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ABSTRACT: Ammonia oxidation is an important process for decreasing ammonia concentrations
in wastewater-impacted rivers. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are re-
sponsible for ammonia oxidation, which is the first step of the nitrification process. Nitrification
and urea hydrolysis were monitored in sediment and water column samples in the Grand River
(Ontario), and nitrification inhibitors (allylthiourea and 2-phenyl-4,4,5, 5-tetramethylimidazoline-
1-oxyl 3-oxide) helped identify the relative contributions of AOA and AOB to ammonia oxidation.
Despite the presence of AOA, our results implicated AOB as the dominant contributors to ammo-
nia oxidation, both directly and in association with urea hydrolysis.

KEY WORDS: Nitrification activity - Ammonia oxidizing bacteria - Ammonia oxidizing archaea -

PTIO - ATU

INTRODUCTION

Nitrification is composed of 2 oxidative processes.
The first step is ammonia oxidation to nitrite under
oxic conditions, which is mediated by ammonia-
oxidizing bacteria (AOB) and archaea (AOA). This
process is followed by nitrite oxidation to nitrate,
which is mediated by aerobic nitrite-oxidizing bacte-
ria (NOB). High ammonia loads in impacted rivers
adversely affect drinking water quality, aquatic life,
and ecosystem health. Ammonia oxidation is an im-
portant process, removing ammonia from impacted
freshwater environments (Sonthiphand et al. 2013).
For many decades, AOB were believed to be the sole
microorganisms responsible for ammonia oxidation,
until the discovery and isolation of AOA (Konneke et
al. 2005). Although both AOB and AOA have the
ability to oxidize ammonia, each has unique physio-
logical properties (i.e. enzyme structure, intermedi-
ates, and substrate affinity; Zhalnina et al. 2012), evi-
denced by differential sensitivities to nitrification
inhibitors. Distinct ammoniacal N sources might also
differentially affect the relative environmental con-
tributions of AOB and AOA. Previous studies have
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demonstrated that AOB are more abundant and
active than AOA in inorganic fertilized soils (Jia &
Conrad 2009, Xia et al. 2011). Systems treated with
organic fertilizer (i.e. urea and animal urine sub-
strate) are also dominated by AOB (Di et al. 2009,
O'Callaghan et al. 2010, Di & Cameron 2011). How-
ever, AOA utilize ammonia from the mineralization
of organic substances and outnumber AOB in soil
microcosms (Gubry-Rangin et al. 2010, Zhang et al.
2010).

Ammonia monooxygenase (AMO) is a key enzyme
for ammonia oxidation by both AOA and AOB. How-
ever, urease is an optional enzyme, discovered in
some AOB and AOA species, that is used to hydrol-
yse urea as an alternative N energy source. Distinct
ammonia sources might govern the ratio of environ-
mental AOB and AOA due to differences in urease
activity. Urease genes have been reported for Nitro-
somonas ureae, N. nitrosa, N. oligotropha, N. marina,
and N. aestuarii (Pommerening-Roéser & Koops 2005).
Although only 2 AOA pure cultures are available,
genome analysis has revealed the presence of a ure-
ase gene within ‘Candidatus Cenarchaeum symbio-
sum' (Hallam et al. 2006), Nitrososphaera viennensis
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(Tourna et al. 2011), ‘Candidatus Nitrososphaera gar-
gensis' (Spang et al. 2012), and 'Candidatus Nitroso-
pumilus salaria’ (Mosier et al. 2012). Consequently,
particular AOB and AOA species may generate
ammonia for aerobic respiration from urea hydrolysis
in situ.

Many studies have investigated nitrification activ-
ity in freshwater environments (e.g. Strauss & Lam-
berti 2000, Kemp & Dodds 2002) and the relative
ammonia oxidation activities of AOB and AOA using
differential inhibitors in terrestrial environments
(e.g. Di et al. 2009, Taylor et al. 2010). However, no
study has reported on nitrification activities with dif-
ferential inhibitors to determine the relative contri-
butions of AOB and AOA in freshwater environ-
ments. Allylthiourea (ATU) inhibits the first step of
nitrification by chelating copper from the AMO
active site (Bédard & Knowles 1989). AOB and AOA
respond differently to ATU due to differences in inhi-
bition thresholds and amino acids in the active site of
AMO (Lehtovirta-Morley et al. 2013, Shen et al.
2013). AOB appear to be more sensitive to ATU than
AOA in soil (Taylor et al. 2010) and marine (Santoro
& Casciotti 2011) environments. In a study of an
AOA-enriched agricultural soil, ‘Candidatus Nitro-
soarchaeum koreensis' was not inhibited by ATU,
whereas ATU at low concentrations inhibited Nitro-
somonas europaea (Jung et al. 2011). At the same
concentration, Nitrosospira multiformis was more
sensitive to ATU than N. viennensis (Shen et al.
2013). PTIO (2-phenyl-4,4,5,5-tetramethylimidazo-
line-1-oxyl 3-oxide) inhibits ammonia oxidation by
acting as a nitric oxide (NO) scavenger. NO is a likely
intermediate of AOA ammonia oxidation, but not
AOB ammonia oxidation (Walker et al. 2010). PTIO
can effectively inhibit N. viennensis without affect-
ing N. multiformis (Shen et al. 2013). This study rep-
resents the first application of PTIO to environmental
sample incubations.

The objectives of this study were to
assess in vitro ammonia oxidation and
urea hydrolysis to reveal ammonia-

the hypothesis that AOB dominate ammonia oxida-
tion within the Grand River, which would be consis-
tent with our initial observation that AOB became
enriched following prolonged high-ammonia incuba-
tions. This is the first study to combine nitrification
activities and urea hydrolysis measurements with
inhibitors to differentiate between AOB and AOA
activities within a freshwater environment.

MATERIALS AND METHODS
Sample collection

The Grand River watershed is the largest catchment
in Southern Ontario and much impacted by human
activities. In this study, a central portion of the Grand
River was used as an example of a watershed im-
pacted by wastewater effluent. Downstream and up-
stream sampling sites of wastewater effluent repre-
sented sites of high and low impact by wastewater
effluent, respectively. Sediment and water samples
were collected approximately 180 m downstream
from an ammonia-rich wastewater discharge pipeline
from a municipal wastewater treatment plant in Wa-
terloo, Ontario, Canada on 11 June 2013. Due to high
sample heterogeneity, sediment samples were col-
lected at 5 random locations using a plastic core tube
and pooled on site. Water samples were well mixed at
the sampling site and were collected using a 500 ml
plastic container. All samples were kept on ice during
transport to the lab. Conductivity, pH, and dissolved
oxygen were measured on site (Table 1). Follow-up
samples were taken on 31 July 2013. Upstream sam-
ples, as well as downstream samples, were included
in the follow-up study for comparison. Upstream sedi-
ment and water samples were collected approxi-
mately 390 m upstream from the pipeline effluent us-
ing the methods described above.

Table 1. Downstream and upstream water chemistry data. NA = not available;
BDL = below detection limit; pH (late-July) was analyzed in the lab

oxidizer dynamics within the largest

watershed in Southern Ontario, the Mid-June Late-July
Grand River. This activity-based study Downstream Upstream Downstream
follows on from our initial molecular water water water
assessment of AOA, AOB and anaero- | . ctivity (us) 1031 480 1019
bic ammonia-oxidizing (anammox) pH 75 8.0 7.9
bacteria in Grand River sediment and Dissolved oxygen (mg 17" 8.23 NA NA
water columns, and a strong enrich- N-[NH3 + NH4*] (nM) 560.46 BDL 571.98
ment of AOB within wastewater treat- E-{Egz‘ﬁ( 1\11\40)3 1 (M) 1]‘;]7)']%0 1]2]1)']2“9 126066525

- 2 1 (1 .
ment plant (WWTP) effluent plumes N-urea (uM) BDL 239.89 BDL
(Sonthiphand et al. 2013). We tested
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In vitro nitrification activity

For each sediment treatment replicate, 1 g of
pooled downstream sediment was added to 10 ml of
modified inorganic freshwater media (FWM; Tourna
et al. 2011). The modified FWM, without HEPES
buffer, was adjusted to pH 7.5. Samples were inocu-
lated with an initial total ammonia (NH; + NH,*) con-
centration of 600 pM. There were 3 treatments: with-
out an inhibitor, with ATU (10 or 100 pM), and with
PTIO (100 pM). In addition to sediment slurries, 10 ml
of downstream water samples were added to test
tubes, without FWM. Ammonia, ATU, and PTIO were
added to each tube at the same concentrations as
those for the sediment set. Negative controls were
conducted with FWM (without sample inoculation)
for all treatments. All treatments and negative con-
trols were conducted in triplicate and statically incu-
bated in the dark at room temperature (~25°C) for
14 d. The incubations were suspended manually once
a day. Both sediment and water column upstream
samples were treated as described for the down-
stream samples. For water chemistry measurements,
1 ml of each sample was collected on Days 0, 1, 3, 5,
7,11, and 14. Nitrification rates were estimated based
on linear regression of NO,~ + NO3~ concentrations
between Days 3 and 7. We used a ¢-test to identify
significant differences in NO,™ + NOj3;~ productions
between any 2 treatments (using Excel software,
Microsoft). The null hypothesis was that the NO,™ +
NOj;™ productions between 2 treatments were the
same. If the p-value was <0.05, the null hypothesis
was rejected.

In vitro urea hydrolysis

Urea hydrolysis was tested in parallel to in vitro
nitrification rate incubations. Both downstream and
upstream sediment and water samples, including
negative controls, were incubated with differential
inhibitors, using the same treatments and conditions
as those described above for nitrification activity.
Urea-N (600 pM) was added to the modified FWM
instead of ammonia. All samples were monitored at
the same 7 time points.

Chemical analyses
Ammonia concentrations were measured by a

fluorometric technique according to an established
protocol (Poulin & Pelletier 2007). Nitrite and

nitrate measurements were conducted by a colori-
metric assay (Miranda et al. 2001). Briefly, nitrate
was reduced to nitrite N-[NO,~ + NO37] by VCl;.
Consequently, the concentrations of N-NO,~ and
N-[NO,™ + NOj37] can be measured using the same
method. Urea was measured by a previously pub-
lished protocol (Zawada et al. 2009), with analysis
at 450 nm instead of 430 nm. All ammonia, urea,
and N-oxide analyses were performed on a Filter-
Max F5 Multi-Mode Microplate Reader (Molecular
Devices).

DNA extraction and quantitative real-time PCR

DNA was extracted from sediment and water
samples using the PowerSoil DNA kit (Mo Bio Lab-
oratories) and PowerWater Sterivex DNA Isolation
Kit (Mo Bio Laboratories), respectively, following
the manufacturer's protocols. All extracts were ana-
lyzed for DNA concentration using a NanoDrop
spectrophotometer ND-100 (Thermo Fisher Scien-
tific) before being diluted to 5 ng pl™! to serve as
template for quantitative PCR (qPCR). AOB and
AOA 16S rRNA genes were quantified using
primers NitA (Voytek & Ward 1995) and CTO654r
(Kowalchuk et al. 1997) and primers 771F and 957R
(Ochsenreiter et al. 2003), respectively. The qPCR
master mix contained 5 pl of SsoAdvanced SYBR
Green Supermix (Bio-Rad), 0.03 pl of each primer
(100 pM), 0.02 pl of bovine serum albumin (10 mg
ml™), and 1 pl of genomic DNA template (5 ng pl™)
in a total volume of 10 pl. All amplifications were
conducted in duplicate on a CFX96 real-time sys-
tem (Bio-Rad). A qPCR thermal cycle started with
an initial denaturation at 98°C for 2 min, followed
by 35 cycles of 98°C for 5 s, annealing at 57°C and
55°C for AOB and AOA 16S rRNA genes, respec-
tively, for 30 s, and 72°C for 30 s. After each cycle,
plate reads were added at 81°C and 80°C for AOB
and AOA 16S rRNA genes, respectively. Plasmids
containing AOB and AOA 16S rRNA gene frag-
ments were amplified, purified by a MinElute kit
(Qiagen) and quantified by the NanoDrop Spec-
trophotometer ND-100 before being diluted for
qPCR standards. Ten-fold serial dilutions were per-
formed in the range of 10! to 107 copies to create a
standard curve for each gene. The standard curves
showed an efficiency of 80.8% (R? = 0.99) and
82.6% (R? = 0.99) for AOB and AOA 16S rRNA
genes, respectively. The specificity of amplification
was verified by melt curve analysis and agarose gel
electrophoresis.
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RESULTS

Activity of aerobic ammonia oxidizers within
impacted river

Downstream sediment and water samples were
collected in mid-June. Follow-up samples were col-
lected in late-July. Differential inhibitors were used
to distinguish between AOB and AOA activities.
ATU and PTIO at specific concentrations were used
to selectively inhibit AOB and AOA, respectively.
Two ATU concentrations (10 pM and 100 pM) were
used in the follow-up experiment for comparison.
The results of ATU-treated samples under both con-
ditions (10 and 100 pM) were similar (data not shown).

For mid-June downstream sample sediment incu-
bations, ammonia concentrations decreased to below
detection limits by Day 10, and NO,™ + NOj3™ produc-
tion increased to ~600 pM by Day 14, indicating active
ammonia oxidation (Fig. 1A). NO,™ did not accumu-
late, presumably due to active nitrite-oxidizing bacte-
ria (NOB) in the downstream pipeline effluent (MufB3-
mann et al. 2013). Ammonia concentrations decreased
gradually in downstream sediment incubations with
PTIO (depleted by Day 10) and NO,™ + NO3™ both ac-
cumulated between Days 5 and 14 (Fig. 1B). NO,™ +
NOj™ productions in unamended and PTIO treatments
were not significantly different (p > 0.05). Nitrification
rates in unamended and PTIO treatments were 83.3
(R?=0.8) and 101.7 (R? = 0.8) upM N-[NO,™ + NO;7] g~!
sediment d7!, respectively. In contrast, 100 pM ATU
inhibited all NO,™ + NO;~ production and ammonia
depletion within downstream sediments (Fig. 1C).

The initial Day 0 ammonia concentration for down-
stream water samples was higher than for sediment
sample incubations because there were 2 ammonia
sources for the water samples: natural ammonia in
the river water (Table 1) and experimental ammonia
addition. Ammonia was completely depleted by Day 7
in downstream water samples without an inhibitor
and with PTIO; NO,~ + NOj~ production increased
between Days 5 and 7, then was relatively un-
changed until Day 14 (Fig. 1D,E). NO,™ + NOj3™ pro-
ductions in these 2 treatments were not significantly
different (p > 0.05). NO,~ concentrations were oxi-
dized to below the detection limits for incubations
without an inhibitor (Fig. 1D), but remained present
in incubations with PTIO (Fig. 1E). This observation
corresponded with other downstream water column
samples; NO,~ concentrations eventually decreased
to below the detection limit (Figs. 2D, 3D, & 4D), but
remained undepleted in all PTIO-treated down-
stream water samples (Figs. 2E, 3E, & 4E), implying

that PTIO inhibited in vitro NO,™ oxidation. Down-
stream water samples amended with 100 pM ATU
showed little evidence of ammonia oxidation (Fig. 1F).
Nitrification rates of downstream water samples with
no inhibitor, with PTIO, and with ATU additions were
32.3 (R? = 0.9), 36.2 (R* = 0.7), 1.8 (R? = 0.06) pM N-
[NO,™ + NO5;7] ml~! water d7!, respectively.

Notably, late-July downstream sediment samples de-
pleted ammonia more slowly than June samples, only
depleting the added ammonia by the last incubation
day (Day 14; Fig. 2A,B) compared with nearly complete
depletion by Day 10 for mid-June samples (Fig. 1A,B).

The increasing ammonia during the first 2 to 5 days
from downstream sediments (Fig. 2A-C) was possi-
bly from mineralization of organic matter and/or dis-
similatory nitrate reduction to ammonium. Ammonia
gradually decreased throughout the incubation period,
although we observed very little NO,™ + NO3™ accu-
mulation in both unamended and PTIO-supplemented
treatments. Possible reasons for this observation might
be that other N-transformation processes occurred
within an oxic—anoxic interface within these static
sediment incubations. Anammox bacteria oxidize
ammonia by using nitrite as an electron acceptor to
produce N, gas, and we have previously observed
molecular evidence of anammox bacteria at these
same sites (Sonthiphand et al. 2013). Denitrifiers
transform NOj™ to N, gas and other N-oxide interme-
diates (Thamdrup 2012). Other than microbial pro-
cesses, sediments might adsorb ammonia from FWM
as an exchangeable ion on sediment surfaces (Simon
& Kennedy 1987, Rysgaard et al. 1999). Nitrification
rates of unamended and PTIO treatments were 43.0
(R?=0.9) and 74.7 (R? = 0.8) uM N-[NO,™ + NO57] g~}
sediment d~!, respectively. Consistent with our mid-
June samples, downstream sediment samples with
ATU showed no nitrification activity (Fig. 2C).

For late-July downstream water samples, ammo-
nia concentrations were undetectable by Day 10
(Fig. 2D,E), which represents a longer period than for
the mid-June samples (Fig. 1D,E). Total NO,™ + NO3~
production increased from Days 3 to 7; NO,™ subse-
quently remained stable in the presence of PTIO only
(Fig. 2D,E). NO,™ + NO;3™ productions for these 2 treat-
ments showed no significant difference (p > 0.05). As
with mid-June samples, late-July downstream water
with ATU showed little ammonia depletion and NO,~
+ NOj;~ production (Fig. 2F). Nitrification rates of
unamended, PTIO-treated, and ATU-treated down-
stream water samples were 25.1 (R = 1), 26.19 (R?=1),
and 5.8 (R?=0.9) pM N-[NO,™ + NO5 | ml! water d?,
respectively. All negative controls showed no micro-
bial activity (data not shown).
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Mid-June downstream sediment

1800 - A) Without inhibitor

—e— NH, + NH,’
- NO;
—k— NOZ- + NOa'

1800 1 B) PTIO (100 pM)

Nitrogen concentration (uM)

1800 1 C) ATU (100 uM)

0 2 4 6 8 10 12 14

Mid-June downstream water

D) Without inhibitor

E) PTIO (100 uM)

F) ATU (100 uM)

0 2 4 6 8 10 12 14

Time (d)

Fig. 1. Nitrification activity of mid-June downstream sediment and water samples with the 3 treatments: (A, D) without an in-

hibitor, (B, E) with PTIO (2-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl 3-oxide), and (C, F) with ATU (allylthiourea). The

concentrations of all compounds were reported as N-[NH; + NH;*], N-NO,~, and N-[NO,™ + NO3;~] uM. Error bars represent

standard deviation of biological triplicates. Note that the concentrations of N-NO,™ and N-[NO,™ + NOj3"] were below the
detection limits (panel C)

Upstream samples were included as a background
site where ammonia concentration was below the
detection limit (Table 1). Both sediment and water
upstream samples were analyzed only in the follow-
up study (Fig. S1 in the Supplement at www.int-res.
com/articles/suppl/a073p151_supp.pdf). Nitrification
rates of upstream sediment samples with no inhibi-

tor and with PTIO were 21.3 (R? = 0.9; Fig. S1A) and
17.1 (R? = 0.9; Fig. S1B) uM N-[NO,” + NO37] g™
sediment d~!, respectively. As with downstream
sediments, ATU completely inhibited nitrification
activity in upstream sediments (Fig. S1C). Upstream
water showed no nitrification activity in all treat-
ments (Fig. S1ID-F).
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Late-July downstream sediment

A) Without inhibitor
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1400 —o— NH, +NH,*
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B) PTIO (100 pM)

Nitrogen concentration (M)

C) ATU (100 uM)

0 2 4 6 8 10 12 14

Late-July downstream water

D) Without inhibitor

1 E)PTIO (100 uM)

1 F)ATU (100 uM)

Time (d)

Fig. 2. Nitrification activity of late-July downstream sediment and water samples with the 3 treatments. See Fig. 1 for further
details

Urea hydrolysis coupled with ammonia oxidation

Urea can be degraded to 2 ammonia molecules by
microorganisms containing urease genes, including
AOB and AOA. Consequently, urea is a possible
organic ammoniacal N source for AOB and AOA.
The results for the mid-June sediment samples
demonstrated that added urea was depleted within

5 d (Fig. 3A). Ammonia concentrations increased
transiently, then decreased as ammonia was oxi-
dized, corresponding with NO,~ + NO3;~ accumula-
tion (Fig. 3A). PTIO-treated downstream sediments
also showed that ammonia was generated from urea
hydrolysis and sequentially oxidized (Fig. 3B). NO,~
+ NOj™ productions from these 2 treatments were not
significantly different (p > 0.05). In the ATU treat-
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Mid-June downstream sediment

2000 A) Without inhibitor
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1600+

1400
1200 —&-NO,

10004 —— No2 + NO3
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10004
8004
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400
2004
04
2000, C)ATU (100 pM)
1800 4
1600
14004
1200
1000
8001
600
4004

B) PTIO (100 pM)

Nitrogen concentration (uM)

0 2 4 6 8 10 12 14
Time (d)

Mid-June downstream water

D) Without inhibitor

E) PTIO (100 pM)

F) ATU (100 pM)

Fig. 3. Urea hydrolysis and nitrification activities of mid-June downstream sediment and water samples with the 3 treatments.
The concentrations of all compounds were reported as N-urea, N-[NH; + NH,*], N-NO,~, and N-[NO,™ + NO3™| pM. See Fig. 1 for
further details

ment, urea was consistent from Days 0 to 10, and
then dropped to ~480 pM by Day 14 (Fig. 3C).
Ammonia concentrations increased over time; how-
ever, no NO,™ + NO;3;™ production was observed, indi-
cating no ammonia oxidation. Potential sources of
ammonia include urea hydrolysis and mineralization
of sediment-associated cell debris.

The initial ammonia concentration in downstream
water was ~560 pM (Table 1), whereas the initial
ammonia concentration of sediment samples was
below the detection limit, due to no ammonia addi-
tion to the FWM. Without an inhibitor, the down-
stream water showed that urea and ammonia were
depleted by Days 3 and 7, respectively (Fig. 3D).
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Late-July downstream sediment
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Fig. 4. Urea hydrolysis and nitrification activities of late-July downstream sediment and water samples with the 3 treatments.
See Figs. 1 & 3 for further details

NO,™ production increased rapidly from Days 3 to 5,
then subsequently dropped to below detection limits
by Day 10. NO,™ + NO3;™ accumulation was observed
between Days 3 to 7, then remained constant there-
after as NO,~ was presumably oxidized to NO;~
(Fig. 3D). PTIO-treated downstream water showed
the same trends as the set without an inhibitor,
except for the absence of NO,~ depletion by Day 10

(Fig. 3E). NO,™ + NOj3™ productions in these 2 treat-
ments were not significantly different (p > 0.05).
Nitrification rates of unamended and PTIO-treated
downstream water samples were 30.5 (R? = 0.9) and
31.8 (R? = 0.9) pM N-[NO,™ + NO3"] ml™! water d7,
respectively. Neither urea hydrolysis nor ammonia
oxidation was observed in the ATU treatment,
implying that 100 pM ATU had the potential to



Sonthiphand & Neufeld: Ammonia oxidation mediated by nitrifying bacteria 159

inhibit both urea hydrolysis and ammonia oxidation
by AOB (Fig. 3F).

As with the ammonia set, the follow-up studies were
conducted in late-July. Ammonia produced from
urea remained in all downstream sediment treat-
ments (Fig. 4A-C). Urea was completely depleted by
Day 3 in the unamended and PTIO treatments,
implying that PTIO had no effect on urea hydrolysis.
Nevertheless, urea disappeared by Day 7 in the
ATU-treated samples. The overall results for the late-
July and mid-June downstream waters were consis-
tent. However, mid-June samples depleted urea and
ammonia faster than the follow-up samples. Late-
July downstream waters in the unamended and
PTIO-treated samples showed that urea and ammo-
nia were depleted by Days 5 and 10, respectively
(Fig. 4D,E). NO,™ + NO;3;~ accumulated over time in
both treatments. NO,™ + NO3~ concentrations in these
2 treatments were not significantly different (p > 0.05).
Nitrification rates of late-July unamended and PTIO-
treated water samples were 11.5 (R? = 0.9) and 21.9
(R?=1.0) pM N-[NO,™ + NO; | ml~! water d~}, respec-
tively. ATU inhibited both urea hydrolysis and
ammonia oxidation in downstream water (Fig. 4F).
All negative controls showed no microbial activity
(data not shown).

Upstream sediments without an inhibitor and with
PTIO addition showed urea depletion, together with
increasing ammonia (Fig. S2A,B in the Supplement at
www.int-res.com/articles/suppl/a073p151_supp.pdf).
The treatment with 100 pM ATU was somewhat com-
plicated because a urea spike was observed earlier
before decreasing to the expected concentrations
(~800 to ~1000 pM). Urea was relatively constant from
Days 3 to 14, whereas ammonia gradu-

ally increased and subsequently re- & 7000
mained consistent (Fig. S2C). How- 8
ever, the results of upstream waters in E 60007
all treatments showed neither urea % 50004
hydrolysis nor ammonia oxidation -g’
(Fig. S2D-F). NO,~ + NO;™ concentra- 2 4000+
tions of upstream water (Table 1) &
remained in all treatments and were § 30007
not significantly different among the 3 g 2000+
treatments (p > 0.05). Urea-N concen- g
tration was higher in the upstream 5 10004
water, but undetectable in the down- _§

<

stream water (Table 1), suggesting that
urease-positive microorganisms may
have transformed urea into ammonia
for AOB in downstream samples. All
negative controls showed no microbial
activity (data not shown).

Mid-June
sediment

Relative abundance of AOB and AOA

Sediment and water samples from mid-June and
late-July were quantified for AOB and AOA 16S TRNA
gene abundances. The results showed that although
AOA were higher than AOB in sediments, AOB dom-
inated water samples (Fig. 5). Although nitrification
activity and urea hydrolysis implicated AOB activity
within sediment samples, AOA accounted for 80 %
and 57 % of ammonia-oxidizer 16S rRNA genes in mid-
June and late-July sediments, respectively. In con-
trast to a dominance of AOA genes in sediment sam-
ples, AOB accounted for ~90 % of ammonia-oxidizer
16S rRNA genes in both water samples (Fig. 5).

DISCUSSION

The effective ATU concentration for inhibiting
environmental AOB was unclear. Consequently, 2
concentrations (100 and 10 pM) of ATU were applied
to both sediment and water samples.

It has been reported that 100 ptM ATU inhibits 80 %
and 85% of the nitrification rate in marine and soil
samples, respectively (Jantti et al. 2013, Lehtovirta-
Morley et al. 2013). ATU at 100 pM affected both
bacterial and archaeal ammonia oxidation in manure
compost (Oishi et al. 2012). However, some AOB cul-
tures are highly sensitive to ATU. Nitrosomonas
europaea is potentially inhibited by <10 pM ATU
(Jung et al. 2011), and the nitrification activity of
Nitrosospira multiformis is significantly reduced by
0.4 pM ATU (Shen et al. 2013). Our findings demon-
strated that ATU at both concentrations effectively

B AOB
I O AOA
1
Late-July Mid-June Late-July
sediment water water

Fig. 5. Relative abundance of ammonia-oxidizing bacteria (AOB) and archaea
(AOA) 16S rRNA genes in the sediment and water samples used for assessing
nitrification and urea hydrolysis activity. Error bars represent standard deviation

of duplicate gPCR amplifications
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inhibited in-river AOB, with less effect on the AOA
present in the Grand River.

As for PTIO, 200 pM PTIO inhibited AOA without
disturbing AOB in a low-oxygen lab-scale reactor
(Yan et al. 2012). An enrichment culture study has
shown that 50 pM PTIO completely inhibited NO,~
production of N. viennensis, whereas 200 pM PTIO
did not affect N. multiformis (Shen et al. 2013). Accord-
ing to our findings, 100 pM PTIO showed no effect on
AOB and was likely sufficient for inhibiting AOA in
the impacted river. Interestingly, PTIO likely had the
potential to inhibit NOB in downstream water in this
study. Although PTIO has been reported to inhibit
AOA (Yan et al. 2012) and anammox bacteria (Kartal
et al. 2011), there has been no information on the
effect of PTIO on NOB so far. Future research needs
to investigate the modes of action and mechanism of
PTIO on nitrite oxidation.

Nitrification rates for unamended and PTIO-treated
downstream sediment and water samples were higher
than those for ATU-treated samples. In all cases of
downstream sediment and water samples, NO,™ +
NOj™ production rates in unamended and PTIO treat-
ments were significantly higher than those in ATU
treatments (p < 0.05). Overall, the results suggested
that AOB oxidized most of the ammonia from both
sediment and water columns impacted by wastewater
effluent discharge. High abundances and activities of
AOB have been reported previously in ammonia-rich
environments, including freshwater (Sonthiphand et
al. 2013), marine (Bouskill et al. 2012), and soil (Di et
al. 2009). Although the activity of terrestrial AOB has
been investigated in many studies, few studies have
considered their activity in aquatic environments.
AOB activity has been examined in a freshwater eco-
system by using stable isotope probing (Avrahami et
al. 2011). The present study is the first study using in
vitro nitrification rates with differential inhibitors to
confirm AOB dominance in an impacted aquatic envi-
ronment. Although upstream water showed no ammo-
nia-oxidizing activity in all treatments, the results
suggest that AOB also oxidized ammonia within up-
stream sediment. Less microbial activity within the
upstream sampling site was possibly due to lower bio-
mass and less in situ substrate for microbial activity.
Also, the wastewater microbial community showed
less impact on the in-river upstream microbial com-
munity, possibly resulting in less nitrification activity
within upstream samples (Sonthiphand et al. 2013).
Potentially viable and active nitrifiers from wastewater
effluent might enhance nitrification activity within
downstream samples, whereas upstream samples
were less impacted by wastewater nitrifiers.

Although the late-July samples show lower nitrifi-
cation activity than the mid-June samples, differen-
tial nitrification inhibitors implied that the ammonia
oxidation process was driven primarily by AOB.
Nitrification activity is impacted by various environ-
mental factors such as O, concentration (Triska et al.
1990), temperature (Fdz-Polanco et al. 1994), and
organic carbon (Strauss & Dodds 1997, Strauss &
Lamberti 2000). However, the environmental param-
eters analyzed in this study were insufficient to cor-
relate with nitrification activity. Consequently, we
could not identify the reason for lower nitrification
activity in the late-July samples.

Urea hydrolysis was observed in both downstream
and upstream sediments; however, ammonia oxida-
tion was inconsistent between mid-June and late-
July samples. Consequently, it is complicated to
relate the co-occurrence of these 2 processes within
sediment samples.

The results for downstream water for both time
periods suggest that AOB were likely capable of a
coupled ammonia oxidation—urea hydrolysis process,
reinforcing that AOB can gain energy from ammonia
oxidation to uptake urea for subsequent hydrolysis.
Indeed, it has been shown that Nitrosomonas olig-
otropha has a high urea hydrolysis rate in ammonia-
supplemented media (Pommerening-Roser & Koops
2005). Although AOB were implicated in ammonia
oxidation, and possibly also in urea hydrolysis, we
could not rule out an important role for additional
microorganisms involved in urea hydrolysis that may
also be inhibited by ATU. In summary, urea hydroly-
sis within the effluent-impacted region of the Grand
River may be driven by AOB with urease genes, non-
nitrifiers with urease genes, or both. Non-nitrifiers
with urease genes detected in freshwater are associ-
ated with the genera Hydrogenophaga, Acidovorax,
Janthinobacterium, and Arthrobacter (Gresham et al.
2007). Our results suggest that 100 pM ATU likely
slowed and inhibited urea hydrolysis in the down-
stream sediment and water samples, respectively.
However, the mode of action and direct or indirect
mechanism of ATU on urease activity needs further
investigation.

The relative abundance of AOA was higher than
that of AOB in downstream sediment samples. A
higher relative abundance of freshwater AOA has
been reported in eutrophic Lake Taihu sediment
(China) and shows a negative correlation with
organic material (Wu et al. 2010). Although AOA
abundance was higher than AOB abundance in our
results, their activity might have been inhibited by
an accumulation of organic matter within down-
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stream WWTP sediment, just as the growth of
Nitrosopumilus maritimus was inhibited by low con-
centrations of organic compounds (Konneke et al.
2005). Our experimental conditions (i.e. high sub-
strate and neutral pH) likely inhibited AOA growth
and activity given that AOA play a key role in
ammonia oxidation in soils with low nutrient con-
centrations and a low pH (Gubry-Rangin et al. 2010,
Zhang et al. 2012). Also, AOA might use other alter-
native substrates (i.e. cyanate) for their energy
source (Spang et al. 2012). AOA found in a petro-
leum refinery WWTP are likely not chemolithoauto-
trophs; they possibly use hydrocabons or other
unknown substances for energy and carbon (Muf3-
mann et al. 2011). Another possible reason for high
abundance but less activity might be an accumula-
tion of AOA cell debris in sediment samples that are
detected by DNA-based analyses. In contrast to
downstream sediment samples, AOB 16S rRNA
genes were higher than AOA 16S rRNA genes in
downstream water samples. These results are con-
sistent with a strong dominance of AOB activity in
downstream water columns and consistent with pre-
vious research showing that wastewater effluent
can enhance nitrification activity and AOB abun-
dance in receiving waters (Muimann et al. 2013).

CONCLUSIONS

AOB are important microorganisms for in-river bio-
geochemical cycling, and are implicated in ammonia
oxidation in effluent-impacted Grand River samples.
Added PTIO had no effect on in-river ammonia oxi-
dation, but ATU completely inhibited bacterial ammo-
nia oxidation. AOB within downstream water likely
have the ability to oxidize ammonia and hydrolyze
urea, indicating that ammonia produced by urea is
an alternative N source for AOB. Modes of action and
direct or indirect mechanisms of PTIO and ATU on
urease and nitrite-oxidizing activities require further
investigation. Molecular analysis confirmed the
activity of AOB within this impacted water column.
Our findings implicate AOB as dominant microbial
players for both ammonia oxidation and urea hydro-
lysis within the Grand River.
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