinities; it has been previously
found in both riverine (Suzuki et al. 2014) and mar-
ine sediments (Schnell et al. 1989, Ahn et al. 2009),
although it has been isolated from marine enrich-
ment cultures, inoculated with mud from the North
Sea coast, using brackish water medium (Schnell et
al. 1989).

However, these results were undoubtedly affected
by the reference dataset used for the classification of
the sequences, where most of the included sequen -
ces are derived from marine environments, followed
by freshwater and other environments (Müller et al.
2015). This succession of environments is also de -
picted in the retrieved environmental terms that
were found to be associated with the sequences of
the present study; samples were mainly character-
ized by environmental descriptive terms that could
be broadly classified to the marine biome, while
terms belonging to the freshwater or brackish biome
were found to a lesser extent. This could suggest that
in environments of intermediate salinity concentra-
tions, there is still an unknown component of the
SRM diversity that remains to be investigated and
incorporated to our knowledge of SRM communities.
However, there were certain environmental descrip-
tive terms, such as the term ‘wetland’, that contri buted
more to the specificity of the lower salinity lagoons.
In addition, the influence of Louros river in the SRMs
of Tsopeli lagoon may be deciphered from the associ-
ation of the OTUs found in this lagoon with the terms
‘lake’ and ‘reservoir’.

The SRM community diversity pattern seems to dif-
fer in each lagoon, a finding which is in accordance
with previous reports of the total community diver-
sity pattern from the same study sites (Pavloudi et al.
2016). This finding also concurs with those of previ-
ous studies, which have shown that SRM communi-
ties exhibit biogeographic distribution patterns at
small spatial scales and that a homogeneous distribu-
tion is not unlikely (Pérez-Jiménez & Kerkhof 2005).
In addition, the SRM community diversity pattern
can be clustered according to broad salinity cate-
gories; this indicates that salinity is one of the major
factors influencing the SRM communities in this
habitat which is at the interface of marine and fresh
water. This can be also concluded from the signifi-
cant differentiation of the diversity indices between
the salinity categories.

Although sulfate reducers are named after their
ability to use sulfate as a terminal electron acceptor,
they can in fact use many different electron accep-
tors, such as nitrate and nitrite (Dalsgaard & Bak

1994, Moura et al. 1997) or other sulfur compounds
(thiosulfate, sulfite and sulfur) (Muyzer & Stams
2008). Therefore, the detection of dsrAB gene se -
quences in environmental samples should not be re -
garded per se as actual physiological capability for
dissimilatory sulfate/sulfite reduction (Pester et al.
2012, Müller et al. 2015), i.e. the occurrence of high
abundance of SRMs does not necessarily re flect the
occurrence of sulfate reduction in the re spective
environment (Muyzer & Stams 2008). This may be
the reason why our results suggest that the concen-
tration of nitrite ions is correlated to the SRM com-
munity pattern. In addition, SRMs might be linked
to ammonium on a secondary level, by using prod-
ucts of anaerobic protein degradation, which re -
leases acetate, H2 and ammonium. The lack of cor-
relation with the concentration of total reduced
inorganic sulfur (TRIS), which was also among the
tested variables, may be explained by the fact that it
is the sum of hydrogen sulfide (H2S), iron sulfide
(FeS), elemental sulfur (S0) and iron pyrite (FeS2)
(Fossing & Jørgensen 1989) and thus it cannot reflect
only the biogenically produced sulfide (S2−) (Jong &
Parry 2003). However, although there is no conclu-
sive evidence to support this, it can be suggested
that the sulfate reducers found at this particular
study site and at this particular time point, probably
were using sulfate and/or nitrogen compounds as
electron acceptors.

Further investigation is needed to shed light on the
functionality of SRMs in lagoonal ecosystems, espe-
cially in terms of their viability and competition with
each other for the available sulfate, when the latter is
insufficient for complete oxidation of organic com-
pounds. In addition, the seasonality of SRMs should
be investigated given that the environmental vari-
ables that primarily influence the community pattern
are subjected to seasonal changes.
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