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lower in polyclonal I monocultures
compared to monoclonal ones (PC
3, p < 0.01, Table 2, Fig. 4a).

The highest microalgal biovolume
was observed in the S monoculture,
whereas it was much lower (and in
the same range) in the G and I
monocultures. Tet accounted for the
majority of the microalgal biovolume
and dominated in all ciliate combi-
nations (>80%, except for treatment
I3, Fig. 4b). Percent Nav biovolume
ranged from 2% in the 2-species
combination Imono+S to 20% in the G
monoculture (Fig. 4b). The relative
Cry biovolume was <1% in I2, poly-
clonal Ipoly and 2-species combina-
tion Imono+G. In the G monoculture
treatment, the 2-species combina-
tion S+G and the 3-species combina-
tions, this species was below the
detection level. Consequently, even-
ness was low in these treatments
(Fig. 4c).

Consumer grazing rates, prey
growth rates and resource

concentrations

Consumer grazing rates and the
growth rate of the prey community
were also strongly affected by con-
sumer species and clonal combina-
tion (1-way ANOVA, p < 0.001,
Table 3, Fig. 5). Grazing rates for
the most preferred algal prey Cry
significantly increased with con-
sumer species diversity (PC 1 and 2,
p < 0.001, Table 3, Fig. 5), whereas
average grazing rates for the less
preferred algae Nav and Tet were
lower in consumer mixtures com-
pared to monocultures, and in 2-
species combinations compared to
3-species combinations (PC 1 and 2,
p < 0.05, Table 3, Fig. 5). Highly
grazed upon, the growth rate of Cry
was negative in most consumer
treatments. Experiencing reduced
grazing pressure in polycultures,
Nav and Tet grew faster than in
consumer monocultures (data not
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Fig. 3. Ciliate biovolume (BV), log-transformed at the end of the experiment
(Day 7). (a) Total  ciliate BV, error bars represent SD. (b) Percent contribution of
the species Stylonychia sp., Euplotes octocarinatus and Coleps hirtus to the total
ciliate BV. (c) Ciliate growth rates. G: generalist, I: intermediate grade of spe-
cialisation, S: specialist, Imono: clone intermediate 1, I2: clone intermediate 2, 

I3: clone intermediate 3, Ipoly: polyclonal intermediate
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shown). Due to the growth response
of Nav and Tet, the average com-
munity growth rate of the micro-
algal prey increased with ciliate
species diversity (PC 1 and 2, p <
0.001, Table 3, Fig. 5).

The average grazing rate for Cry in
monocultures containing the poly-
clonal Ipoly significantly exceeded the
one for monocultures containing
mono clonal I populations (PC 3, p <
0.001, Table 3). However, this effect
could not be observed for multi-
species combinations containing
polyclonal populations of I. In con-
trast, average grazing rates for both
Cry and Tet were lower in consumer
combinations containing monoclonal
I populations as opposed to mono-
clonal ones (PC 4, p < 0.05, Table 3,
Fig. 5). No difference in total prey
community growth rate was de -
tected among mono- and polyclonal
treatment combinations (Table 3,
Fig. 5).

Cry was heavily consumed in all
treatments except for the S monocul-
ture, with the highest grazing rates
recorded in the G monoculture, the
2-species combination S+G and the
3-species combinations (Fig. 5). Tet
was consumed at low rates by G and
the monoclonal and polyclonal I
monocultures. It was also grazed
upon in 2-species combinations com-
prising I and G, but not in 3-species
combinations. Nav was not con-
sumed in G and S monocultures and
in 3-species combinations. The high-
est growth rates were recorded for
Tet. Nav growth rates were positive
in all treatments except in the mono-
clonal I3 treatment.

The concentrations of silicate (Si)
and soluble reactive phosphorus
(SRP) decreased between Day 3 and
Day 7 of the experiment to approxi-
mately 50% and 75%, respectively,
while the concentration of the limit-
ing nutrient nitrogen was getting
depleted in nearly all treatments
from Day 3 to Day 7, except for the
monocultures G and I2 (Fig. 6).
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Fig. 4. Microalgal biovolume (BV), log-transformed at the end of the experiment
(Day 7). (a) Total microalgal BV. (b) Percent contribution of the species Crypto -
monas sp. (Cry), Navicula pelliculosa (Nav) and Tetraedron minimum (Tet) to
the total microalgal BV. (c) Pielou’s evenness index (J ) based on BV. Error bars 

represent SD. Abbreviations as in Fig. 3
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DISCUSSION

Both inter- and intraspecific consumer trait varia-
tion strongly determined ciliate consumer and algal
prey biovolume, as well as community composition.
Total consumer biovolume increased with increasing
inter- and intraspecific consumer trait variation. At
the level of interspecific consumer trait variation, this
positive diversity effect on consumer production was
due to the presence of a very productive and compet-
itively superior consumer species that was able to
feed not only on all species of microalgal prey, but
also on other ciliates, thus acting as an intraguild
predator (partly supporting H1a). At the level of intra-
specific consumer trait variation, on the other hand,
complementary feeding niches among different
clones led to higher biovolume production based on

higher resource use efficiency (support-
ing H1b). Total prey biovolume increased
with increasing interspecific consumer
trait variation (refuting H2a), but de -
creased with increasing intraspecific
consumer trait variation (supporting
H2b). Both inter- and intraspecific con-
sumer diversity decreased prey even-
ness. At the species level, this effect was
determined by the highly selective feed-
ing behaviour of the generalist con-
sumer, resulting in unequal grazing
pressure on the prey community (partly
refuting H3a). The effect of intraspecific
consumer trait variation on prey even-
ness depended on clone-specific feeding
preferences and grazing rates on partic-
ular prey (confirming H3b).

Effects of consumer trait variation on the
consumer level

On average, total consumer biovolume in our ex -
periment increased with increasing interspecific con-
sumer trait variation. This effect, however, was not
based on consumer niche complementarity, leading
to a more efficient use of resources (Tilman et al.
1997). Instead, it was based on the presence of a very
productive and competitively superior species (Loreau
& Hector 2001), the generalist consumer Stylonychia
sp. (G). Therefore, H1 could only partly be supported
in our study. The generalist consumer G displayed
growth rates far above the ones of the other con-
sumers. Also showing competitive superiority in the
presence of other ciliate consumers, G was the most
productive species in our study and rapidly gained
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Consumer grazing rates Growth rate
Cry Nav Tet Prey community

F p F p F p F p

One-way ANOVA result (df = 12) 1077 <0.001 4.64 <0.001 10.17 <0.001 21.27 <0.001
Planned comparisons (df = 4) 894.3 <0.001 4.36 <0.01 7.50 <0.001 9.77 <0.001
(1) Mono- vs. polycultures <0.001 <0.01 <0.001 <0.001
(2) 2-species vs. 3-species combinations <0.001 <0.05 <0.01 <0.001
(3) Monoclonal Coleps hirtus (I) monocul- <0.001 <0.869 <0.631 <0.303
tures vs. polyclonal (Ipoly) monocultures

(4) Consumer combinations comprising <0.001 <0.416 <0.05 <0.405
Imono vs. combinations comprising Ipoly

Table 3. One-way ANOVA results and planned comparisons for consumer grazing rates. Since Cryptomonas (Cry), Navicula
(Nav) and Tetraedron (Tet) grazing rates were homoscedastic, untransformed data were used for the analysis. Degrees of 

freedom in the error term were 25. I: intermediate

Fig. 5. Consumer grazing rates and community growth rate (GR) of the
microalgal prey. Error bars represent SD. Abbreviations as in Fig. 3. Cry:

Cryptomonas sp., Nav: Navicula pelliculosa, Tet: Tetraedron minimum
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dominance in every treatment in which it was in -
cluded. The positive consumer species diversity effect
on consumer biovolume can therefore be attributed
to this high performing species (Loreau & Hector
2001). 

The ability of G to feed and grow on all 3 of the
microalgal prey species offered in the experiment
had been verified in prior feeding trials on algal
monocultures. In algal mixtures, however, G showed
a high degree of selectivity within its feeding niche,
grazing mainly on Cry, ingesting only a small quan-
tity of Tet and avoiding Nav. These results support
the findings of Wohlgemuth et al. (2017), who
demonstrated that not only the degree of specialisa-
tion, but also the selectivity for certain prey species

within the dietary niche may play an
important role in altering the conse-
quences of diversity loss in a food web
context (see below). In addition to
feeding on algal prey, G formed giant
morphotypes during the experiment
that fed as intraguild predators (IGPs)
on the other, smaller ciliates, but
mainly on the intermediate consumer
Coleps hirtus (I). 

Omnivory in Stylonychia has previ-
ously been described (Giese & Alden
1938, Wia̧ckowski et al. 2004). A filter
feeder with low mobility when feeding
on small microalgal prey, the species
becomes a raptorial feeder when feed-
ing on ciliates (Wia̧ckowski et al. 2004).
This type of phenotypic plasticity, re -
sulting in morphological and behav-
ioural changes in the consumer, has
been characterised as an in ducible of-
fence (Kopp & Tollrian 2003), en abling
the consumer to prey on organisms of
its own trophic guild, either on dif -
ferent species, or on individuals of its
own species by exhibiting cannibalism
(Banerji & Morin 2014). In Stylonychia,
this mechanism is related to shortages
in microalgal prey (Giese & Alden
1938, Wia̧ckowski et al. 2004). In our
experiment, however, microalgal prey
was still abundant when G formed gi-
ant morphotypes and selectively fed on
other ciliates. Therefore, it can be as-
sumed that either the remaining algae
(mainly Tet and to a lesser extent Nav)
were not a sufficient food source for G
(resulting in resource depletion), or

that ciliate competitors released certain chemical
cues (Banerji & Morin 2009), or mechanical cues
(Wia̧ckowski et al. 2004) induced this morphological
change, as was shown for other ciliates. The fact that
G mainly fed on the intermediate consumer I can be
deduced from the strong negative growth rates I
showed when combined with G, and the fact that on
Day 7 of the experiment, I was already below or close
to the detection level in these treatments. Losses of
the specialist consumer Euplotes octocarinatus (S)
were more likely due to competitive exclusion rather
than G preying on it, since this species showed
similar negative growth rates in all ciliate species
combinations. Furthermore, S exhibited a predator-
induced defence in our experiment, a morphological
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Fig. 6. Nutrient concentrations on Day 3 and at the end of the experiment
(Day 7). (a) Soluble reactive nitrogen (SRN), (b) soluble reactive phosphorus 

(SRP), (c) silicate (Si). Error bars represent SD. Abbreviations as in Fig. 3



Flöder et al.: Consumer trait variation effects

change through cell enlargement (Kuhlmann &
Heckmann 1985). These larger morphotypes of S could
not easily be ingested by the Stylonychia sp.  giants,
and were still present in low abundances on Day 7 of
the experiment. Inducible defences have been re-
ported for many species and across a wide range of
taxa. They include changes in behaviour, morphology
and life history that influence the interaction between
prey and predators, and between competitors (Toll-
rian & Harvell 1999). In contrast to inducible defences,
inducible offences of predators in response to prey
limitation have re ceived considerably less attention
and remain greatly underappreciated (e.g. Kopp &
Tollrian 2003, Mougi et al. 2011, Banerji & Morin
2014).

The strategy of eating its competitor (see Thingstad
et al. 1996) shown by G in our experiment represents
a competitive advantage for the consumer. Such
intraguild predation can lead to stable coexistence
only when grazing and growth rates of the IGP are
low compared to the other competitors in the system
(Morin 1999). In our system, however, G was the
strongest competitor in its trophic guild, exhibiting
the highest grazing and growth rates in combination
with intraguild predation, consequently controlling
other consumers and their prey, except for S, which
was able to escape predation due to its own pheno-
typic plasticity. Overall, trophic interactions and
interspecific consumer diversity effects in our system
were not only determined by consumer selectivity
and specific grazing rates, but by much more com-
plex interactions, such as selective grazing within
dietary niches and phenotypic plasticity, resulting in
induced offence in one and induced defence in
another consumer.

Increased intraspecific consumer trait variation
also led to an increased consumer biovolume. The
polyclonal I monoculture biovolume exceeded the
biovolume of all monoclonal ones (transgressive
overyielding [see Tilman et al. 1997, Fridley 2001],
supporting H1b. Here, the different clones varied in
their specific feeding niches, resulting in niche com-
plementarity (Tilman et al. 1997). The Coleps hirtus
clone I2 mainly fed on Cry, while Imono and I3 both
grazed on Nav and Cry; however, I3 ingested more
Nav than Imono. Although small quantities of Tet were
ingested by all I clones, I3 had the lowest grazing rate
for this species. This niche complementarity in poly-
clonal I populations likely resulted in a more efficient
re source use than in the monoclonal populations and
thus in higher biovolume production (Tilman et al.
1997). Furthermore, polyclonal I populations may
have been more resistant to grazing by G due to the

higher biovolume production (see Figs. S1−S3 in the
Supplement for detailed information on the develop-
ment of G and I populations), since the probability of
individual organisms being eaten is reduced when
population density is high (Molles 2002). Alterna-
tively, differences in their feeding preferences may
have resulted in altered food quality of different I
clones, which might have affected the chance of
being ingested by highly selective G. Another possi-
bility is that the attack rate by G differs among
clones, as the I clones show differences in swimming
behaviour. The positive effect of intraspecific trait
variation on consumer biovolume could also be
observed in multispecies consumer combinations, as
consumer biovolume in combinations including poly-
clonal I was significantly higher than in the same
species combinations containing monoclonal popula-
tions of I. Our results are consistent with Crutsinger
et al. (2006), who demonstrated the effects of intra-
specific trait variation of the old-field plant species
Solidago altissima to cascade across trophic levels.
Genotypic diversity has also been shown to increase
productivity in marine invertebrates (Aguirre & Mar-
shall 2012) and honey bees (Mattila & Seeley 2007),
which further emphasises the importance of intra-
specific trait variation for ecosystem functioning.

Positive consumer diversity effects leading to in -
creased secondary production based on niche com-
plementarity have also been demonstrated on an
interspecific level in various previous studies. In -
creased consumer species richness resulted in higher
biomass production in microbial microcosms (Gam-
feldt et al. 2005, Moorthi et al. 2008, Filip et al. 2012,
2014) and marine seagrass mesocosms (Duffy et al.
2003). Our study demonstrates that intraspecific con-
sumer trait variation might be as important as inter-
specific trait variation in this context.

Effects of consumer trait variation on the prey level

Total biovolume of the microalgal prey community
increased with increasing consumer species richness
and thus interspecific consumer trait variation, refut-
ing H2a. Rather than displaying a more efficient re -
source use due to increased trait variation, con-
sumers in multispecies combinations fed selectively
on algal mixtures. Tet was avoided in most consumer
polycultures and experienced only small grazing
losses in G and I monocultures. Grazing pressure on
Cry was high, especially in 3-species consumer com-
binations. This can be attributed to the selective
feeding behaviour of the highly productive G, which
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dominated all species combinations where it was
included (see above). Tet dominated in all ciliate
combinations. Fast-growing species like the small
coccoid green algae Tet are known to use phases of
high resource availability for unlimited growth.
These species gain dominance and continue increas-
ing in abundance until population growth is reduced
by increasing resource limitation (Reynolds et al.
1993, Flöder et al. 2006). At the end of our experi-
ment, nitrogen was limiting and competition for re -
sources became more important than the capacity for
growth. The increased grazing pressure on Cry and
Nav in ciliate polycultures released Tet from compe-
tition for nitrogen. Competitive release in combina-
tion with a low grazing pressure enabled Tet to use
the available nutrients to produce a very high bio -
volume. As a result, total prey biovolume in creased
with increasing consumer trait variation. A similar in -
crease in feeding-resistant algae with increasing
consumer diversity has been reported in other stud-
ies on consumer diversity effects in aquatic systems
(e.g. Steiner et al. 2005).

In contrast to interspecific consumer trait variation,
intraspecific trait variation led to a decrease in prey
biovolume. As detailed above, the different I clones
varied in their specific feeding niches, resulting in
niche complementarity among the clones and thus a
more efficient resource use in the polyclonal popula-
tions of I compared to the monoclonal ones. This in
turn resulted in a lower prey biovolume, supporting
H2b.

Evenness of the microalgal prey community de -
creased with both inter- and intraspecific consumer
trait variation. Although prey evenness was clearly
affected by interspecific trait variation, H3a has to be
partly refuted. Instead of showing the expected equal
grazing pressure on the prey community, the high
selectivity of G exerted an unequal grazing pressure
on the prey community, as did the specialists. Selec-
tive grazing decreased prey evenness, since all con-
sumers preferred Cry, which led to a strong biovol-
ume reduction of this prey species in polycultures,
even to biovolumes below the detection limit (see
e.g. Porter 1977, Hillebrand & Shurin 2005, Flöder &
Sommer 2006). This decrease in prey evenness with
increasing consumer trait variation, however, is at -
tributed to a combination of mechanisms: presence of
a competitively superior consumer species (Loreau &
Hector 2001) that selectively fed on Cry, intraguild
predation that further promoted the dominance of G,
and the capacity of Tet for fast reproduction. This
emphasises the importance of consumer-mediated
growth responses of the prey (i.e. prey’s capacity to

grow better when released from competition and
grazing pressure) in determining the strength and
direction of biodiversity effects across trophic levels.
Our results contrast the study of Filip et al. (2014),
where specialist consumers de creased prey evenness
more strongly than generalist consumers, again indi-
cating that not only consumer selectivity, but also
specific feeding preferences within dietary niches
may determine consumer diversity effects in con-
sumer−prey systems (Montagnes et al. 2008).

Increased intraspecific consumer trait variation
also led to a decrease in prey evenness. Regarding
consumer specialisation among the different clones
of the intermediate consumer I as a spectrum ranging
from generalists to specialists, Imono and I3 were closer
to the generalist end than I2, which showed a strong
preference for Cry. As a consequence of the more
equal grazing pressure of Imono and I3, prey evenness
in Imono and I3 monocultures was higher than in the I2

monoculture, which supports H3b. This pattern cor-
roborates the results of Filip et al. (2014) on the level
of intraspecific trait variation, according to which
specialist consumers decrease prey evenness more
strongly than generalist consumers. This result also
emphasises the importance of intraspecific trait vari-
ation for BDEF research, as its impact on ecosystem
functions might well be comparable to interspecific
trait variation (Bolnick et al. 2003, Hughes et al.
2008).

CONCLUSION

Overall, our study demonstrated that both inter-
and intraspecific consumer trait variation affected
consumer and prey biomass, as well as community
composition, indicating that effects on both hierar-
chical levels may be equally strong in determining
the consequences of consumer diversity loss on eco-
system functioning. In our study, inter- and intraspe-
cific effects of consumer trait variation differed and
were based on different mechanisms. Interspecific
consumer diversity effects were driven by a strong
selection effect of a competitively superior species
(G) that exhibited strong feeding selectivity despite
its wide dietary niche, while intraspecific consumer
diversity effects were determined by niche comple-
mentarity and more efficient resource use. Our study
further demonstrated that trophic interactions in our
system were not only determined by selectivity and
grazing rate of the consumers and corresponding
edibility and growth rate of the prey. Instead, addi-
tional consumer-specific traits such as selective feed-
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ing within dietary niches and phenotypic plasticity
(induced offence and defence) were of at least equal
importance. Although our study was conducted with
a simple ciliate−microalgae model system using
highly controlled laboratory microcosms, the mecha-
nisms we observed are most likely also relevant for
natural systems, as the trophic complexity inherent in
our system well reflects the complexity of trophic
interactions and the adaptive potential inherent in
food webs of higher organisms.
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