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INTRODUCTION

High-latitude boreal freshwater basins located north
of 50° N are considered an important source of the
greenhouse gas methane (Walter et al. 2007, Bast vi -
ken et al. 2011, Saunois et al. 2016, Wik et al. 2016a).

Among those, ponds and glacial, post-glacial, and
thermokarst lakes are the dominant water body types
(Wik et al. 2016a). Thermokarst lakes cause the
greatest concern due to their high emission rates and
prospective increase in methane production pro-
moted by permafrost thawing (Walter et al. 2007,
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ABSTRACT: Since boreal lakes are now considered an important source of atmospheric methane,
new information concerning the activity and diversity of methane cycle microorganisms is critical
for understanding the causes of methane emission from these lakes. This study investigated the
diversity of microbial communities in the water column of subarctic Lake Svetloe, belonging to a
rare type of freshwater sulfate-poor meromictic basins with high concentrations of Fe2+ and
methane in the permanently anoxic hypolimnion. A combination of physicochemical and radio-
tracer analysis, high-throughput sequencing of the 16S rRNA genes and incubation experiments
was used to link microbial community profile and methane cycle processes. It was shown that
methane was produced by aceticlastic Methanothrix and hydrogenotrophic Methanoregula,
which were also detected in the oxygenated epilimnion, together with a small increase in methane
concentration. Radiotracer analysis revealed methane oxidation (MO) in oxic and anoxic zones
with 2 maxima at the chemocline. The first MO peak was attributed to aerobic Methylobacter
trophically interacting with cyanobacteria, which was confirmed by obtaining light-dependent
MO. The highest MO activity matched the lower chemocline layer where aerobic methanotrophs
were less abundant; this suggested that other microorganisms contributed to MO together with
Methylobacter. Known anaerobic methanotrophs were not detected, and incubations with Fe3+

did not reveal methane consumption under anoxic conditions. Thus, further investigations are
 re quired to determine the microorganisms and electron acceptors driving anaerobic MO. Although
some questions remain open, our study may provide insight into the methane cycle microbial
 communities in boreal lakes.
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Laurion et al. 2010, Martinez-Cruz et al. 2015, Vonk
et al. 2015, Wik et al. 2016a). It was, however, found
that while glacial and post-glacial lakes emit less
methane per unit area, they are a greater methane
source due to their larger total area (Wik et al.
2016a).

Methane emission from boreal surface waters
mostly results from diffusion, ebullition and ice-out of
methane (see references within Wik et al. 2016a,b).
Methane concentration in the surface water is a func-
tion of sources and losses and is limited by microbial
methane production and oxidation in the sediments
and water column (Bastviken et al. 2004). Estimation
of methane production and oxidation rates and iden-
tifying the microbial communities involved in the
methane cycle and factors affecting their activity are
therefore important. In contrast to many studies con-
ducted on evaluation of methane emissions (e.g.
Bastviken et al. 2004, 2011, Walter et al. 2007, Lau-
rion et al. 2010, Sepulveda-Jauregui et al. 2015,
Saunois et al. 2016, Wik et al. 2016a,b, DelSontro et
al. 2017, Erkkilä et al. 2018), the diversity of micro-
bial communities involved in the methane cycle pro-
cesses in boreal lakes is poorly investigated, especially
for freshwater meromictic lakes with a permanently
anoxic hypolimnion.

Biogenic methane is produced primarily by metha-
nogenic archaea, the terminal agents of anaerobic
decomposition of organic matter in various anoxic
environments (see references within Conrad 2009,
Borrel et al. 2011, Lehours et al. 2016). In a number of
different sulfate-poor freshwater lakes, methane pro-
duction rates are maximal at the water–sediment
interface. In meromictic lakes, methanogens are also
abundant in the permanently anoxic hypolimnion,
where they are responsible for significant methane
production (see references within Borrel et al. 2011).
Under conditions of no competition with sulfate re -
ducers, acetate becomes available to methanogens
and acts as the major substrate for methanogenesis
(Liu & Whitman 2008, Borrel et al. 2011, Lofton et al.
2015). However, the concentrations of acetate and
hydrogen in the anoxic zones of freshwater lakes are
often low, resulting in the limitation of aceticlastic
and hydrogenotrophic methanogenesis by substrate
availability (see references within Borrel et al. 2011).
The effect of temperature and substrate availability
on methanogenic potential has been studied in sedi-
ments from a number of boreal lakes (e.g. Duc et al.
2010, Lofton et al. 2015), while the information con-
cerning the diversity of methanogenic archaea in
boreal lakes is rather scarce. Very few studies have
shown the abundance of hydrogenotrophic (Methano -

bacteriaceae, Methano regulaceae) and aceticlastic
(Methanosaetaceae) methanogens in boreal lakes
(Peura et al. 2015, Rissanen et al. 2017).

The amount of methane produced is usually much
higher than the amount emitted, since microorgan-
isms consume a high portion of methane before it is
released into the atmosphere (see references within
Conrad 2009). Methane oxidation (MO) under both
oxic and anoxic conditions is carried out by methan-
otrophic microorganisms, which act as an efficient
environmental biofilter decreasing methane emis-
sion from various environments (Hanson & Hanson
1996, Knittel & Boetius 2009). High rates of aerobic
MO are usually detected at the oxic–anoxic interface
of lakes (upper sediment layer if overlaid by oxic
water or the oxycline of a stratified water column),
where both methane and oxygen concentrations
sharply decrease (Lidström & Somers 1984, Sundh et
al. 2005, Borrel et al. 2011). Aerobic methanotrophic
members of Alpha- and Gammaproteobacteria are
typical inhabitants of freshwater lakes. In most strat-
ified lakes, independent of their trophic status, pre-
dominance of methanotrophic Gammaproteobacteria
(type I methanotrophs) over Alphaproteobacteria
(type II) has been shown (Costello et al. 2002, Sundh
et al. 2005, Pimenov et al. 2010, Oswald et al. 2016a,
Savvichev et al. 2017). Aerobic MO in boreal lakes,
including determination of the effect of low tempera-
tures on MO potential and diversity of aerobic
methanotrophs, is much better studied than metha-
nogenesis (Kankaala et al. 2007, Duc et al. 2010, He
et al. 2012, Peura et al. 2012, 2015, Martinez-Cruz et
al. 2015, 2017, Denfeld et al. 2016, Crevecoeur et al.
2017). Generally, type I methanotrophic gammapro-
teobacteria of Methylococcaceae family, particularly
Methylobacter spp., are most frequently detected in
boreal lakes, which agrees with the data for other
freshwater basins (Borrel et al. 2011).

Methanotrophic gammaproteobacteria are consid-
ered strict aerobes capable of activity under micro -
aerobic conditions (Chistoserdova 2015, Danilova et al.
2016). The classical aerobic methanotrophic gamma -
proteobacteria were recently shown to be involved in
MO in anoxic waters of stratified freshwater lakes,
probably due to trophic interactions with oxygenic
phototrophs (Milucka et al. 2015, Oswald et al. 2015,
2016b) and/or methylotrophs (Chistoserdova 2015),
or using alternative electron acceptors (Fe3+, Mn4+, or
nitrate) (Oswald et al. 2016a, 2017). As components
of microbial communities, aerobic methanotrophic
gammaproteobacteria of the genus Methylobacter
were shown under anoxic conditions to oxidize up to
32% of methane formed in the upper sediments of

2



Kallistova et al.: Methane cycle in subarctic lake

shallow ferruginous subarctic Lake Vault (Alaska)
(Martinez-Cruz et al. 2017). The recent discoveries of
methanotrophic gammaproteobacteria in hypoxic
and anoxic conditions cast doubt concerning the
strictly aerobic nature of these bacteria (Chistoser-
dova 2015).

For a number of temporally stratified boreal lakes it
was, however, found that irrespective of oxygen
availability, MO was generally the highest in the
methane-saturated hypolimnion (Bastviken et al.
2002). In the absence of oxygen, other electron ac -
ceptors (e.g. SO4

2−, NO3
−, NO2

−, Fe3+, Mn4+, or Cr6+)
could be used in the process of anaerobic oxidation of
methane (AOM). Sulfate- and nitrate-dependent AOM
carried out by the anaerobic methane-oxidizing
archaea (ANME) via reverse methanogenesis are the
better studied processes compared with metal-
dependent AOM (Knittel & Boetius 2009, Welte et al.
2016, Timmers et al. 2017). Since most microorgan-
isms of the ANME clusters depend on sulfate reduc-
ers for AOM (Knittel & Boetius 2009), sulfate limita-
tion could be a reason for insignificant contribution
of sulfate-dependent methanotrophic archaea in a
number of freshwater lakes (Oswald et al. 2016b,
Martinez-Cruz et al. 2017, Rissanen et al. 2017). In
the absence of sulfate, AOM may be carried out by
nitrate- and nitrite-dependent methanotrophic archaea
and bacteria, ‘Candidatus Methanoperedens nitrore-
ducens’ (ANME-2d) and ‘Candidatus Methylo mira -
bilis oxyfera’ (NC10), respectively (Ettwig et al. 2010,
Haroon et al. 2013, Welte et al. 2016). While metal-
dependent AOM coupled to Fe3+, Mn4+, or Cr6+ re -
duction has also been proposed, the underlying mech-
anisms and taxonomic affiliation of the micro organisms
involved in this process still remain un clear. Different
bacteria and archaea have been hypothesized to par-
ticipate in this process (Egger et al. 2015, Fu et al.
2016, Timmers et al. 2017, He et al. 2018), and until
now the only proof was obtained for nitrate-depen-
dent ANME-2d archaea related to ‘Candidatus M.
nitroreducens’ (Ettwig et al. 2016). The effect of dif-
ferent electron acceptors (SO4

2−, NO3
−, Fe3+, Mn4+,

O2) on the activity and diversity of methanogens and
methanotrophs was recently studied for the sedi-
ments of 2 shallow boreal lakes en riched with iron. It
was, however, shown that the addition of any elec-
tron acceptor did not enhance the potential AOM
activity (Rissanen et al. 2017). Another process that
should be considered when evaluating MO under
anoxic conditions is trace methane oxidation (TMO),
which is apparently performed by methanogenic
archaea due to enzymatic back flux along with gen-
eral methane production (Timmers et al. 2017).

All boreal lakes referred to above either have oxy-
genated water column or are temporally stratified.
The object of the present study was the subarctic
(65° N) meromictic Lake Svetloe (Russia) with a per-
manently anoxic hypolimnion. This lake is of glacial
origin and belongs to a very rare type of freshwater
meromictic lakes with high concentrations of ferrous
iron (240 µM) and dissolved methane (960 µM) in the
hypolimnion; in contrast, the concentrations of sulfate
and sulfide are extremely low (~2 µM). Due to its con-
siderable depth (39 m) and protection from wind mix-
ing, the major hydrological parameters of the water
column are stable (Savvichev et al. 2017). Iron-en-
riched and sulfur-poor meromictic lakes are currently
considered as modern analogs of the ancient Archean
ocean with suitable conditions for photoferrotrophy
(Canfield et al. 2006, Crowe et al. 2011, Camacho et
al. 2017). There are only few such lakes known from
the literature: tropical lakes Matano (Indonesia) and
Kabuno Bay (DR Congo) and temperate lakes Pavin
(France) and La Cruz (Spain) (Biderre-Petit et al.
2011, Walter et al. 2014, Crowe et al. 2011, Llirós et al.
2015, Lehours et al. 2016, Camacho et al. 2017). Two
boreal (56° N) meromictic iron-enriched lakes — Kuz -
nechikha (Russia) and Ørn (Denmark) — have also
been described (Gorlenko et al. 1980, Norði et al.
2013), while both have lower maximum depth (20 and
10.5 m, respectively) and higher sulfate concentration
in the water column (up to 125 and 250 µM, respec-
tively) compared with Lake Svetloe.

One of the most important features of Lake Svetloe
is high methane content in the hypolimnion and bot-
tom sediments. Our radiotracer analysis carried out
when the lake surface was covered with ice (April
2014) revealed MO in both oxic and anoxic conditions
with the highest rate at the chemocline, where
aerobic methanotrophs were detected under oxygen
limitation (Savvichev et al. 2017). It was previously
shown for another ferruginous lake, Lake La Cruz,
that only aerobic methanotrophs were responsible for
MO under all (oxic, hypoxic, and anoxic) conditions.
Light-dependent MO coupled with oxygenic photo-
synthesis was shown to be the mechanism for
methane removal under anoxic conditions (Oswald et
al. 2016b). We thus hypothesized that similar relations
may exist in Lake Svetloe, e.g. oxygen pro duction by
oxygenic phototrophs concentrated at the chemocline
zone provided for MO by aerobic methanotrophs un-
der oxygen limitation. Our data on MO in the anoxic
hypolimnion of Lake Svetloe were also of some in -
terest. Since the concentrations of sulfate, nitrate,
and nitrite were low in the hypolimnion of the lake
(Table 1), and ferric iron ions were present, we
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 hypothesized that AOM might be coupled to Fe3+ re-
duction. AOM coupled to Fe3+ or Mn3+/4+ reductions
was previously proposed for the ferruginous Lake
Matano (Crowe et al. 2011, Sturm et al. preprint doi:
10.5194/bg-2015-533). High rates of AOM were also
measured in the anoxic, nitrate-free, Fe3+- and sul-
fate-containing sediments of the ferruginous boreal
Lake Ørn. Due to the considerable sulfate concentra-
tion in Lake Ørn, it was however difficult to differen-
tiate which of the electron acceptors (Fe3+ or SO4

2−)
was responsible for the AOM (Norði et al. 2013).

The goal of the present study was to analyze the
diversity and distribution of the microbial communi-
ties between the oxic epilimnion, oxic–anoxic inter-
face (chemocline), and anoxic hypolimnion of the
subarctic freshwater ferruginous meromictic Lake
Svetloe in relation to the processes involved in the
methane cycle (methane production and oxidation,
CO2 assimilation by oxygenic and anoxygenic photo -
trophs). The combination of physicochemical analy-
sis of the water column with a radiotracer technique
and high-throughput sequencing of the 16S rRNA
genes was used to link detailed description of the
microbial communities profile to the methane cycle
processes. The incubation experiments were focused
on light- and Fe3+-dependent MO, which were hypo -
thesized to take place in the hypoxic and anoxic
zones of the lake.

MATERIALS AND METHODS

Study site and sample collection

The freshwater meromictic Lake Svetloe (65°
04.98’ N, 41° 06.26’ E) is located in the northern taiga

zone with an average annual tempera-
ture of 0°C. Duration of the ice-cover
period for the lake is about 200 d. The
watershed is on a glacial moraine over
late Carboniferous limestones (Chu-
pakov et al. 2017). The maximum depth
of the lake is 39 m; the chemocline is
located at a depth interval of 20− 24 m,
and the hypolimnion below is anoxic
throughout the year (Chupakov et al.
2017, Savvichev et al. 2017). The aver-
age annual temperature of the water
column below 8 m is about 4°C (Chu-
pakov et al. 2017, Savvichev et al.
2017). Physicochemical parameters of
the lake were measured in our pre -
vious studies (Zabelina et al. 2013,

Ershova et al. 2015, Chupakov et al. 2017, Savvichev
et al. 2017); some parameters are summarized in
Table 1.

Water samples were collected in May 2016 from
the ice-free lake surface to a depth of 35 m. The sam-
ples were collected using a 5 l pre-cleaned polycar-
bonate horizontal water sampler (Aquatic Research).

Analytical techniques

Temperature and dissolved oxygen concentration
profiles were measured using a WTW Oxi 330i probe.
Water pH was measured with a HANNA HI8314F
portable ion meter with temperature compensation
and a combined electrode. Specific conductivity was
determined with a HANNA HI8733 portable conduc-
tometer. Alkalinity was determined immediately after
sampling by titration with the standard Aquamerck
reagent kit. Dissolved sulfide was determined by the
colorimetric method (Cline 1969); samples were pre-
served with zinc acetate saturated solution. Concen-
trations of iron were determined by the modified fer-
rozine method, which makes it possible to measure
dissolved Fe2+ and the sum of Fe2+ and Fe3+ after the
addition of hydroxylamine hydro chloride as a reduc-
ing agent and ammonium acetate buffer; all proce-
dures are described in detail by Viollier et al. (2000).
The concentration of Fe3+ was calculated as the dif-
ference between the concentrations of Σ(Fe2+ + Fe3+)
and Fe2+. The samples for iron analysis were col-
lected from the water sampler into 50 ml plastic
syringes through the special adapter preventing con-
tact with air. The samples were immediately filtered
through 0.45 µm acetate cellulose filters, dispensed
to capacity into plastic vials (25−50 ml), preserved
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Parameter        Epilimnion     Chemocline      Hypolimnion     Reference
                           (0−20 m)         (20−24 m)           (24−39 m)

DOC (µM)          100−150               183                 150−230         Chupakov 
DIC (mM)          2.44−2.7                3.6                   3.9−4.1          et al. (2017)

NO2−N (µM)          ≤0.2                   2.0                   2.0−2.9          Ershova 
NO3−N (µM)     5.3−11.5         3.6−11.5           8.3−20.2        et al. (2015)
NH4−N (µM)       0.7−1.4            1.4−143             143−214

SO4
2− (µM)           45−50               14−50                 2−14           Savvichev 

Fe (µM)            0.75−2.0            1.2−34                34−240         et al. (2017)

Fe3+ (µM)             0−0.1           0.9−11.5             0−7.3          This study
pH                      7.66−8.15         7.45−7.9             7.33−7.46
R (µS cm−1)         228−263           286−377             401−419

Table 1. Physicochemical parameters of Lake Svetloe. DOC and DIC: dissolved 
organic and inorganic carbon, respectively. R: conductivity
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with HNO3, and sealed avoiding air bubbles. Analy-
sis of dissolved iron species was carried out at the day
of sampling. Methane content in the water samples
was determined using the headspace method (Mc -
Auliffe 1971). For this purpose, 30 ml glass vials were
filled with the water sample, and 3.5 ml of the water
was replaced immediately by ambient air used as a
headspace gas. The vials were then sealed with gas-
tight rubber stoppers, and covered with perforated
aluminum caps; KOH was used for preservation. The
vials were stored upside down in the dark at air tem-
perature (16−18°C) for ≤1 wk. Methane concentra-
tion was measured on a Kristall 5000.1 gas chromato-
graph (Chromatec) equipped with a flame ionization
detector and HayeSep N 80/100 as a sorbent; the
vials were shaken well prior to gas chromatography
analyses. Methane concentrations were corrected for
methane content in ambient air similar to that de -
scribed in Denfeld et al. (2016).

Radiotracer techniques

For measurement of the rates of microbial pro-
cesses (CH4 oxidation, hydrogenotrophic H2/CO2

methanogenesis, and CO2 assimilation by oxygenic
and anoxygenic phototrophs), water samples were
dispensed into 35 ml glass vials, avoiding air bub-
bles, sealed with gas-tight rubber stoppers, and cov-
ered with perforated aluminum caps. The rate of MO
was measured using 14CH4 (2 µCi per sample, spe-
cific activity of 1.16 GBq mmol−1, JSC Isotope). For
the purpose, each vial was injected with 0.2 ml of
labeled methane dissolved in degassed sterile water.
The rates of CO2 assimilation and H2/CO2 methano-
genesis were measured using sterile NaH14CO3 (spe-
cific activity of 2.04 GBq mmol−1) solutions of 5 and
10 µCi per sample for CO2 fixation and H2/CO2

 methanogenesis, respectively. To determine the rates
of light and dark CO2 assimilation, 2 transparent vials
and 1 darkened vial were used for each sampling hori-
zon. DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea)
at a final concentration of 10−7 mM was used as an in -
hibitor of oxygenic photosynthesis. No electron donors
were added. To determine photosynthetic production
and the rates of microbial processes, the vials with
water samples and labeled substrates were incu-
bated for 24 h under in situ conditions by submerging
the vials suspended on nylon lines to the sampling
depths. After incubation, the samples were fixed with
0.5 ml 2 N NaOH and transported to the stationary
laboratory. The samples were treated as described
previously (Pimenov & Bonch-Osmo lov skaya 2006).

Each experiment was carried out with at least 3 repli-
cates. Photosynthetic production was calculated as
the difference between the values for transparent
and dark vials. Production of oxygenic photosynthe-
sis was calculated as the difference be tween total and
anoxygenic (transparent vial with DCMU) photo -
synthetic production.

Light-dependent MO was determined by in situ in -
cubation of water samples with 14C-labelled methane.
Water samples were taken from the chemocline zone
(21, 21.5, and 22 m), and 14CH4 was added as de -
scribed above. Three variants of incubation were
used for each sample taken in triplicate: (1) addition
of 14CH4 into transparent vials, (2) addition of 14CH4

into darkened vials, and (3) simultaneous addition of
14CH4 and DCMU into transparent vials. The vials
were incubated for 24 h directly at the sampling
depths, fixed with 0.5 ml 2 N NaOH and further
 processed as described above.

Molecular genetic techniques

Water samples were collected from depths of 0.5, 5,
10, 17, 21, 21.5, 22, 22.5, 23, 27, 33, and 35 m by over-
filling plastic 0.5 l bottles and sealing, avoiding gas
bubbles. Microbial cells from a whole volume of each
water sample (0.5 l) were concentrated on 0.2 µm fil-
ters (GTBP 2500, Millipore) on the day of sampling.
The filters were homogenized by grinding with liq-
uid nitrogen, and stored at −70°C prior to further pro-
cessing. The metagenomic DNA was isolated using a
method based on cell lysis and subsequent treatment
with 1% N-cetyl N,N,N-trimethylammonium bro-
mide (CTAB) (Wilson 2003). Per water sample, over
1 µg DNA was obtained.

PCR amplification of the 16S rRNA gene fragments
containing the V3−V6 variable regions was carried
out using the universal primers PRK341F (5’-CCT
ACG GGR SGC AGC AG-3’) and PRK806R (5’-GGA
CTA CYV GGG TAT CTA AT-3’) (Yu et al. 2005).
PCR fragments were then sequenced on a GS FLX
genome analyzer (Roche) according to the Titanium
protocol using the GS FLX Titanium Sequencing Kit
XL+. Creation of the library, its amp lification, and
sequencing were carried out ac cording to the rele-
vant Roche protocols.

Prior to analysis of the 16S rRNA gene sequences,
the reads with both primers at the termini were se -
lected. Potentially chimeric sequences were deleted
using the Uchime algorithm implemented in the Use-
arch package (Edgar et al. 2011). The reads occur-
ring only once in the whole dataset were excluded
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from analysis using Mothur (Schloss et al. 2009) as
possible pyrosequencing errors. After preliminary fil-
tration, mainly by removal of short sequences, the
datasets for the samples consisted of 2486 to 16 862
sequences (Table 2).

Usearch was used for clusterization and determina-
tion of the representative sequences for the opera-
tional taxonomic units (OTUs); 97% percentage of
homo logy was used for OTUs clustering. Data were
normalized to the total number of reads in clusters for
each sample. The representative sequences were tax-
onomically identified using RDP classifier (Cole et al.
2009). For taxonomic identification of the representa-
tive sequences, they were also compared with the
GenBank database of the 16S rRNA gene se quences
using BLASTN. The OTUs with se quences exhibiting
over 95% similarity to those of a validly described mi-
croorganism were assigned to relevant genera. The
obtained sequences were de posited in the Sequence
Read Archive (SRA) via the National Center for Bio -
technology Information (NCBI) under the accession
numbers SRX3205080− SRX3205091.

Hierarchical cluster analysis of microbial commu-
nity compositional profile was done using R lan-
guage (hc function) as reported by Gies et al. (2014);
Manhattan distance was used for construction of the
OTU tree.

Microscopy

Total microbial number was determined in the
samples fixed with glutaraldehyde (2% final concen-
tration). The fixed specimen (1−5 ml) was filtered
through 0.2 µm black polycarbonate membranes
(Millipore). The filters were stained with acridine
orange and examined under an Axio Imager.M2 epi-
fluorescence microscope equipped with an Axiocam
503 mono digital camera and the 16 filter set for acri-
dine orange-stained cells (Carl Zeiss Microscopy).
The images were analyzed using the ZEN 2 bundled
software package.

Incubation experiments with addition of Fe3+

Incubation experiments with addition of Fe3+ as a
possible electron acceptor for AOM were performed
for the samples from the chemocline zone (22 m),
near-bottom water (35.3 m), and upper sediments
(0−5 cm). Serum bottles (0.5 l) were filled from the
water sampler avoiding air bubbles, sealed with gas-
tight rubber stoppers, and covered with perforated

aluminum caps. The sediment samples were dis-
pensed into 50 ml plastic boxes and tightly sealed. All
samples were stored at +5°C in the dark within 1 wk
until further processing. Manipulations with the sam-
ples were carried out in the laboratory under argon
atmosphere. The experiment was performed in tripli-
cate for each sample in the following variants: (1) con-
trol, headspace of argon + 2.5% methane; (2) head -
space of argon + 2.5% methane and 5 mM Fe2(SO4)3;
and (3) headspace of argon + 2.5% methane and
~5 mM synthetic ferrihydrite (Fe(OH)3) prepared ac -
cording to Zavarzina et al. (2016). The volumes of
water and sediment were 30 and 10 ml, respectively.
The incubations lasted 6 mo at 10°C in the dark.
Headspace methane concentration was measured
once a month on a Kristall 5000.1 gas chromatograph
(Chromatec) equipped with a flame ionization detec-
tor and HayeSep N 80/100 as a sorbent.

Statistical analysis

All experiments were carried out in triplicate and
means ± SD were calculated. It was not possible to
proof normality of the data due to small sample size
(n = 3). We applied parametric statistical tests assum-
ing that our data had a normal distribution. Correla-
tion tests between OTUs and between OTUs and MO
rates were carried out using the Pearson method in R
programming language (Hmisc and ggpubr libraries).
Student’s t-test was used to detect significant differ-
ences between 2 sets of data in incubation experi-
ments, i.e. differences between MO rates in light and
dark incubations, and differences between methane
concentrations at the end of the experiment in control
and one of each Fe3+ additions.

6

Depth (m)                       Number of 16S rRNA gene reads

0.5                                                          8024
5                                                             9308
10                                                          14 707
17                                                          16 862
21                                                          13 053
21.5                                                       14 323
22                                                           2486
22.5                                                        5993
23                                                           8571
27                                                          16 122
33                                                          11 458
35                                                          11 955

Table 2. Number of the 16S rRNA gene fragments sequenced 
from the samples of Lake Svetloe water column
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RESULTS

Hydrochemical parameters of the water column

Our research confirmed stratification of the water
column of Lake Svetloe: the chemocline was defined
as within the 21−24 m depth interval based on the
profile of oxygen concentrations (Figs. 1 & 2A). The
upper 10 m of the water column was oxygen satu-
rated (340−386 µM O2), while oxygen concentration
decreased below that level. Within the depth interval
of 21−24 m, oxygen concentration decreased from
17.8 to <2.8 µM. Methane concentration in the epi -
limnion (0−17 m) was in the range of 0.03−0.4 µM
with a small increase (0.3−0.4 µM CH4) in the upper
0−5 m layer (Fig. 3A). Below 21 m, methane content
increased from 4.5 to 920 µM (at 33 m) (Figs. 1 & 2A).
Traces of sulfide (0.25 µmol l−1) were detected at
21 m. A small sulfide peak (0.85 µM) was observed at
22 m, while at 23−35 m the concentration increased
gradually from 0.5 to 2 µM (Fig. 1). The highest Fe3+

concentrations were observed at the chemocline
lower border (23 m) and in the hypolimnion (33 m)
(Table 1).
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Total microbial numbers increased sharply in the
chemocline with the maximum at 23 m. Microbial
numbers in the hypolimnion were lower than in the
chemocline, but higher than in the epilimnion (Fig. 1).

Rates of microbial processes

Data on the rates of dark and light CO2 assimilation
revealed 2 layers in the chemocline zone, differing in
the character of microbial processes. The lower epil-
imnion and upper chemocline horizons (17− 21.5 m)
were the zones where oxygenic photo trophs devel-
oped, with maximum activities (150 and 120 nmol C
l−1 d−1) at 21 and 21.5 m depth, re spectively (Fig. 2B).
In the lower chemocline (21.5− 23 m), anoxygenic
photo trophs developed, with maximum activity
(264 nmol C l−1 d−1) at 22 m depth. The profile of the
rates of dark CO2 as similation also had 2 maxima,
which coincided with the peaks of oxygenic and an -
oxy genic photosynthesis. Another maximum of oxy-
genic phototrophic activity (435 nmol C l−1 d−1), i.e. 3
times the rate in the chemocline, was located in the
epilimnion, at 10 m. No activity of oxygenic or anoxy-
genic phototrophs was detected at 22 and 23 m,
respectively, and below.

MO activity was very low (<0.1 nmol C l−1 d−1) in the
oxygen-saturated epilimnion (Fig. 3B), and started to
increase below 10 m depth (Figs. 2A & 3B). The first
small peak of MO rate (313 nmol C l−1 d−1) was re -
vealed in the chemocline zone at 21.5 m and coin-
cided with the zone of highest activity of oxygenic

phototrophs (Fig. 2B). Oxygen concentration in this
layer was 9.4 µM (Fig. 2A). The highest MO rate of
2.6 µmol C l−1 d−1 was found in the chemocline, at
23 m. While oxygen (3.4 µM) was present in this hori-
zon, radiotracer techniques did not reveal activity of
oxygenic phototrophs (Fig. 2B). MO also occurred in
the anaerobic hypolimnion, and the rates of this pro-
cess (220−243 nmol C l−1 d−1) were lower than in the
chemocline (313−2611 nmol C l−1 d−1) (Fig. 2A).

Light-dependent MO was confirmed at 21 and
21.5 m by 14CH4 radiotracer experiments with trans-
parent and darkened vials incubated directly at the
sampled layers of the water column. Compared with
the dark vials, MO rate in the light increased by
almost 40% at 21 m and 30% at 21.5 m (t-test, p-
value = 0.003). No stimulation of MO by light was
observed in the presence of DCMU, an inhibitor of
photosystem II in oxygenic phototrophs (Fig. 4). Low
MO at 21 m, where oxygen supply was more favor-
able for development of aerobic methanotrophs, was
probably due to low concentration of available
methane (4.5 µM at 21 m compared with 18.5 µM at
21.5 m), rather than any other factor. No significant
difference (t-test, p-value = 0.86) among light and
dark MO rates was found for the 22 m depth sample,
suggesting that the MO process occurred at this
depth without contribution of oxygenic phototrophs.
These results coincided with the absence of activity
of oxygenic phototrophs measured with NaH14CO3 at
22 m and below (Fig. 2B).

The rates of methanogenesis are considered under-
estimated since they were measured only for hygro -
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genotrophic methanogenesis with H2/CO2 as a sub-
strate. Very low rates of H2/CO2 methanogenesis
(1.8−  6.2 nmol C l−1 d−1) in the hypolimnion indicated
that other substrates could possibly be involved in
methane production, e.g. acetate, formate, or C1-
methylated compounds.

Composition of microbial communities

Molecular genetic analysis resulted in detailed de -
scription of the microbial communities’ composition
throughout the water column of Lake Svetloe. Hier-
archical cluster analysis of microbial community com-
positional profiles showed that microbial communi-
ties differed between 4 water layers: epilimnion (0.5−
17 m), upper chemocline (21−21.5 m), lower chemo-
cline (22−23 m), and hypolimnion (27−35 m) (Fig. 5),
which was in agreement with the results of radiotracer
measurements of the rates of the processes (Fig. 2).

The epilimnion microbial communities were typi-
cal of those from oxygen-saturated lake environ-
ments (Newton et al. 2011). Members of the phyla
Actinobacteria (27−32% of the total number of the
16S rRNA gene sequences), Bacteroidetes (30−36%),
Planctomycetes (2−3%), Alphaproteobacteria (2−4%),
Betaproteobacteria (7−20%), and Verrucomicrobia
(2−6%) were predominant (Fig. 6A).

Cyanobacteria became numerous at 17 m (12% of
the total number of the 16S rRNA reads); their share
in the upper layers did not exceed 3%. Microalgae
were probably the major phototrophs in the epi -
limnion, since their chloroplast sequences were de -

tected in these horizons. Cyanobacteria belonged
mostly to the genera Synechococcus and, to a lesser
degree, Pseudoanabaena. The shares of cyanobac-
teria and gammaproteobacteria were highest in the
upper chemocline layers, reaching 15−17 and 11−
12%, respectively, at 21−21.5 m (Fig. 6A). The gamma -
proteobacteria in the chemocline were represented
almost exclusively by aerobic methanotrophs closely
related to Methylobacter psychrophilus (99% iden-
tity of the 16S rRNA gene fragments), while their con -
tribution to the microbial community of the oxygen-
saturated epilimnion above 17 m was very low (up to
0.08%) (Fig. 3B). Methylobacter sp. was highly abun-
dant at 21 and 21.5 m depths (11 and 10%, re -
spectively). Another smaller peak of its abundance
appeared at 23 m depth. These maxima matched the
peaks of MO rates, although they were opposite in
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direction: the highest MO activity was instead found
at 23 m, and the smaller peak appeared at 21.5 m
(Fig. 7). Few sequences of aerobic methanotrophs of
the genera Methylomonas, Methylomarinum, Methy-

lococcus, and Methylocystis were also detected in the
chemocline.

Positive correlations were revealed between rela-
tive abundances of methanotrophic Methylobacter
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sp. and cyanobacteria (ρ = 0.79, p-value = 0.0025), as
well as with obligate methylotrophic betaproteo -
bacteria Methylophilus methylotrophus (ρ = 0.81, p-
value = 0.0015) (Fig. 7). It should be noted that the
sequences of aerobic methanotrophs, methylotrophs,
and cyanobacteria were also found in the anoxic
hypolimnion. While their share in the hypolimnion
was lower than in the chemocline, they still consti-
tuted a significant portion of the microbial commu-
nity: up to 1.8% for Methylobacter sp., 1.35% for
Synechococcus sp., and 0.3% for Methylophilus sp.
at 35 m (Fig. 7).

Betaproteobacteria related (98% similarity of the
16S rRNA gene sequences) to non-photosynthetic
facultatively anaerobic bacteria Rhodoferax (Albido -
ferax) ferrireducens capable of Fe3+ to Fe2+ reduction
were revealed in the chemocline. While they were
almost absent in the oxic epilimnion, their share was
as high as 3.6% in the chemocline and not more than
0.3% in the anoxic hypolimnion. The share of anoxy-
genic green phototrophic bacteria Chlorobium ferro -
oxidans, which oxidize Fe2+ to Fe3+, also increased to
9% in the lower chemocline layer (Fig. 6A).

Relative abundance of uncultured bacteria of the
candidate division OD1 (‘Candidatus Parcubacteria’)
increased in the lower chemocline layer (22−23 m).
Their share reached 7.2−8.0% of the total number of
the 16S rRNA gene reads in the zone of maximal MO
(22−23 m), while it did not exceed 2% in the epi -
limnion and hypolimnion. Members of the candidate

phylum SR1 were also present in the chemocline
(3−5% of total 16S rRNA gene reads), but there was
only a trace abundance in the epi- and hypolimnion
(Fig. 6A). Relative abundance of Deltaproteobacteria,
represented by sulfate reducers of the orders Desul-
fobacteraceae and Syntrophaceae (genus De sulf o -
monile), also increased (to 6.5%) in the lower chemo-
cline layer, where a small peak of sulfide occurred
(Fig. 1).

Among archaea, the organisms closely related (97−
100% similarity of the 16S rRNA gene sequences) to
deep-sea hydrothermal vent Euryarchaeota (DHVE)
(GenBank accession nos. HF951813, EU595429, and
LN545298) contributed significantly to the chemo-
cline community, with their highest total share (11.3−
11.6%) revealed in the lower chemocline horizons
(22−23 m) (Fig. 6B). They were almost absent in the
epilimnion, and their share in the hypolimnion was
lower than in the chemocline (5−7%).

Microbial communities of the anoxic hypolimnion
(27−35 m) were characterized by predominance of
archaea, which were responsible for 62−65% of the
total number of microbial 16S rRNA sequences. The
3 predominant archaeal phyla were Euryarchaeota
(25−36%), Pacearchaeota (22−32%), and Woesearch -
aeota (3−4%) (Fig. 6B). The phylum Euryarchaeota
was represented mainly by methanogens of the orders
Methanomicrobiales and Methanosarcinales in al -
most equal amounts. Obligate aceticlastic methano-
gens Methanothrix (Methanosaeta) concilii (99% 16S
rRNA similarity) were responsible for 7−9% of the
total number of microbial sequences, while hydro -
genotrophic Methanoregula formicica (97% similar-
ity) constituted 11−13%. It should be noted that the
sequences of anaerobic methanogens Methanothrix
sp. and Methanoregula sp. were also detected in the
oxygen-saturated epilimnion, where they constituted
up to 0.26 and 0.08% of the total microbial 16S rRNA
reads, respectively (Fig. 3B).

No sequences of the known microorganisms in -
volved in AOM, i.e. archaea of the ANME clusters,
including ‘Candidatus Methanoperedens nitrore-
ducens,’ and bacteria of the NC10 phylum (‘Candi-
datus Methylomirabilis oxyfera’), were revealed in
the water column of Lake Svetloe.

Incubation experiments

Addition of Fe3+ did not result in detectable
methane consumption under anoxic conditions for
any of the studied samples (chemocline and near-
bottom water and the upper sediments). Contrary to
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expectations, stimulation of methanogenesis was re -
vealed for the sediment samples incubated with ferri -
hydrite (Fe(OH)3) compared with the control without
external Fe3+ (t-test, p-value = 0.006). Methanogen-
esis occurred in the sediments in all variants, both
experimental with Fe3+ addition and control ones,
with the lowest amount of methane (1.75 times lower
than in the control) formed in the variant with addi-
tion of Fe2(SO4)3 (Fig. 8). Incubation of water samples
with Fe3+ resulted in neither methane consumption
nor production.

DISCUSSION

Diverse microbial communities, which differed in
composition between the oxic epilimnion, chemo-
cline, and the anoxic hypolimnion, were revealed by
16S rRNA gene profiling in the water column of the
meromictic subarctic freshwater Lake Svetloe (Fig. 5).
Thirty high-level bacterial and archaeal taxa, includ-
ing as yet uncultured candidate phyla, were detected
(Fig. 6). In contrast to high overall diversity of micro-
bial communities, the groups involved in the methane
cycle processes, specifically methanogenesis and
aerobic MO, were uniform throughout the water col-
umn and were represented by few genera of well-
known methanogens and aerobic methanotrophs,
typical inhabitants of freshwater lakes.

Based on molecular analyses, it can be concluded
that methane was produced in the water column of
Lake Svetloe via both aceticlastic and hydro geno -
trophic methanogenesis, since all detected methano-
gens were almost equally represented by only 2
 genera: Methanothrix (Methanosaeta) and Methano -
regula. Acetate is the only growth substrate for obli-
gate aceticlastic Methanothrix sp., which exhibits
high substrate affinity and predominates in the envi-
ronments with low (<1 mM) acetate concentrations
(Jetten et al. 1992, Welte & Deppenmeier 2014).
Another methanogen abundant in the Lake Svetloe is
Methano regula sp. belonging to obligate hydro geno -
trophic cytochrome-lacking methanogens of Metha-
nomicrobiales order, which due to their biochemical
properties can use either H2/CO2 and/or formate (for-
mate is transformed into H2 by intracellular formate
lyase) for growth and methane production (Thauer et
al. 2008). Methanoregula formicica, the closest rela-
tive to those detected in Lake Svetloe, uses both
H2/CO2 and formate (Yashiro et al. 2011). Due to very
low (1.8−6.2 nmol C l−1 d−1) rates of H2/CO2 methano-
genesis determined in the hypolimnion of Lake Svet-
loe by radiotracer analyses, we suppose that formate

was a preferable substrate for Methanoregula sp.
The hydrogenotrophic Methanoregulaceae and aceti-
clastic Methanosaetaceae are the most frequently de -
tected methanogens in freshwater lakes (Borrel et al.
2011), including boreal ones (Peura et al. 2015, Rissa-
nen et al. 2017).

An ever-increasing number of recent studies indi-
cate that methane production is not restricted to
anaerobic conditions. Since this process is also wide-
spread in oxygenated subsurface sea- and freshwa-
ters, it can globally contribute to methane emission
(Bogard et al. 2014, Repeta et al. 2016, DelSontro et
al. 2017, Donis et al. 2017). Among the current expla-
nations for this methane paradox are methane pro-
duction by aerobic bacteria from methylphosphonates
(Repeta et al. 2016), occurrence of anoxic microniches
in surface waters, and involvement of some algal
metabolites as precursors for methane production,
etc. (see references within Donis et al. 2017). It was
demonstrated for a shallow boreal oligo-mesotrophic
lake that methane production in oxygenated waters
is driven by aceticlastic methanogenesis and associ-
ated with algal dynamics (Bogard et al. 2014). Meth-
anogenic archaea have been found in various oxic
habitats (see references within Bogard et al. 2014),
and antioxidant genes have been detected in their
genomes (Lyu & Lu 2018). A small increase in
methane concentration was also observed in oxy-
genated water layers of Lake Svetloe, and sequences
of methanogenic archaea, particularly aceticlastic
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Methanothrix sp., were detected in these horizons
(Fig. 3). However, we cannot directly link anaerobic
aceticlastic methanogens with increased methane
concentration in subsurface waters, since we did not
measure the aceticlastic activity in situ.

MO was revealed by radiotracer analysis in both
oxic and anoxic water layers of Lake Svetloe. In oxy-
gen-containing layers, MO can be attributed to aero-
bic psychrophilic methane-oxidizing gammaproteo -
bacteria Methylobacter psychrophilus, as it was the
major species among known methanotrophs detected
throughout the water column by molecular analyses.
Aerobic methanotrophs of genera Methylo monas,
Methylomarinum, Methylococcus, and Methy lo cystis
were also found, but their relative abundances were
very low. Methylobacter spp. are considered as typi-
cal inhabitants of various freshwater habitats, in -
cluding boreal lakes, as these methanotrophs are the
ones most commonly de tected in such environments
(Borrel et al. 2011, He et al. 2012, Peura et al. 2012,
Crevecoeur et al. 2017, Martinez-Cruz et al. 2017).
Moreover, Methylobacter sp. was recently shown to
be also involved in AOM in sediments of a thermo -
karst arctic lake (Martinez-Cruz et al. 2017).

It was previously discovered that aerobic methan-
otrophic gammaproteobacteria could play a principal
role in MO in anoxic waters of freshwater stratified
lakes (Milucka et al. 2015, Oswald et al. 2015, 2016a,b,
2017). One of the possibilities, so-called light-depen-
dent MO, implies trophic relationships between aer-
obic methanotrophic gammaproteobacteria and oxy-
genic phototrophs below the oxycline. The latter
produce oxygen, which may be used by aerobic
methanotrophs for MO (Milucka et al. 2015, Oswald
et al. 2015, 2016b). Light-dependent MO was hypo -
thesized in the course of the present study and was
confirmed for the upper chemocline layer (21−
21.5 m) of Lake Svetloe by radiotracer in situ incuba-
tions (Fig. 4) and by obtaining a correlation (ρ = 0.79,
p-value = 0.0025) between relative abundances of
Methylobacter sp. and Cyanobacteria (Fig. 7). Se -
quences of cyanobacteria were also revealed in the
anoxic hypolimnion of Lake Svetloe together with
the sequences of Methylobacter sp. and methylo -
trophic Methylophilus sp., both known as aerobes.
Based on the molecular analysis results, it was impos-
sible to determine whether these microorganisms
were physiologically active or were a suspension of
inactive and dead cells. Cyanobacteria were most
probably inactive, since no oxygenic CO2 assimila-
tion was detected below 22 m by radiotracer analysis.
Due to a relatively high abundance of autofluores-
cent microorganisms, attempts at fluorescence in situ

hybridization determination of the numbers of physi-
ologically active aerobic methanotrophs in the water
column proved unsuccessful. High autofluorescence
in Lake Svetloe has been reported previously (Sav -
vichev et al. 2017).

Methanotrophic Methylobacter sp. and methylo -
trophic Methylophilus sp. exhibited similar relative
abundance profiles (ρ = 0.81, p-value = 0.0015)
throughout the epilimnion, chemocline, and hypo -
limnion of Lake Svetloe (Fig. 7). It should be noted
that correlation does not imply dependence between
the parameters, but only indicates that 2 parameters
vary according to the same pattern. This implies the
existence of a third factor affecting both parameters
so that they vary according to the same pattern and
show correlation. Based on data from the current lit-
erature, we suppose, however, that positive correla-
tion in relative abundances found for Methylobacter
and Methylophilus in Lake Svetloe means that these
microorganisms are associated. Under hypoxic con-
ditions, classical type I methanotrophs of the family
Methylococcaceae often occur together with methy-
lotrophic bacteria of the family Methylophilaceae,
which utilize methanol and methylamines, but not
methane (Chistoserdova 2015). A good linear rela-
tionship between the relative abundances of methan-
otrophs and methylotrophs in pyrosequencing reads
was revealed for the microbial community of arctic
lake sediments that derived carbon from methane
(He et al. 2012). Methylococcaceae and Methylophi-
laceae relative abundances increased in several ice-
covered boreal lakes where MO occurred (Denfeld et
al. 2016). Sequences of Methylophilaceae were also
abundant together with Methylobacter sp. in 13C DNA
enrichment from the sediments of a thermo karst
Alaskan lake (Martinez-Cruz et al. 2017). Predomi-
nance of these organisms in metagenomes and their
coordinated response to stimulation with methane
and nitrate may indicate that under oxygen limitation
some species of methanotrophs and methylotrophs
may be involved in cooperative cross-feeding inter-
actions (He et al. 2012, Beck et al. 2013, Oshkin et al.
2015). Oxygen availability is one of the main factors
determining their partnership in the course of MO
(Oshkin et al. 2015). The question is, do these rela-
tions enhance MO meaningfully under hypoxic con-
ditions or not?

The highest MO rate was measured at the lower
chemocline zone (23 m) of Lake Svetloe, where traces
of oxygen (3.4 µM) were still present. We failed to
find positive correlation between MO and relative
abundance of Methylobacter sp. for the chemocline
zone of the lake: the highest peak of MO rate
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matched the lowest peak in Methylobacter sp. abun-
dance and vice versa (ρ = 0.16, p-value = 0.63) (Fig. 7).
The first, smaller peak of MO rate detected at 21.5 m
can be attributed to Methylobacter sp. However, at
the lower chemocline layer (23 m) other microorgan-
isms might contribute to MO together with aerobic
methanotrophs. Among different taxa with a total
share in the community over 1%, a correlation was
revealed (with ρ > 0.55) between MO rates and rela-
tive abundances of Chlorobi (ρ = 0.72, p-value =
0.008), Deltaproteobacteria (ρ = 0.68, p-value =
0.014), ‘Candidatus Parcubacteria’ (OD1) (ρ = 0.66, p-
value = 0.02), Chloroflexi (ρ = 0.61, p-value = 0.034),
and the weakest correlation with DHVE archaea
(accession no. EU595429) (ρ = 0.57, p-value = 0.054).
None of the listed taxa, except sulfate-reducing Delta -
proteobacteria, have yet been proved as directly par-
ticipating in either aerobic or anaerobic MO. We
could only speculate about their possible involve-
ment in MO by providing some intermediates that
could be further used by methanotrophic micro -
organisms. For example, in our studies, the phylum
Chlorobi was represented by Chlorobium ferrooxi-
dans (99−100% 16S rRNA similarity), which is known
to oxidize Fe2+ to Fe3+ (Heising et al. 1999), and there-
fore could provide Fe3+ for methanotrophs as an elec-
tron acceptor for AOM. The sulfate-reducing members
of Deltaproteobacteria, whose relative abundances
also matched the peak of sulfide concentration in the
chemocline, might be involved in sulfate-dependent
AOM. In our case, however, ANME archaea were not
detected in Lake Svetloe. Members of the novel can-
didate division ‘Candidatus Parcubacteria’ (OD1) are
globally distributed in marine and terrestrial habi-
tats, including freshwater lakes, and appear to be
mainly present in anoxic environments (Elshahed et
al. 2005, Luef et al. 2015). Since the overall represen-
tation of this group was positively correlated with
dissolved organic carbon and methane concentra-
tions in the suboxic hypolimnion, it was hypothesized
that these bacteria were anaerobic and probably
played a role in MO (Peura et al. 2012). Recent
genomic studies indicated the possibility of their
anaerobic fermentative metabolism; the data on their
possible growth substrates are, however, contradic-
tory (Kantor et al. 2013, León-Zayas et al. 2017). The
Chloroflexi detected in Lake Svetloe are represented
by members of the family Anaerolineaceae, which
are known as saccharolytic anaerobes (Yamada et al.
2007). The DHVE group includes the Euryarchaeota
from diverse cold and terrestrial environments (Pla -
sencia et al. 2011). Their role in communities is
presently not established. Previous studies on marine

planktonic Euryarchaeota have suggested either a
putative anaerobic respiration physiology or the
potential to carry out a photoheterotrophic metabo-
lism (Restrepo-Ortiz & Casamayor 2013). It is also
possible that microbial groups potentially involved in
MO in Lake Svetloe were missed at the stage of DNA
extraction or PCR amplification due to some limita-
tions of protocols or primers.

While AOM was revealed in the hypolimnion of
Lake Svetloe by radiotracer analyses, it is still un -
clear what microbial groups were responsible for this
process. Involvement of the known sulfate-, nitrate-,
and nitrite-dependent anaerobic methane oxidizers
can most likely be ruled out, since these organisms
were not detected by molecular genetic techniques,
and concentrations of sulfate, nitrite, and nitrate in
the water column were low (Table 1). Methylobacter
sp. might be involved in AOM, since methanotrophic
gammaproteobacteria were previously hypothesized
to couple MO with reduction of manganese and iron
oxides or nitrate/nitrite in the anoxic hypolimnion of
freshwater lakes (Oswald et al. 2016a, 2017). How-
ever, the mechanism underlying this process remains
unclear, as well as the physiological state of Methylo -
bacter sp. detected in the hypolimnion of Lake Svet-
loe. Participation of Fe3+ as an electron acceptor for
AOM has been strongly suggested for various fresh-
water basins, including ferruginous and boreal lakes
(Crowe et al. 2011, Norði, et al. 2013, Ettwig et al.
2016, Oswald et al. 2016a,b, Rissanen et al. 2017,
Timmers et al. 2017, He et al. 2018, Sturm et al. pre -
print doi: 10.5194/bg-2015-533), and was hypothe-
sized in the course of the present study. Since taxo-
nomic affiliation of the microorganisms responsible
for metal-dependent AOM has not been clearly
defined, we conducted incubations with Fe3+ additions
to enrich, if possible, the microbial groups involved.
However, the effect of Fe3+ was un clear. We did not
detect methane consumption in any of the water and
sediment samples. Instead, a net methane production
was observed for sediment samples, which, however,
cannot completely rule out AMO activity, since more
sensitive measurements are re quired for AOM quan-
tification, e.g. addition of labeled CH4 to track the
amount of CH4 being oxidized from the total CH4

(added and produced by methano genesis). The sul-
fate ion derived from Fe2(SO4)3 was initially sup-
posed to be an electron acceptor for AOM in addition
to Fe3+. Instead, Fe2(SO4)3 supply most probably led
to competition between sulfate reducers and metha-
nogens, which resulted in lower methane production
compared with the control and treatment with ferri-
hydrite (Fig. 8). Our data were similar to the results of
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Rissanen et al. (2017), who also did not observe stim-
ulation of potential MO in anaerobic incubations
supplemented with Fe3+ for the sediments of 2 iron-
enriched shallow boreal lakes. In the case of metha-
nogenesis, however, our results contradicted: in the
work of Rissanen et al. (2017), Fe3+ addition decreased
the potential net methane production rates. The sup-
pression of methanogenesis was attributed in this
study to protection of organic matter from degradation
caused by Fe3+ supply (Rissanen et al. 2017). AOM
coupled to Fe3+ reduction has also been suggested for
the ferruginous Lake La Cruz, but the authors did not
establish a clear link between MO and concurrent
metal reduction (Oswald et al. 2016b). Based on our
incubation experiments and referred results of other
researchers, it is also reasonable to suggest that in
Lake Svetloe, Fe3+ is not involved directly (as an elec-
tron acceptor) in AMO, and conversion of Fe3+ to Fe2+

and vice versa occurred mostly due to activity of
Rhodoferax ferrireducens and C. ferrooxidans, both
abundant in the chemocline. R. ferrireducens re duces
Fe3+ to Fe2+ by using various organic compounds as
electron donors (Finneran et al. 2003, Risso et al. 2009).
Since AOM rates were relatively low (~10% of the rate
of AMO at 23 m), TMO by methanogenic archaea
(Timmers et al. 2017) might also be suggested for
Lake Svetloe.

CONCLUSION

Meromictic ferruginous subarctic Lake Svetloe is
an example of a freshwater basin with extremely low
diversity of microorganisms involved in the aerobic
MO and methanogenesis. These microorganisms are
uniform throughout the water column and repre-
sented by only few genera (aerobic Methylobacter-
related methanotrophs, aceticlastic Methanothrix-
and hydrogenotrophic Methanoregula-related meth-
anogens). Detection of methanogens in the oxy-
genated epilimnion, together with an increase in
methane concentration suggests archaeal origin of
epilimnetic methane. This methane, while small,
could be a potential source of emission due to very
low MO rates and low abundance of aerobic methan-
otrophs in oxygenated waters. The light-dependent
MO detected in the Lake Svetloe upper chemocline
suggests trophic relations between aerobic methan-
otrophs and cyanobacteria similar to those found in a
number of lakes located in the temperate climatic
zone. This further suggests ubiquity of light-depen-
dent MO in stratified freshwater basins. Special
attention must be paid to the lower chemocline layers

of meromictic freshwater lakes where oxygenic pho-
tosynthesis is absent and oxygen is close to the detec-
tion limit, while MO is high. The question of which
microorganisms are responsible for MO in the lower
chemocline and hypolimnion of Lake Svetloe is still
open. It is very attractive to attribute the highest MO
rate exclusively to aerobic Methylobacter sp., since it
was the only known methanotroph detected. How-
ever, the absence of positive correlation between MO
rates and Methylobacter relative abundance sug-
gested that other microorganisms might contribute to
this process together with Methylobacter. Microbial
groups and electron acceptors driving AOM require
more detailed research, since known ANME archaea
and NC10 bacteria were not detected in the hypo -
limnion of Lake Svetloe, and incubations with Fe3+

did not reveal methane consumption under anoxic
conditions. Other questions for future studies are
why did ferrihydrite addition promote methanogen-
esis, and what underlies this stimulation?
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