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1.  INTRODUCTION

Heterotrophic bacteria are important regulators of
multiple biogeochemical processes in aquatic eco-
systems including the cycling of carbon (C) and
phosphorus (P) (Cotner & Biddanda 2002, Cotner et
al. 2010, Schlesinger et al. 2011, Jeyasingh et al.
2017). However, our understanding of how these key
elemental cycles are linked in aquatic systems
remains limited (Maranger et al. 2018). It is acknowl-
edged that inland waters are biogeochemically
active ‘pipes’ connecting terrestrial systems with the
oceans, but this active pipe concept has traditionally

only been applied to the processing of carbon in
inland waters (Cole et al. 2007, Tranvik et al. 2009,
Aufdenkampe et al. 2011). Recently, there has been a
call to better understand how the freshwater pipe
concept could be applied to macronutrient cycling in
inland waters (Maranger et al. 2018). Developing our
understanding of how freshwaters serve as active
pipes for multiple elements requires an understand-
ing of both the production and decomposition of
organic matter.

Dissolved organic matter (DOM) is a major biogeo-
chemically active carbon pool in freshwater systems
(Tranvik 1988, Stets & Cotner 2008, Tranvik et al.
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2009, Catalán et al. 2016). To date, the bulk of the
research conducted on DOM has focused on its pro-
duction primarily by autotrophs and decomposition
primarily by heterotrophs. However, heterotrophs
not only consume DOM, but they also produce, or
more precisely, transform it into various metabolites
(Lechtenfeld et al. 2015). In marine systems, micro-
bial production of dissolved organic carbon (DOC)
can result in a pool of slow-degrading (or recalcitrant)
carbon that can be exported to and buried in the deep
oceans (Jiao et al. 2010, 2011, Lechtenfeld et al. 2015).
This microbial carbon pump is now widely accepted
as an important mechanism for storing carbon in the
ocean. Microbial carbon production has also been
presented as the dominant pathway for recalcitrant
organic matter production in soils (Liang & Balser
2011, Cotrufo et al. 2015), resulting in soil DOM that
has been heavily modified by microbial metabolism.
While this pathway has been less ex plored in fresh-
water systems, it also appears to be an important con-
trol on DOM composition in freshwaters (Kawasaki &
Benner 2006, Guillemette & del Giorgio 2012). Despite
this known importance for global C cycling, the im -
plications of microbial production of DOM on other
nutrient cycles (such as dissolved organic phosphorus
[DOP] production) are not well known.

The excretion of bacterial metabolites is an impor-
tant mechanism for altering the composition and
bioavailability of DOM (Romano et al. 2014, Lechten-
feld et al. 2015). The environmental conditions, such
as availability of nutrients and the temperatures
experienced by bacteria can greatly affect its quan-
tity and characteristics. For example, bacterial pro-
duction of phosphatase is strongly related to nutrient
conditions (Cotner & Wetzel 1991, Romano et al.
2015). Recent work has shown that bacteria have
several strategies for dealing with nutritional imbal-
ance, including changing their biomass composition
to more closely match the chemical composition of
their resources (Makino et al. 2003, Mooshammer et
al. 2014, Godwin & Cotner 2015a,b, Danger et al.
2016, Godwin et al. 2017). These stoichiometric
strategies, ranging from strong elemental homeosta-
sis to biomass composition flexibility, likely have im -
portant consequences for the composition of organic
matter that is produced by heterotrophic bacteria,
but how these different stoichiometric compositions
impact organic matter transformations by heterotro-
phic bacteria remains unknown. In the present study,
we explored the production of DOM by heterotrophic
bacteria and determined how differing stoichiometric
strategies impact the chemical composition of DOM
produced. This was accomplished by growing bacte-

rial strains that exhibited a range of biomass flexibil-
ity strategies under various conditions of nutrient
limitation and assessing the composition of organic
matter that was produced.

2.  MATERIALS AND METHODS

2.1.  Bacterial culturing media

WC Medium was prepared according the recipe in
Guillard & Lorenzen (1972) with ultrapure water
(Milli-Q System). Media was mixed in glassware that
had been soaked in 10% hydrochloric acid for a min-
imum of 1 h and rinsed with ultrapure water to re -
move any trace phosphorus contamination. All chem-
ical stocks used to make the media were American
Chemical Society grade or equivalent. Glucose was
added as the sole organic carbon substrate at a final
concentration of 6.66 mM carbon. Nitrogen was sup-
plied as sodium nitrate at a concentration of 1 mM,
resulting in a media C:N molar ratio (6.6:1) equal to
the Redfield ratio (Redfield 1958). Micronutrients,
vitamins, and trace metals were supplied consistent
with the recipe (Guillard & Lorenzen 1972). To manip-
ulate the C:P of the media, phosphorus was added as
potassium phosphate at 3 different levels: 0.067 mM P,
0.014 mM P, and 0.0067 mM P, resulting in media
molar C:P ratios of 100:1, 500:1, and 1000:1, respec-
tively. For each media C:P ratio, a single 10 l batch of
media was made and filter sterilized into 1 l bottles to
minimize batch effects within the experiment. The
complete breakdown of media composition and stoi-
chiometry is provided in Table S1 in Supplement 1 at
www. int-res. com/ articles/ suppl/ a085 p035 _ supp/.

2.2.  Strain selection

A large field campaign was conducted in 2013
where water samples taken from lakes across the
state of Minnesota, USA, were used to culture and
isolate heterotrophic bacteria following the proce-
dures outlined by Godwin & Cotner (2015b). Through
these efforts, a culture repository of over 1000 unique
bacterial strains isolated from freshwater systems
was established. To quantify the variability in stoi-
chiometric flexibility within this library, a sub-sample
of ~135 strains was grown in continuous culture at
25% of their maximum growth rate at 2 media C:P
levels (100:1 and 10 000:1) (described in Godwin &
Cotner 2018). Biomass flexibility for these ~135 strains
was calculated as the relative percentage increase in
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biomass C:P when grown at high C:P conditions
compared to the biomass C:P at low C:P using Eq. (1).
Archival stocks of each strain were stored at −80°C in
glycerol for future use. Eq. (1) shows the relative
change in biomass stoichiometry at a molar media
supply rate C:P expressed as a percent change from
the biomass stoichiometry when grown under media
conditions with a C:P of 100:1.

(1)

To select strains for this study, the ~135 strains de -
scribed above were sorted by C:P biomass flexibility
and split into quartiles. The 1st quartile (representing
the lowest C:P flexibility values) was classified as
inflexible, and the 4th quartile was classified as flexi-
ble. From these quartiles, we recovered 9 strains
from the −80°C freezer and characterized the DOM
they produced (5 inflexible strains and 4 flexible
strains). A complete description of the strains is pro-
vided in Table S2 in Supplement 1.

2.3.  Culturing bacteria

Once bacteria had been recovered from the −80°C
freezer, a pair of starter cultures was generated for
each strain by inoculating 20 μl of archival stock
into 2 ml of WC media with a media C:P of 100:1. Re-
sazurin was added as a respiratory indicator at a
concen tration of 20 μM to monitor the growth of
bacteria in these starting cultures. Resazurin is a
blue/ purple-colored dye that is irreversibly reduced
to the pink and highly fluorescent molecule resofurin,
indicating active microbial growth (Sarker et al.
2007). Once resazurin indicated growth, these 2 ml
starter cultures were used to inoculate duplicate 250
ml cultures of each strain by diluting the 2 ml starter
with ~248 ml of fresh WC media (without resazurin) at
a media C:P of 100:1. The cross-over of resazurin from
the initial culture to the final culture would result in no
more than ~0.024% of the organic carbon in the final
culture being derived from residual resazurin (see
Table S1 for this calculation). These cultures were in-
cubated at room temperature (~22°C) on a tabletop
shaker set at 150 rpm. Growth in 250 ml cultures was
monitored using optical density (OD) readings, and
cultures were harvested when OD readings plateaued,
indicating stationary phase was achieved. This same
process was repeated to grow cultures in WC media
with a C:P ratio of 500:1 and 1000:1. Because the high
C:P cultures contained less concentrated biomass
(and therefore needed more volume filtered to meas-

ure the biomass), a final culture volume of 500 ml
rather than 250 ml was used at this C:P ratio.

2.4.  Collecting microbially produced DOM

Cells from cultures were collected onto pre- com-
busted, pre-weighed Whatman GF/F filters (0.7 μm
nominal pore-size) to measure microbial biomass.
Filters were then oven dried at 60°C for at least 24 h
and weighed. Microbial biomass was calculated by
subtracting the pre-weight of the filter from the post-
weight after oven drying. Re maining media was filter-
sterilized using a 0.22 μm pore-size polyethersulfone
(PES) bottle top filter, and the residual media was col-
lected in muffled amber glassware and stored at 4°C
until analyzed (samples were analyzed within 2 wk
of filtration).

2.5.  Characterizing microbial DOM production

To characterize the chemical composition of the
residual media, we measured dissolved nutrients and
the specific-UV absorbance at wavelength 254 nm
(SUVA254). DOC and total dissolved nitrogen (TDN)
were measured using a Shimadzu TOC-L model high
temperature carbon-analyzer with a TNM-L module.
To measure total dissolved phosphorus (TDP) and sol-
uble reactive phosphorus (SRP), we used the molyb-
denum blue reaction with and without acid-persulfate
digestion (Murphy & Riley 1962). To conservatively
estimate DOP, we measured TDP and SRP in triplicate
and subtracted the upper 95% con fidence interval of
the SRP measurement from the lower 95% confidence
interval for TDP for each sample. To account for the
amount of glucose that was not consumed during the
incubation period, residual media glucose was meas-
ured using Amplex™ Red glucose/glucose oxidase as-
says (Invitrogen, catalog number A22189) according
to the manufacturer’s protocol. Microbially produced
DOC was then calculated by subtracting the molar
residual glucose measurement as carbon from the
total DOC concentration. Absorbance at a wavelength
of 254 nm was measured using a Cary 50 spectropho-
tometer. SUVA254 values were calculated in 2 ways,
both by dividing the absorbance at wavelength 254 nm
by the total DOC produced during the incubation (the
total residual DOC minus any residual glucose) and
by dividing the absorbance by the total residual DOC
value. These 2 approaches yielded nearly identical re-
sults (Fig. S1 in Supplement 2 at www. int-res. com/
articles/ suppl/ a085 p035 _ supp/), so we performed all

(Biomass C:P at 10000:1 – Biomass C:P at 100:1)

Biomass C:P at 100:1
100×
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further analysis using only the SUVA254 of the micro-
bially produced DOM.

2.6.  Data analysis

To test for the normality in the distributions of our
dependent variables, we performed a Shapiro-Wilk
test for normality. Several of our measurements were
non-normally distributed, so we used non-parametric
analyses (Kruskal-Wallis) to examine how stoichio-
metric flexibility and media composition impacted
DOC and DOP production. To explore the interac-
tions between stoichiometric flexibility and media
level, we also completed pairwise comparisons for
each outcome variable within each treatment level
using a 2-sample Wilcoxon test. All statistical analy-
sis was performed in R version 3.5.1 (https://www.
R-project.org), and our analysis script is provided in
Supplement 3 at www. int-res. com/ articles/ suppl/
a085 p035 _ supp/. Additionally, the complete raw
data file is available in Table S3 in Supplement 1 with
metadata provided in Table S4 in Supplement 1.

3.  RESULTS

3.1.  Quantifying microbially produced DOM

To quantify the production of microbially produced
DOM, we measured DOC and DOP concentrations in
cell-free media after microbial growth reached sta-
tionary phase. We also measured the amount of glu-
cose remaining in the residual media to account for
any of the starting carbon source that had not been
consumed (Fig. 1). As expected, residual glucose was
lowest when strains were grown at the lowest C:P
(100:1) with less than 5% of the DOC in the residual
media being glucose (Fig. 1). This efficient drawdown
of glucose strongly supports the idea that organic C
was limiting microbial growth in this treatment. In
comparison, the residual DOC from strains grown
under more P-limited conditions typically contained
10−20% of the DOC as glucose (Fig. 1).

Mean DOC production per unit biomass was higher
under P-limited conditions compared to C-limited con -
ditions (Fig. 2). DOC production per unit biomass at a
media C:P of 100:1 ranged from 181 μM C mg−1 biomass
to 910 μM C mg−1 biomass with a median value of 312
μM C mg−1 biomass. This contrasted with a range of
575−7460 μM C mg−1 (median of 2594) for cells at a
C:P of 500:1 and 390−6635 μM C mg−1 biomass for cells
at a C:P of 1000:1 (median of 1610) (Fig. 2). Across the
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Fig. 1. Residual glucose concentration as a percentage of the
residual dissolved organic carbon (DOC) pool. Residual glu-
cose was significantly different across media type (Kruskal-
Wallis; p = 0.0003); no significant difference between flexible
and inflexible strains (Kruskal-Wallis, p = 0.57). Vertical bars
represent minimum and maximum values; boundaries of each
box represent the 1st and 3rd quartiles. Dark solid horizontal
line is the median of each distribution; outliers (defined as out-
side 1.5 times the interquartile range above the 3rd quartile or 

below the 1st quartile) shown as single points
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Fig. 2. Concentration of dissolved organic carbon (DOC) per
unit biomass produced by flexible and inflexible strains (to-
tal DOC − residual glucose) grown at 3 unique media C:P
ratios. DOC production per unit biomass was significantly
different across media type (Kruskal-Wallis; p = 0.001); no
significant difference between flexible and inflexible strains
overall (Kruskal-Wallis, p = 0.64). Large and significant dif-
ference between flexible and inflexible strains specifically in
the most P-limited conditions (Wilcoxon; p = 0.03). Bars, box 

boundaries, lines and outlier as defined in Fig. 1
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3 treatments, DOC production ranged from ~5 to ~76%
of the original glucose pool. Media stoichiometry was
a significant predictor of DOC production per unit bio-
mass (Kruskal-Wallis, p = 0.001). Despite the fact that
stoichiometric flexibility was not a significant pre -
dictor of per unit biomass DOC production (p > 0.05),
flexible strains did have lower DOC production than
inflexible strains under the most P-limited conditions
(Fig. 2; Wilcoxon, p = 0.03), a pattern that warrants
more thorough investigation in the future.

Phosphate levels in the residual media were highly
impacted by the media C:P, with over 90% of the me-
dia SRP being removed in the 500:1 and 1000:1 media
treatments compared to ~40− 50% removal when the
media C:P was 100:1 (Fig. 3). This again supports the
idea that bacteria were experiencing C-limitation at
the lowest media C:P and transitioned to P-limitation
at the 2 higher C:P values. DOP production per unit
biomass accumulation was strongly influenced by me-
dia starting conditions as well. DOP production was
~1−2 orders of magnitude larger under C-limited con-
ditions compared to P-limited conditions (Fig. 4) but
was detectable in all growth conditions (although not
for all strains). Of the 27 total samples that were col-
lected, 6 had DOP levels below detection (3 strains
grown at 100:1 that were all in flexible and 3 strains
grown at 500:1, 2 flexible and 1 inflexible). One in-
flexible strain only produced measurable DOP under
the most phosphorus-limited condition, but all other
strains had measurable DOP production for at least 2

media levels. For the strains that pro-
duced measurable DOP, values ~0.006
to 12.5% of the original phosphate pool
(Fig. 5) were measured. DOP produc-
tion per unit biomass was highly vari-
able across treatments, and because of
our relatively small sample size, neither
media stoichiometry nor stoichiometric
flexibility were significant predictors of
per unit biomass DOP production. Simi-
larly, DOP produced as a percentage of
the original media SRP varied by orders
of magnitude, and neither media stoi-
chiometry nor stoichiometric flexibility
were sig nificant predictors of relative
DOP production.

3.2.  Optical characterization of
microbially 

produced DOM

SUVA254 is often used as an indicator
of organic matter quality (Frey et al. 2016). All sam-
ples showed increased SUVA254 values (in compari-
son to the SUVA254 of the starting media) in the resid-
ual media, consistent with microbial production of
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Fig. 3. Soluble reactive phosphorus (SRP) removal efficiency by flexible and
inflexible bacterial strains grown at 3 different media C:P ratios. SRP removal
efficiency significantly different across media type (Kruskal-Wallis; p < 0.0001);
no significant difference between flexible and inflexible strains (Kruskal-Wallis, 
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Fig. 4. Minimum amount of dissolved organic phosphorus
(DOP) produced per unit biomass (log scale) over the incu-
bation period. Sizeable differences in DOP production across
media types and between flexible and inflexible strains, but
large variation and small sample sizes result in only one sig-
nificant difference between flexible and inflexible strains
under the most P-limited conditions (Wilcoxon; p = 0.01).
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aromatic carbon compounds (Fig. 6). Mean SUVA254

values were significantly impacted by the media C:P
(Kruskal-Wallis, p = 0.0006), with strains grown at
100:1 C:P having higher SUVA254 values than strains
grown at higher C:P. Biomass flexibility did not have
a significant effect on the mean SUVA254 of produced
organic matter, but flexible strains did show much
larger variation in SUVA254 values compared to
inflexible strains when grown at a media C:P of 100:1
(Fig. 6). In contrast, under more P-poor conditions,
SUVA254 values were much lower (typically less than
1) and much less variable.

3.3.  Stoichiometry of microbially produced DOM

To examine how biomass flexibility and media con-
ditions impacted the relative processing of C and P,
we examined the stoichiometric ratios of biomass-
normalized produced organic matter. Media type
had a significant impact on the stoichiometry of pro-
duced organic matter (Kruskal-Wallis, p = 0.002) with
bacteria growing under C-limiting conditions pro-
ducing organic matter that was relatively P-rich
(lower DOC:DOP) compared to cultures experienc-
ing P-limitation (Fig. 7). Stoichiometric flexibility was
not a significant predictor of the stoichiometry of the
produced organic matter.

3.4.  Biomass production by bacteria under different
growth conditions

Microbial biomass varied widely across treatment
types, making it difficult to discern any consistent pat-
terns based on media type or stoichiometric flexibility.
Nonetheless, flexible strains growing under C-limited
conditions had the highest biomass accumulation,
whereas inflexible strains growing under the most P-
limited conditions had the lowest biomass (Fig. 8,
Table 1). Under the most P-limited conditions, inflexi-
ble strains showed significantly less biomass accumu-
lation than flexible strains (Wilcoxon; p = 0.02), and
while a similar pattern existed under C-limited condi-
tions (with flexible strains having higher median bio-
mass than inflexible strains), the variability was much
higher, resulting in no significant differences.

4.  DISCUSSION

The present study discusses the implications of 3
key findings based on this work. Firstly, we demon-
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Fig. 5. Percentage dissolved organic phosphorus (DOP) pro-
duction (log scale) relative to initial media phosphate con-
centration. High variability and limited replicates resulted in
no significant difference in DOP production efficiency
across media type or flexibility status. Bars, box bound-
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0

1

2

3

100 1000500

Media C:P

S
U

V
A

25
4

Flexible
Inflexible

Fig. 6. Specific-UV-absorbance at wavelength 254 (SUVA254,
l mg−1 l−1) for flexible and inflexible strains grown at 3 differ-
ent media C:P ratios. SUVA254 of the produced organic mat-
ter  significantly different across media type (Kruskal-Wallis;
p = 0.0006);  no significant difference between flexible and
inflexible strains overall (Kruskal-Wallis, p =  1.0). Large and
significant difference between flexible and inflexible strains
in the most P-limited conditions (Wilcoxon; p = 0.03). SUVA254

value for the media prior to incubation is represented by the
horizontal line at a value of 0.136. Bars, box boundaries, 

lines and outliers as defined in Fig. 1
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strated measurable amounts of DOC and DOP
 production by heterotrophic bacteria under nutrient
conditions ranging from C-limitation to strong P-lim-
itation. Secondly, optical characterization of micro-
bially produced organic matter revealed that DOM
produced by bacteria grown under C-limited condi-

tions was highly aromatic, with SUVA254 values as
high as 3 l mg-C−1 m−1, a value comparable to organic
matter extracted from peatland soils (Hansen et al.
2016). This finding suggests that under C-limited
conditions, microbial metabolism can produce DOM
with similar optical properties to terrestrially derived
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Fig. 7. Dissolved organic carbon (DOC):dissolved organic
phosphorus (DOP) values (molar DOC per unit biomass di-
vided by molar DOP per unit biomass) of microbially pro-
duced organic matter across all 3 media C:P levels for both
flexible and inflexible strains, plotted on a log scale. DOC:
DOP of the produced organic matter significantly different
across media type (Kruskal-Wallis; p =  0.002);  no significant
difference between flexible and inflexible strains overall
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Fig. 8. Biomass production by flexible and inflexible strains
across all 3 media C:P levels. Biomass accumulation was
variable across media type but had a general trend of higher
biomass accumulation at low C:P and lower biomass accu-
mulation at high C:P. Flexible strains also tended to have
higher biomass accumulation under all growth conditions,
but only the most P-limited conditions resulted in statisti-
cally significant differences in biomass between flexible and
inflexible strains (Wilcoxon; p = 0.014). Bars, box boundaries, 

lines and outliers as defined in Fig. 1

Strain Media Biomass DOC Residual Respired Est. growth C assimilation
type C:P C (μM) (μM) glucose (μM) CO2 (μM) eff. (%) eff. (%)

Flexible 100:1 1838 1102 46 3676 38 28
(925−2683) (370−2931) (10−152) (894−5356) (16−67) (14−42)

Inflexible 100:1 1193 507 10 4950 22 18
(675−1908) (383−699) (9−10) (4043−5593) (11−40) (10−29)

Flexible 1000:1 1102 1281 201 4077 20 17
(858−1400) (657−2740) (104−201) (2114−5042) (15−27) (13−21)

Inflexible 1000:1 571 2821 406 2863 9 9
(517−667) (1288−4512) (240−596) (887−4616) (8−11) (8−10)

Table 1. Estimated (mean with range) relative allocation of carbon by both flexible and inflexible strains under high and low
media C:P conditions. Biomass C was estimated as 50% of total dry mass; respired CO2 was calculated by mass balance. Esti-
mated growth efficiency (Est. growth eff.) was calculated by dividing the biomass C estimate by the total C drawdown (bio-
mass+DOC+CO2). All estimates represent median values. Carbon assimilation efficiency (C assimilation eff.) was estimated by 

dividing the total amount of biomass C by amount of glucose consumed during the incubation
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organic matter, indicating that limitation status of the
microbial community processing the organic matter
may be as important a driver of SUVA254 as the origi-
nal source of the material, which is how these differ-
ences in values are typically interpreted. Lastly, stoi-
chiometric flexibility of bacteria had variable effects
on DOM production, but the effects were generally
most pronounced under strong P-limitation.

While more work is needed to fully understand
how the physiological growth strategies of different
microbial taxa impact the production of DOM, the
present study provides some im portant insights into
this question. Overall, these findings have important
implications for understanding the role of heterotro-
phic bacteria as significant producers of DOM in
aquatic and terrestrial systems and lend insights into
how we might ex pect this role to change under differ-
ent nutrient conditions.

4.1.  DOC and DOP production

We demonstrated that C-limited con ditions result in
low DOC production (Fig. 2) and high biomass accu-
mulation (Fig. 8), suggesting that strains growing
under C-limitation preferentially allocated available
carbon to biomass or respiration rather than DOC.
This observed tradeoff in C-allocation parallels pre-
vious work indicating that bacterial growth efficiency
decreases as media C:P increases (Godwin et al.
2017). To explore this more fully, we examined the
relative allocation of carbon into each potential pool
(biomass, respiration, DOC, and residual glucose) by
flexible and inflexible strains under high and low
media C:P (Table 1). Lacking direct measurements of
biomass C or respiratory C, we estimated these param-
eters assuming C was 50% of dry biomass (Bratbak &
Dundas 1984) and then calculated respiratory C
using a mass balance approach. We recognize that
differences in C-allocation driven by the different
nutrient treatments could impact the relative contri-
bution of C to dry biomass, but previous work with
strains in our lab (authors’ unpubl. data) and others
(Vrede et al. 2002) suggests that this change should
be ~5% or less. This basic accounting showed that
allocation of C to DOC was an important pathway
under strong P-limitation for both flexible and inflex-
ible strains and even exceeded respiratory C for
inflexible strains at high C:P ratios (Table 1). Addi-
tionally, we estimated the carbon assimilation effi-
ciency of each strain by normalizing the biomass
accumulation of each strain to the amount of glucose
consumed during incubation (Table 1). This calcula-

tion showed a pattern similar to the growth efficiency
estimates, with flexible strains having higher C
assimilation than inflexible strains and C assimilation
being higher under C-limited conditions than under
P-limited conditions (Table 1). This pattern supports
the idea that there was preferential allocation of
C to biomass under C-limited conditions and C-
allocation to DOC became an important path way
under P-limitation.

DOP production as a percentage of original media
P was much lower than DOC production as a per-
centage of original media C, and the stoichiometry
and optical properties of microbially produced DOM
was strongly impacted by the media C:P, reflecting a
trade-off between allocating carbon to biomass vs.
DOP compounds. For example, inflexible strains in
this study had lower biomass accumulation than
flexible strains at both 1000:1 and 100:1 media C:P
(Fig. 8) and produced higher amounts of DOP at
these media C:P ratios (Fig. 4), indicating the tradeoff
in C-allocation. This suggests that for inflexible
strains, maintaining a uniform biomass composition
(by ex creting excess nutrients in DOM) was the strat-
egy used rather than allocating additional C to bio-
mass. This could be driven by a physiological con-
straint of inflexible strains, whereby excess DOM is
excreted as DOC and DOP compounds. Alternatively,
it may be adaptive for these strains to minimize their
biomass to escape predation (Chrzanowski & Šimek
1990, Cotner et al. 1995, Langenheder & Jürgens
2001). In contrast, the flexible strains accumulated
more C as biomass under imbalanced conditions by
manipulating their biomass composition to more
closely match their resources.

The relative DOC production values measured in
this study under C-limitation were similar to those
measured in previous work, which demonstrated that
DOC conversion values ranged from 5−15% during
long-term incubations in artificial seawater with a
media C:P ratio of 106:1 (Ogawa et al. 2001, Koch et
al. 2014, Lechtenfeld et al. 2015). In contrast, our val-
ues were higher than DOC production estimates of a
single Pseudovibrio sp. grown in pure culture under
phosphate-limitation (0.2−0.9%; Romano et al. 2014).
However, it is important to note that Romano et al.
(2014) measured production as solid-phase extract -
able organic matter for characterization using ultra-
high resolution mass spectrometry and therefore
were only capturing a fraction of the total microbially
produced DOM pool. The extraction efficiency was
not directly reported by Romano et al. (2014), but typ-
ical values for this type of extraction are between 20
and 80%, with polar and low molecular weight mole-
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cules being the hardest to extract (Raeke et al. 2016,
Johnson et al. 2017). Finally, a recent study compar-
ing the microbial production of carbon in both fresh-
water and marine samples found significant uptake
and transformation of glucose by bacteria in both set-
tings, supporting the potential importance of a micro-
bial carbon pump in freshwater as well as marine
systems (Daoud & Tremblay 2019). This similarity in
DOC production efficiency among various marine
microbial communities and the individual freshwater
strains that we tested here suggested a high degree
of similarity in the potential of freshwater bacteria
to be significant producers of DOC as has been
acknowledged in marine systems (Kawasaki & Ben-
ner 2006, Jiao et al. 2011, Lechtenfeld et al. 2015,
Kujawinski et al. 2016).

In contrast to DOC, measurements of DOP produc-
tion in controlled incubation experiments are sparse
in the literature. One study that strongly paralleled
this work in a marine setting (Lønborg et al. 2009)
found a DOP production efficiency of 17%, which
was comparable to the 12% we measured in our cul-
tures grown at a C:P of 100:1. Several other studies
have attempted to measure DOP production in situ in
marine systems (Orrett & Karl 1987, Thingstad & Ras-
soulzadegan 1995, Yoshimura et al. 2014). These
studies incorporated both phytoplankton and hetero-
trophic bacteria in their microbial pools, making it
hard to make a direct comparison to our work, but at
least one of these studies measured DOP production
as ~5% of the SRP drawdown during an open ocean
diatom bloom with most of the production being
attributed to the autotrophic diatoms (Yoshimura et
al. 2014). The data presented here suggest that fresh-
water bacteria can be similarly important producers
of DOP.

In addition to overall amounts of DOC and DOP
production, we also explored how nutrient conditions
impacted the stoichiometry of produced organic mat-
ter. In this study, DOM produced under P-limitation
was relatively P-poor compared to DOM produced
under C-limitation (Fig. 7), and microbially produced
DOM under all nutrient conditions was P-poor rela-
tive to the classic Redfield ratio of 106:1. In fact, the
lowest values for DOC:DOP in our study were on the
order of 10 000:1, similar to the upper bound of meas-
ured DOC:DOP values in lakes in the upper Midwest
United States (Thompson & Cotner 2018). This com-
parison suggests that in natural systems, microbially
produced DOM is likely a source of P-poor organic
matter relative to the standing stock DOM. Given
that the bioavailability of DOP is negatively associ-
ated with the DOC:DOP ratio (Thompson & Cotner

2018), we argue that DOP produced under P-limited
conditions should be more resistant to further micro-
bial processing and may exacerbate P-limitation. On
the other hand, cultural eutrophication in fresh -
waters is likely shifting the experienced resource
ratios of microbial communities towards C-limitation
due to increased P loading, which should result in
more P-rich organic matter production and, in turn,
export more bioavailable DOP downstream in fresh-
waters.

It is worth noting that values for natural DOC:DOP
pools in lakes (Thompson & Cotner 2018) are on the
low end of what we measured in this study. This
could be driven by the fact that in natural systems
DOM is being produced by both autotrophic and
heterotrophic organisms, which may be experiencing
different resource limitation that is impacting the
stoichiometry of DOM production. For example, if a
large portion of the natural DOM pool is produced by
autotrophs that are C-limited due to light limitation,
one would expect lower DOC:DOP values. Alterna-
tively, if bacterial production is a significant source
of DOM in natural systems, the relatively low
DOC:DOP values measured in the field compared to
the cultures in this study would suggest that bacteria
in natural systems may be more C-limited than previ-
ously thought. This would be consistent with pre -
vious findings that the experienced resource ratios
by heterotrophic communities are lower than bulk
chemistry estimates suggest (Thompson & Cotner
2018) and work suggesting that individual strains
switch from carbon to phosphorus limitation at re -
source C:P values ~300−1000 (Godwin & Cotner
2015b). Taken together, these findings suggest that
bacteria experience conditions that are C-poor rela-
tive to previous estimates and that C-limitation con-
tinues into much higher C:P values than the conical
Redfield ratio of 106:1 would suggest. Also, it sup-
ports the view that bacteria in natural systems could
be more strongly C-limited than current paradigms
suggest.

4.2.  Optical characterization of DOM

Optical properties have long been used to charac-
terize the composition of DOM and to infer the sources
of production (McKnight et al. 2001, Stedmon et al.
2003, Hansen et al. 2016). One such optical property,
SUVA254, is strongly correlated to the aromaticity of
DOM (Weishaar et al. 2003) as well as molecular
weight (Chowdhury 2013) and has been used as an
indicator of terrestrially derived organic matter, with
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higher SUVA254 values being associated with more
terrestrial influence (Helms et al. 2008, Hansen et al.
2016). Therefore, SUVA254 was used here as an opti-
cal characterization of the DOM produced by bac-
teria under different limitation conditions.

For context, SUVA254 values for freshwater systems
typically range from 1−6 l mg-C−1 m−1 (Hansen et al.
2016). In this study, the original media had a SUVA254

value of 0.136 l mg-C−1 m−1 and in creased over the in-
cubation period in all cultures. DOM associated with
algal production and aquatic plant leachates is typi-
cally assumed to have SUVA254 values less than 1,
whereas aged terrestrial organic matter typically has
a value of 3 or higher (Pellerin et al. 2010, Hansen et
al. 2016). We show that the microbial production of
DOM from a single, non-aromatic carbon source could
produce SUVA254 values as high as 3, more similar to
leachates from peatlands than from traditional au-
tochthonous sources (Hansen et al. 2016). Importantly,
we saw the highest values for SUVA254 when bacteria
were growing under C- limited conditions, consistent
with the hypothesis that C-limitation should result in
in creased C-processing and leave behind more com-
plex and less bioavailable C-substrates.

This finding has important implications for the use
of SUVA254 as a predictor of DOM source in fresh-
water, particularly in eutrophic lakes. The data pre-
sented here indicate that DOM with a relatively high
SUVA254 value does not necessarily originate in a ter-
restrial environment. Rather, this DOM may be pro-
duced by aquatic heterotrophic bacteria under C-lim-
iting conditions. Therefore, SUVA254 may be more
indicative of nutrient limitation experienced by
microbes processing organic matter than it is of the
original organic matter source. Recent work has
demonstrated that the vast majority of soil organic
matter is highly processed by microbial commu -
nities before being exported to aquatic systems
(Cotrufo et al. 2015), so the nutrient limitations of
those microbial communities may impact the optical
properties of this organic matter more than the origi-
nal source. This suggests that the relatively high
SUVA254 values commonly associated with terres-
trially derived organic matter may reflect persist-
ently high C-demand in soil microbial communities
(see Ekblad & Nordgren 2002, Demoling et al. 2007,
Spohn & Kuzyakov 2013, Heuck et al. 2015) and/or
aquatic communities rather than specific sources of
organic matter production. Furthermore, the pattern
of in creased P-loading into soils and freshwater sys-
tems globally would tend to drive the C:P of micro-
bial resources down, which should promote the pro-
duction of high SUVA254 DOM by bacteria.

4.3.  Connecting stoichiometric flexibility to DOM
production

We observed that resource stoichiometry is a strong
control on the microbial production of DOM, both
from a quantitative (Figs. 1, 4 & 5) and a qualitative
perspective (Figs. 6 & 7). However, pinning down the
effect of biomass flexibility and how this physiologi-
cal strategy interacted with changing nutrient sub-
strates proved challenging. There was a large
amount of variation in DOM production within each
of the 2 different stoichiometric strategies (flexible
vs. inflexible). Nonetheless, differences occurred be -
tween flexible and inflexible strains, but only under
strong P-limitation. For example, when P-limited,
DOC production was lower in flexible strains than
inflexible strains (Fig. 2) and biomass accumulation
was higher for flexible strains than inflexible strains
(Fig. 8), consistent with preferential allocation of C
into biomass (as opposed to DOC or excess respira-
tion) by flexible bacteria under P-limitation. This
could be driven by a higher respiratory cost for flexi-
ble strains that was associated with obtaining P at
low P conditions.

One important consideration that likely contributes
to the high variability associated with stoichiometric
strategies has to do with the nature of that classifica-
tion. Stoichiometric flexibility is not an intrinsic char-
acteristic of a particular strain; instead it is contextu-
ally dependent on the growth conditions (Godwin &
Cotner 2018). Previous work has shown that relative
growth rate and resource stoichiometry interactively
control biomass flexibility (Godwin et al. 2017), and
the batch culture approach used in our study allows
bacteria to grow at maximum growth rate during the
early phases of the incubation and variable relative
growth rates later in the incubation period. Given
that biomass flexibility seems to be maximized at low
relative growth rates (Godwin et al. 2017), our exper-
imental approach could have dampened the effect of
biomass flexibility on DOM production. Repeating
this basic design in a continuous culture, where rela-
tive growth rate can be controlled, may provide a
better estimate of the effect of biomass flexibility by
more fully activating the physiological response to
nutrient imbalance.

In summary, our work lends important insights into
the role of aquatic bacteria as producers of organic
matter in freshwater systems and identifies key inter-
actions between microbial physiology and nutrient
conditions that may impact DOM production by het-
erotrophic bacteria. We demonstrate the potential for
substantial DOM production by aquatic bacteria
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under variable nutrient limitation conditions, includ-
ing the production of highly aromatic compounds
under high P conditions. Furthermore, this analysis
suggests that interactions between biomass flexibil-
ity and nutrient conditions can control the efficien-
cies and nutritional composition of DOM production,
particularly in relation to DOP. Finally, we demon-
strated measurable amounts of DOP production by
bacteria even under extremely P-limiting conditions,
identifying a potential mechanism for the accumula-
tion of low levels of DOP in oligotrophic systems.
Taken together, these findings improve our under-
standing of the fundamental linkages between aquatic
bacteria and DOM cycling and allow us to better pre-
dict how these linkages may change under future
nutrient and carbon scenarios.
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