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1. INTRODUCTION

Assessments of the impact of climate change have
identified the importance of integrating the ecological
and the economic and social analyses at large spatial
scales (Houghton et al. 1996, Watson et al. 1996).
Global climate change scenarios, derived from climate
models, have been used in biome redistribution mod-
els and in process-based ecosystem models to evaluate
the potential consequences of climate change in ter-

restrial ecosystems at large spatial scales, e.g. in con-
tinental-level analyses (Melillo et al. 1993, 1996,
VEMAP Members 1995). Similarly, the results of these
ecological models have been used to analyze the
impacts of climate change on the supply and demand
of timber at country and global scales (Joyce 1995,
Perez-Garcia et al. 1997, Sohngren et al. 1998), and the
impacts on regional economies at the global scale
(Xiao et al. 1997). The nature of these assessments,
country-level and inter-governmental, requires large
spatial extent. Computational limitations result in a
tradeoff between the spatial extent and the grain or
cell size in the analysis.
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ABSTRACT: We investigated the influence of spatial aggregation on modeled forest responses to
climate change by applying the process-based Terrestrial Ecosystem Model (TEM) to a fine resolution
spatial grid (100 km2) and to a coarse resolution spatial grid (2500 km2). Three climate scenarios were
simulated: baseline (present) climate with ambient CO2 and 2 future climates derived from the general
circulation models OSU and GFDL-Q with elevated atmospheric CO2. For baseline climate, the aggre-
gation error of the national (U.S.) study area was very small, –0.4%. Forest-level aggregation error
ranged from –1.6 to 11.8%, with the largest aggregation error occurring in boreal forest types. Coarse
grid resolution inputs underestimated production for boreal and forested boreal wetland forests and
overestimated net primary production (NPP) for temperate conifer, temperate deciduous, and temper-
ate forested wetland forests. Aggregation error for coarse grid cells ranged between –25.6 and 27.3%.
Aggregation errors were especially large in transition regions between temperate and boreal forest
types. An analysis that homogenized inputs for the 10 km grid cells within a 50 km grid indicated that
aggregation of forest types and air temperature from fine to coarse grid cells contributed most to the
spatial aggregation error. The aggregation error for the OSU climate was similar to the GFDL-Q
climate and both results were similar to the aggregation error of the baseline climate in magnitude,
sign, and spatial pattern. While aggregation error was similar across the baseline, GFDL-Q and OSU
scenarios, NPP response to the GFDL-Q and OSU climates increased 13 to 30% above the baseline
NPP. Within each climate scenario, the estimated NPP response to climate change differed by less than
1% between the coarse and fine resolutions. Except for transition regions and regions with substantial
variability in air temperature, our simulations indicate that the use of 0.5° resolution provides an
acceptable level of aggregation error at the 3 scales of analysis in this study. Improvements could be
made by focusing computational intensity in heterogeneous regions and avoid computational intensity
in regions that are relatively homogeneous with respect to vegetation and air temperature.
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Climate, vegetation, topography and soil input data
for these ecological models are typically gridded at the
0.5° longitude by 0.5° latitude scale (VEMAP Members
1995, Woodward et al. 1995, Cramer et al. 1999). The
coarseness of this grid size reflects past availability of
data, areal extent of the studies, and computational
limitations for these models. Use of gridded input data
implicitly assumes that the mean or dominant surface
features represent the entire grid cell. Inherent in this
assumption is the uncertainty with which each gridded
value represents the heterogeneity of the actual cli-
mate processes and the surface features within the
gridded area and the representativeness of this grid-
ded value when used by ecological models to describe
the biological processes operating within the gridded
area. The utility of various aggregation schemes in
summarizing fine resolution data has been reviewed
for different physical and biological attributes else-
where (Turner et al. 1989a,b, Kittel et al. 1996).

The degree to which methods of aggregation and
grid resolution affect the results and conclusions
drawn from these ecological simulations has been
studied in a few limited situations. The proportional
aggregation scheme assigns cell values to the coarser
grain grid cell according to the dominant category
found within the resampling matrix of the fine grain
cells (Costanza & Maxwell 1994). While this scheme
eliminates rare types, Costanza & Maxwell (1994)
found little difference for their modeling objectives be-
tween this scheme and a random aggregation scheme.
In contrast, concerns about physical consistency led
Kittel et al. (1996) to use the dominant soil profiles and
their frequency distribution rather than averages in the
development of soil data for 0.5° grid size. The non-
linear relationship between the physical aspects of soil
and the soil processes such as water balance would be
poorly characterized if the average soil properties
were used. Net primary production (NPP) estimates
from the PnEt model differed by 20% when coarse
grain versus fine grain soil data were used as input
data (Lathrop et al. 1995). Using the FOREST-BGC
model, Pierce & Running (1995) examined the bias in
NPP model estimates resulting from averaging of sub-
grid variations in climate, topography, soils and vege-
tation across a series of grain sizes from 1 km to 1°.
They obtained overestimates of up to 30% in NPP from
coarse resolution grids relative to the 1 km2 fine reso-
lution grids used to characterize coniferous forests in
the Rocky Mountains. Most of this error was produced
by average temperature, while average topography,
soils, and vegetation types also contributed. None of
these studies has examined the effect of aggregation
on predicted ecosystem responses to climate change.

Opportunities to move these assessment analyses to
finer resolution, such as 10 km, exist. It is important to

understand the utility of going to a finer scale. Moving
from 0.5° to 10 km grid size represents an order of
magnitude greater effort in terms of data size and
model running time. Costanza & Maxwell (1994)
posited that there is a different optimal resolution for
each class of models and possibly for each particular
set of modeling objectives. We used the Terrestrial
Ecosystem Model (TEM) (Melillo et al. 1993) to evalu-
ate the utility of moving the climate change impact
analysis to a finer resolution. We simulated forest
ecosystem responses to a baseline climate and to 2
climate change scenarios at 2 different spatial resolu-
tions. Spatial aggregation error, as we define it, repre-
sents the difference between 2 NPP estimates made at
the coarse and at the fine resolution relative to the
estimate at fine resolution. We hypothesized that
aggregation error would increase in the climate
change scenarios relative to that of baseline climate.

2. METHODS

Our approach to comparing effects of aggregation
was to simulate forest NPP for baseline and 2 climate
change scenarios at 2 resolutions within the same
spatial extent. Aggregation error was computed at the
coarse resolution with the finer resolution NPP serving
as the control. The fine resolution (sensu Turner et al.
1989b) grid cells were 100 km2 in size, nested within
coarse resolution grid cells of approximately a half
degree in size (2500 km2).

We quantified the impact of aggregation in 3 simula-
tion experiments. First, we computed aggregation
error using the historical climate under which the eco-
logical processes have been studied, and for which the
ecological models have been validated, the baseline
climate. Second, we examined the contribution to
aggregation error of the variability of each climate
input in isolation of other inputs. Third, we assessed
aggregation error under the climate change scenarios
and compared it to the aggregation error for the base-
line simulations. Because climate change assessments
vary in their scale of analysis, we summarized our
results at 3 spatial scales: grid cell, forest type, and
national. The national scale encompassed the histori-
cal range of temperate forests in the United States, the
spatial extent of this analysis.

We used TEM (version 4.0, McGuire et al. 1995), a
process-based ecosystem model that uses spatially dis-
tributed input data for climate (monthly temperatures,
precipitation, and cloudiness), soils (percent sand, silt,
and clay), and vegetation (35 vegetation classes glob-
ally) (Fig. 1). TEM reports equilibrium estimates of car-
bon and nitrogen fluxes and pools, including NPP in
g C m–2 yr–1 (McGuire et al. 1995, 1997, Pan et al. 1996).
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TEM was developed and has been used extensively to
simulate processes at large spatial scales using gener-
alized biological and physical processes for ecosys-
tems. Its customary applications have been to estimate
global and continental ecosystem NPP, soil carbon
under contemporary and alternate climates and vary-
ing levels of CO2, and interactions between nitrogen
and carbon in terrestrial ecosystems.

2.1. Aggregation of spatial input data. Within the
historical range of temperate forests within the conter-
minous United States (Joyce 1995), we selected only
coarse resolution grid cells whose component fine cells
were all classified as forested. This selection criterion
ensured the same spatial extent at both the coarse and
fine resolutions. When any of the 25 fine resolution
cells were water or a nonforest type, such as grass-
lands, shrublands, desert, or wetlands, the entire
coarse resolution grid was eliminated from this analy-
sis. While this decision rule eliminated most of the
Rocky Mountain region and prairie riparian zones from
consideration, it included most of the eastern and
forested western mountainous regions. The forest
types represented in the resulting 815 coarse resolu-
tion grid cells are boreal, forested boreal wetland, tem-
perate conifer, temperate deciduous, mixed temperate,
and temperate forested wetlands (Fig. 2).

The 10 km × 10 km baseline input data for climate
(monthly precipitation, monthly mean air temperature),
soil texture (percent sand, silt, and clay), and elevation
were obtained from Neilson (pers. comm.) as described
for climate in Marks (1990), Neilson (1995), Daly et al.

(1994), and for soils in Kern (1994). The temperature
and precipitation data represent long-term monthly
means (Leemans & Cramer 1991). Küchler vegetation
was digitized from the 1975 map (Küchler 1975) at
10 km resolution (Steve Hodge pers. comm.) and was
reclassified to TEM vegetation types (Table 6 in
VEMAP Members 1995). The source data for soils
(Kern 1994) and cloudiness (Hahn et al. 1988) were
coarsely resolved and for these inputs we did not exam-
ine aggregation error. In TEM, elevation is used ex-
plicitly only to determine the duration of snowmelt
(Vorosmarty et al. 1989). Elevation was used to correct
the input air temperature and precipitation data for adi-
abatic lapse rates (Marks 1990). Therefore, we did not
examine aggregation error separately for elevation as
it was confounded with temperature and precipitation.

The 50 km × 50 km baseline input data was created
by aggregation of the fine resolution input data. Each
coarse resolution cell contained 25 of the 10 km ×
10 km grid cells. The continuous values of climate,
soils, and elevation were averaged to obtain the mean
of the 25 fine resolution grids. The proportional aggre-
gation method (Costanza & Maxwell 1994) was used to
identify forest type at the coarse grid resolution. In this
method, the majority type of the 25 categorical values
of forest type at the fine resolution was selected as the
forest type of the coarse grid cell.

The decision rule of proportional aggregation results
in some loss of information on the areal extent of
forests (Table 1). While the coarse resolution grids
include 6 vegetation types, a seventh type, temperate

111

BASIC VARIABLES INTERMEDIATE MODELS TEM INPUTS Available TEM Outputs (monthly resolution)

Cloudiness

Elevation

Soil texture

Air temperature

Precipitation

Vegetation/Land use

CO2

Wet & dry deposition, fertilization, fixation

IRRADIANCE

Net irradiance

WATER
BALANCE

MODEL

LEAF
PHENOLOGY

Gross primary productivity

Plant respiration

Net primary productivity

Decomposition

Net ecosystem productivity

Litterfall carbon

Plant nitrogen uptake

Litterfall nitrogen

Net nitrogen mineralization

Nitrogen losses

Vegetation carbon

Vegetation nitrogen

Soil organic carbon

Soil organic nitrogen

Soil inorganic nitrogen

PAR

PET

Rain

Snow recharge

Soil moisture

AET

Leaf duration

CO2

N inputs

Vegetation/Land use

Air temperature

Soil texture

T

E

M

Fig. 1. Inputs and outputs of the Terrestrial Ecosystem Model (TEM) (from Pan et al. 1996). PAR: photosynthically active radiation; 
PET: potential evapotranspiration; AET: actual evapotranspiration; CO2: atmospheric CO2 concentration
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evergreen broadleaf, appeared only at
the fine resolution. All forest types
which comprised greater than 10% of
the total area within the 10 km grids
retained at least 93% of their total area
when aggregated to 50 km grid size.
The rarer forest types, boreal, forested
boreal wetland, temperate forest wet-
land, and temperate broadleaf ever-
green lost from 28 to 100% of their
area under the proportional aggrega-
tion rule.

The climate change scenarios (month-
ly mean air temperature, monthly pre-
cipitation) obtained from Neilson (pers.

comm.) as described in Neilson & Marks
(1994) are based on 2 general circulation
models (GCMs): the Geophysical Fluid
Dynamics Laboratory Q-flux (GFDL-Q)
(Manabe & Wetherald 1987) and Oregon
State University (OSU) (Schlesinger &
Zhao 1989) models. The scenarios were
interpolated from the climate models
coarse grids to the 10 km grid size and
then applied to the 10 km version of the
long-term climate data set of Leemans &
Cramer (1991) (Neilson & Marks 1994).
The 10 km grid cell values for forest type,
elevation, and soils remain unchanged
from the baseline simulation. Using the
same aggregation protocol as for baseline
climate, the climate change scenarios at
the 10 km grid size were aggregated
within the 50 km grid cells to serve as
coarse resolution inputs to TEM for the
climate change scenarios.

2.2. Simulation experiments. We inves-
tigated aggregation error with 3 simula-
tion experiments. First, we assessed
aggregation error under baseline cli-
mate. Second, we determined the effects
that each fine resolution input had on
aggregation error for baseline values.
Third, we determined aggregation error
for the 2 climate change scenarios and
compared this error to that under base-
line climate. These tests determined
whether and how much aggregation
error changed relative to baseline.

The first experiment computed the
effect of aggregation under conditions
for which the ecological model was cali-
brated, an experiment similar to that
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Fig. 2. Forest types at coarse (50 km) and fine (10 km) resolution grids for our
study area. Coarse resolution grid cells were included when all 25 fine resolu-

tion grids within their boundaries were classified as forest vegetation

Forest Types

Boreal Forest

Forested Boreal Wetland

Mixed Temperate Forest

Temperate Conifer Forest

Temperate Deciduous Forest

Temperate Forested Wetland

Temperate Evergreen Broadleaf

Fine Grid Forest Vegetation

Coarse Grid Forest Vegetation

Table 1. Total forest type area (km2) as influenced by the proportional aggrega-
tion scheme used to aggregate forest type from the 10 km (fine) resolution to the 

50 km (coarse) resolution

Forest type Fine resolution Coarse resolution
No. of cells Area No. of cells Area

Boreal 460 46000 9 22500
Forested boreal wetland 154 15400 4 10000
Mixed temperate 9621 962100 409 1022500
Temperate conifer 2132 213200 91 227500
Temperate deciduous 6555 655500 260 650000
Temperate forested wetland 1450 145000 42 105000
Temperate evergreen broadleaf 3 300 0 0

Total 20375 2037500 815 2037500
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conducted by Pierce & Running (1995). Model esti-
mates of NPP were produced for the 20 375 grid cells
sized 10 km × 10 km and for the 815 grid cells sized
50 km × 50 km under baseline air temperature, precip-
itation, cloudiness, and CO2 levels of 355 meq l–1.

Aggregation error measures the relative differences
between fine and coarse resolution grid NPP. When
averaging of input data adequately represents a grid
cell, then the NPP estimates at the coarse resolution
will be nearly identical to the fine resolution grid
means. When it does not, NPP will differ or be skewed
in distribution, revealed through variability and ranges
of NPP. Aggregation error was computed at the 50 km
resolution by averaging the fine resolution (10 km)
NPP and comparing this to the NPP of the correspond-
ing coarse resolution grid (50 km). The average fine
resolution NPP was calculated as:

(1)

where NPP
–––––

10 is the mean annual NPP in g C m–2 yr–1 for
the 25 fine resolution grids within each coarse resolu-
tion grid, nppi is the annual NPP for each fine resolu-
tion grid, and i is the position of the 1st to 25th cells
within the coarse resolution cell. Relative aggregation
error for the baseline scenario (EB) was computed at
the 50 km resolution from the difference between the
control (NPP

–––––
10) and NPP of the coarse resolution grid

(NPP50) as:

(2)

In the second experiment, we examined the role of
each input variable in aggregation error by eliminating
input variability one variable at a time. We ran TEM
holding one input variable constant across all 25 fine
resolution grids within each coarse grid while retain-
ing variability among other input variables. For exam-
ple, biological variability was eliminated at the fine
resolution by assigning the majority forest type to all
25 cells contained within the coarse grid cell. TEM
then produced NPP that reflected the influence of for-
est type on aggregation error through comparison with
the original baseline fine resolution NPP and the
coarse resolution NPP. TEM was run for the 3 homoge-
nized inputs with fine resolution input data: forest
type, air temperature, and precipitation. Mean NPP
resulting from the homogeneous runs was calculated
as:

(3)

where NPP
–––––

h is the mean NPP and npphi is NPP for the
ith grid cell. Two aggregation error measures were
computed, Ehf and Ehc:

(4)

(5)

where Ehf and Ehc are the aggregation errors associ-
ated with NPP where input data was homogenized and
compared to the baseline NPP estimates for fine and
coarse resolution, respectively.

The aggregation error Ehf measures the relative dif-
ference between NPP estimated for each homogenized
input run at the fine resolution and the baseline NPP at
the fine resolution. In contrast, the aggregation error
Ehc measures the difference between NPP estimated
for each homogenized input run at the coarse resolu-
tion and the baseline NPP estimate at the coarse reso-
lution. If the input variable contributes to aggregation
error, then homogenizing this input value will produce
a NPP estimate that differs from the fine resolution
NPP (Ehf and EB will differ) and more closely resem-
bles the coarse resolution NPP (Ehc and EB will be
similar).

The third simulation experiment computed aggre-
gation error in NPP for the 2 climate change scenar-
ios. The climate change scenarios represented
altered temperature, precipitation, and cloudiness
with a CO2 concentration of 625 ppmv and were
used in TEM to produce new NPP values. Although
the GCMs, GFDL-Q and OSU, were implemented
with slightly different atmospheric CO2 concentra-
tion, we elected to run TEM with a CO2 concentra-
tion of 625 ppmv for both scenarios so that varying
CO2 concentration would not be a factor in this
aggregation analysis. The fine resolution grid means
for climate change were calculated as:

(6)

(7)

where NPP
–––––

OS10 and NPP
–––––

GQ10 are the mean NPP of the
fine resolution grids within a coarse resolution grid for
each climate change scenario and nppOSi and nppGQi

are the NPP values for each fine resolution grid. The
NPP response to the climate change scenarios were
calculated at the 50 km resolution as:

(8)

(9)  
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(10)

(11)

where dOS10, dOS50, dGQ10, and dGQ50 were the NPP re-
sponses to the climate change scenarios for each fine
and coarse resolution grids. Aggregation error within a
scenario was computed for each 50 km grid as:

(12)

(13)

where EOS is the aggregation error associated with the
OSU climate scenario NPP results and EGQ is the
aggregation errors associated with the GFDL climate
scenario NPP results.

3. RESULTS

3.1. Aggregation error for baseline climate

For the national extent, the mean 50 km NPP of all
forests differed by less than 1 g C m–2 between fine
and coarse resolution estimates (Table 2), a difference
which was not significant (paired t-test: p = 0.91, N =
815). Aggregation error based on 815 grid cells was
very small and negative (–0.4%), which reflects the
slightly higher estimates of NPP using the coarse reso-
lution input data. The range of aggregation error
(–25.6 to 27.3%) reflects the differences at the level
of each grid cell.

Among the forest types, mean 50 km NPP of fine
and coarse resolution estimates was most different for
boreal forests (37 g C m–2) and forested boreal wetland
(34 g C m–2). Although these differences were not sig-

nificant (paired t-tests: p = 0.10 and 0.12), the tests for
differences were not powerful because of the low
number of grid cells for the 2 types (see Table 2). For
the other forest types, the difference between fine and
coarse mean 50 km NPP was less than 10 g C m–2.
Of the other forest types, the difference in NPP ap-
proached significance only for deciduous forest (paired
t-test: p = 0.08, N = 260). Similar to differences in mean
50 km NPP, the aggregation errors among forest types,
which were larger than for all forests (Table 2), were
largest in boreal forest (11.8 ± 6.9%) and forested
boreal wetland (9.6 ± 12.2%). In contrast, for the other
forest types the differences in mean absolute value of
aggregation error was small (less than 2%). For boreal
forests, forested boreal wetland forests, and mixed
temperate forests, the aggregation error was positive,
whereas for conifers, deciduous, and temperate
forested wetland types, the mean aggregation error
was negative. Positive aggregation error indicated that
the fine resolution grid NPP was larger than coarse
resolution grid NPP. In boreal and forested boreal
wetland forests, the aggregation error was positive for
every grid cell as seen in the exclusively positive ranges
in the aggregation error (3.7 to 22.1 and 0.1 to 27.3). Ag-
gregation errors for the other forest types had ranges
with both negative and positive values.

At the level of the individual grid cells, few cells had
aggregation errors greater than 20% (Fig. 3), which is
the approximate lower limit on measurement error
of stand-level NPP. The largest aggregation errors
occurred in grid cells around the Great Lakes, in
northern New England, and in the Rocky Mountains.
The smallest aggregation error was found generally
throughout the East and Southeast, as well as in the
western mountains. Each forest type, except temperate
forested wetland, had at least 1 grid cell with an aggre-
gation error exceeding 20%, with the largest positive
aggregation error of 27.3% for forested boreal wet-
lands and the largest negative error of –25.6% for
mixed temperate forests (Table 2).

EGQ
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Table 2. Net primary production (NPP) and aggregation error for baseline climate. Values are g C m–2 for NPP (NPP50 and NPP10,
Eq. 1) and relative percentages for aggregation error (EB, Eq. 2). Values are means, with standard deviations in parentheses.
n: number of coarse resolution grid cells in each forest type. Significance level is given for the paired t-test comparing NPP50

and NPP––––––
10

Forest type n NPP Paired t-test Aggregation error
Fine Coarse significance

Boreal 9 312.4 (48.8) 275.2 (42.6) 0.10 11.8 (6.9) 3.7 to 22.1
Forested boreal wetland 4 319.0 (36.6) 285.0 (9.8) 0.12 9.6 (12.2) 0.1 to 27.3
Mixed temperate 409 696.1 (124.9) 691.0 (113.8) 0.54 0.3 (4.1) –25.6 to 8.4
Conifers 91 344.7 (96.3) 349.4 (97.9) 0.74 –1.6 (5.6) –24.1 to 9.6
Deciduous 260 751.5 (66.3) 761.3 (60.7) 0.08 –1.4 (2.7) –24.3 to 0.8
Temperate forested wetland 42 838.5 (61.0) 846.6 (62.0) 0.55 –1.0 (1.8) –6.4 to 0.3

All forests 815 675.8 (167.9) 676.7 (165.3) 0.91 –0.4 (4.3) –25.6 to 27.3
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To determine whether increasing numbers of forest
types within a coarse grid cell increased the magnitude
of aggregation error, we plotted number of fine grid for-
est types against aggregation error within the coarse grid
(Fig. 4). The largest aggregation errors
for temperate conifer forest and decid-
uous forest were associated with grids
containing the most forest types. How-
ever, this pattern was not repeated in
the boreal and forested boreal wetland
forests where the largest aggregation
errors were found in grids with 2 or 3
different types, rather than the grid
cells containing 4 forest types. In addi-
tion, aggregation error across grid
cells with similar numbers of forest
types spanned a wide range of values.
Other factors, in addition to the num-
ber of forest types, appear to influence
the magnitude of the aggregation error.

3.2. Influences of input variables on
aggregation error

Aggregation error can stem from
different forest types responding to the
same environment, from a single forest
type responding to different envi-
ronments, or a combination of these
responses. Eliminating fine resolution
input variability one factor at a time
has the potential to reveal the in-
fluence of each input factor on ag-

gregation error. We computed aggrega-
tion error of the homogeneous inputs rel-
ative to both the baseline fine and coarse
resolution grid NPP (Eqs. 4 & 5). When
an input variable contributes little to ag-
gregation error, then homogenizing the
input produces an NPP estimate that dif-
fers little from the NPP of the baseline
fine resolution grids. If the variable con-
tributes to aggregation error, then ho-
mogenizing the input produces an NPP
estimate that differs from the fine reso-
lution NPP and more closely resembles
the coarse resolution NPP.

When forest type is homogenized,
the mean NPP results are close to both
the baseline fine and coarse grid esti-
mates of NPP, as indicated by aggrega-
tion errors (–0.2 and 0.1 respectively,
Table 3) similar to the baseline –0.4,
Table 1). However, the ranges for Ehf

and Ehc differ markedly. In the fine resolution compar-
ison, the range of Ehf (–25.8 to 27.3%) is similar to
range of aggregation error for the baseline simulation
(–25.6 to 27.3%). In the coarse resolution comparison,
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Fig. 3. Grid-level aggregation error for baseline climate, EB (Eq. 2)
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the range of Ehc is much smaller (–7.7 to 7.9%). This
narrow range indicates that when forest type is
homogenized, the NPP estimates are closer to the NPP
of the 50 km baseline. When air temperature is aver-
aged, the fine resolution aggregation error Ehf is
larger than baseline aggregation error (–1.4% com-
pared to baseline –0.4%), and its range is smaller (–6.9
to 15.1% compared to –25.6 to 27.3%). In the coarse
resolution comparison, the Ehc for mean air tempera-
ture is also slightly larger than the baseline error.

These results imply that air tempera-
ture plays a larger role than forest type
in aggregation error at the national res-
olution, but less so for individual grid
cells. When precipitation is averaged,
the mean fine and coarse resolution
aggregation errors (–0.1 and 0.1% for
Ehf and Ehc, respectively) are less than
baseline aggregation error (–0.4). The
range of the fine resolution aggregation
error for homogenized precipitation
(–6.0 to 0.8%) is much smaller relative

to coarse resolution aggregation error (–37.5 to 20.3%)
and baseline aggregation error (–25.6 to 27.3%). These
results indicate that precipitation plays a small role in
determining aggregation error at the national extent
and for individual grid cells.

The spatial patterns of aggregation error produced
by homogenizing the input varied by input variable
(Fig. 5). While baseline aggregation error represents
the relative difference between fine and coarse resolu-
tion NPP estimates, the aggregation error in Fig. 5
represents the relative differences between the fine
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Table 3. Aggregation error for homogeneous fine resolution grids relative to
baseline fine and coarse resolution NPP (Ehf and Ehc, Eqs. 4 & 5). These should
be compared to the baseline aggregation error, –0.4 ± 4.3%, with a range of
–25.6 to 27.3%. Values represent aggregation error mean, standard deviation, 

and range for the 815 forested grid cells in the study area

Input variable Ehf Ehc

Mean (SD) Range Mean (SD) Range

Forest type –0.2 (4.2) –25.8 to 27.3 0.1 (1.2) –7.7 to 7.9
Air temperature –1.4 (2.6) –6.9 to 15.1 1.6 (5.1) –33.8 to 22.8
Precipitation –0.1 (0.5) –6.0 to 0.8 0.1 (4.2) –37.5 to 20.3

Relative % Difference

–26.00 to –20.00 0.01 to 10.00

–20.01 to –10.00 10.01 to 20.00

–10.01 to 0.00 20.01 to 28.00

Fig. 5. Relative differences between baseline fine resolu-
tion grids and grids with homogeneous (a) vegetation
types, (b) air temperature regimes, and (c) precipitation 

(Ehf, Eq. 4) 

a b

c
Precipitation

TemperatureVegetation

Fine Grid Differences Resulting From Homogenized Inputs
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resolution and the homogenized fine resolution NPP
estimates, Ehf (Eq. 4). Negative aggregation error indi-
cates that the fine resolution NPP values are less than
the homogeneous values. Homogenizing forest type
produced patterns (Fig. 5a) that reflect the transition
between forest types (Fig. 2) rather than the overall
spatial patterns of the baseline aggregation error, EB

(Fig. 3). In the East, negative aggregation error is more
concentrated in the Appalachians and Blue Ridge,
whereas it is scattered throughout the baseline map
(Fig. 3). Where forest types at the fine scale intermin-
gle (New England, the Great Lakes, the Intermountain
West and the Western mountains, Fig. 2), patterns of
homogenous aggregation error closely resemble
aggregation error of the baseline simulations.

Homogenizing air temperature produced a fine reso-
lution aggregation error (Ehf) with stronger regional
biases than that of the baseline aggregation error EB.
More positive values of Ehf occurred in the East and
Northeast, with consistently higher values in New
England, the Great Lakes region, and the interior
Western mountains (Fig. 5b). These regions of positive
aggregation error coincide with substantial variability
in the annual average air temperature. Homogenizing
air temperature resulted in lower monthly air tempera-
ture values, particularly for months at the beginning
and the end of the growing season. In contrast, pat-
terns of aggregation error for homogeneous precipita-
tion (Fig. 5c) show no geographic bias and are within
10% of no aggregation error across the entire United
States (Table 3).

According to the above analysis, much of the base-
line aggregation error is produced by classification of
forest type at the coarse resolution and homogenizing

air temperature to the coarse resolution. Precipitation
has only a slight effect on aggregation error under
baseline conditions.

3.3. Climate change response and aggregation error

Net primary production for all forests increased
under both climate change scenarios at both resolu-
tions (Table 4). Under the OSU climate, NPP of all
forests increased approximately 30% above the base-
line NPP response whereas under the GFDL-Q climate
NPP of all forests increased less than 13%. Within each
climate change scenario, the response to climate
change at the coarse resolution differed by less than
1% from the response to climate change at the finer
resolution.

By forest type, the NPP responses increased from 2.3
to 48.3%, varying by forest type and climate scenario
(Table 4). The NPP response for boreal and forested
boreal wetland forests was 4 to 7% greater under the
GFDL-Q climate than under the OSU climate. How-
ever, for mixed temperate, deciduous, and temperate
forested wetland, the NPP increase under the OSU
climate was 18 to 40% greater than under the GFDL-Q
climate. The responses for temperate forested wetland
under the OSU climate (30.9 to 57.8%) were com-
pletely outside the range of temperate forested wet-
land responses for the GFDL-Q climate (–7.6 to 12.4%).
Within each climate scenario, forest NPP responses at
the coarse resolution differed by less than 2% from the
NPP response to climate change at the fine resolution
for all forest types but conifer, which differed by less
than 6%.
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Table 4. Net primary production (NPP) response to climate change for coarse and fine resolution input data. Responses are in per-
centages relative to baseline NPP (Eqs. 8–11). Means, standard deviations (in parentheses) and ranges for OSU and GFDL-Q 

climates are relative to baseline for the same resolution grid cells

Forest type Grid Percent change in NPP
OSU (dOS10, dOS50) GFDL-Q (dGQ10, dGQ50)

Boreal Fine 22.4 (5.1) 19.5 to 35.8 30.2 (12.8) 24.8 to 64.2
Coarse 23.8 (13.4) 17.7 to 59.5 30.9 (19.2) 23.1 to 82.1

Forested boreal wetland Fine 19.6 (0.5) 18.8 to 19.9 24.8 (1.0) 23.7 to 25.9
Coarse 19.3 (0.3) 18.9 to 19.5 23.5 (1.9) 20.7 to 24.9

Mixed temperate Fine 27.5 (4.8) 2.0 to 45.2 9.0 (11.8) –12.8 to 35.6
Coarse 27.4 (5.2) –0.3 to 46.1 9.3 (12.2) –12.9 to 41.0

Conifers Fine 32.4 (8.1) 15.8 to 47.1 42.7 (18.4) 0.9 to 81.5
Coarse 35.3 (10.7) 18.3 to 53.4 48.3 (20.4) 2.4 to 78.0

Deciduous Fine 29.9 (3.5) 17.8 to 52.2 7.7 (7.1) –13.9 to 28.4
Coarse 29.9 (3.7) 15.0 to 49.6 7.5 (7.4) –16.7 to 29.3

Temperate forested wetland Fine 41.4 (6.8) 30.9 to 56.5 2.5 (3.5) –5.2 to 12.1
Coarse 42.2 (7.4) 32.1 to 57.8 2.3 (3.7) –7.6 to 12.4

All forests Fine 29.5 (6.0) 2.0 to 56.5 12.4 (15.8) –13.9 to 81.5
Coarse 29.6 (7.1) –0.3 to 59.5 13.1 (17.5) –16.7 to 82.1
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Spatially, the pattern of NPP responses varied more
across climate scenarios than across resolutions
(Fig. 6). Although increases occurred under both
climates in the West, the responses in the South and 
Mid-Atlantic forests were dramatically different
across the 2 climate scenarios. For the GFDL-Q cli-
mate, the southern and mid-Atlantic
forest NPP declined up to 17% rela-
tive to the baseline NPP, whereas
under the OSU climate these forests
increased in NPP from 10 to 82%. The
spatial pattern of the forest responses
was similar across the coarse and fine
resolutions within each climate sce-
nario.

Aggregation error for the OSU cli-
mate was similar to the error for the
GFDL-Q climate (Table 5) and both
results were similar to the aggregation
error of the baseline climate across all

forests and within forest type (Table 2). As in the base-
line climate, aggregation error for all forests was small
and negative: baseline –0.4%, OSU –0.5%, and GFDL-
Q –0.8%. Because aggregation error of the absolute
NPP estimates are insensitive to different climates, the
relative responses of NPP for the OSU and GFDL-Q cli-
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Table 5. Aggregation error for climate change scenarios (EOS and EGQ, Eqs. 12
& 13). Values represent means, with standard deviation in parentheses, and 

ranges of differences

Forest type OSU (EOS) GFDL-Q (EGQ)
Mean (SD) Range Mean (SD) Range

Boreal 11.2 (6.4) 4.1 to 24.2 11.8 (6.0) 4.1 to 22.7
Forested boreal wetland 9.8 (12.3) –0.2 to 27.5 10.4 (12.9) 0 to 29.1
Mixed temperate 0.6 (4.7) –28.6 to 12.2 0 (4.6) –43.4 to 7.5
Conifers –3.7 (6.0) –25.2 to 9.8 –5.5 (6.2) –27.4 to 7.8
Deciduous –1.4 (2.8) –24.5 to 2.4 –1.2 (2.7) –25.1 to 2.6
Temperate forested wetland –1.5 (2.8) –11.2 to 2.2 –0.8 (1.5) –5.9 to 0.3
All forests –0.5 (4.8) –28.6 to 27.5 –0.8 (4.8) –43.4 to 29.1

Total % Difference

–17.00 to –10.00 10.01 to 20.00

–10.01 to 0.00 20.01 to 30.00

0.01 to 10.00 30.01 to 82.00

Fine Grid OSU

Forest Response to Climate Change Scenarios

Fine Grid GFDL-Q

Coarse Grid GFDL-QCoarse Grid OSU

Fig. 6. Forest response to climate change scenarios: OSU and
GFDL-Q fine and coarse resolution grid NPP (dOS10, dOS50,

dGQ10, and dGQ50; Eqs. 8–11)
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mates (Fig. 6) are generally insensitive to inputs at the
2 different resolutions (Fig. 7). Most of the variation in
differences between relative responses at the 2 resolu-
tions is within 2% for the OSU climate and 1% for the
GFDL-Q climate.

Aggregation error within forest types was similar in
magnitude and sign across the baseline and the 2
climate scenarios. The highest error in all climate
scenarios occurred in the boreal and forested boreal
wetland forests (11.8 and 10.4% respectively) and the
absolute value of the aggregation error for the other
forests was less than 5.5%. Only in the temperate
conifer forests did aggregation error noticeably
increase from baseline to the new climates, widen-
ing by approximately –2% under OSU and –4% for
GFDL-Q. The GFDL-Q climate produced greater grid-
level aggregation error for some of the mixed temper-
ate forest grids, with maximum differences of –43.4%
compared to –28.6% for the OSU climate. Geographi-
cally, aggregation error for both OSU and GFDL-Q

(Fig. 8) was concentrated in the same areas as
that of baseline climate (Fig. 3). The largest
aggregation error occurred around the Great
Lakes, in New England, and in the Rocky
Mountains. The smallest aggregation error,
less than 10%, was found in the South and the
Mid-Atlantic, an area that had the greatest
differences in the NPP response to climate
change, –17 to 82% (Fig. 6).

4. DISCUSSION AND CONCLUSIONS

Large-scale ecosystem models typically
make estimates of carbon cycling at 0.5° spa-
tial resolution (Melillo et al. 1993, VEMAP
Members 1995, Heimann et al. 1998, Cramer
et al. 1999, Kicklighter et al. 1999); near the
equator 0.5° resolution is approximately
50 km resolution. This resolution was chosen
because the data required as input to these
models has traditionally been organized at
0.5° (e.g. Legates & Willmott 1990a, b, Lee-
mans & Cramer 1991, Kittel et al. 1995,
VEMAP Members 1995, Cramer et al. pers.
comm.). Climate change scenarios for the
large-scale ecosystem models are created by
applying the responses of climate models to
long-term climate data that has been orga-
nized at 0.5° resolution (e.g. see Melillo et al.
1993, Kittel et al. 1995, VEMAP Members
1995).

Aggregation error is an issue for large-
scale ecosystem models because the re-
sponses of ecosystems to changes in inputs or

driving variables are often non-linear (O’Neill 1979,
Rastetter et al. 1992). Because ecosystem models are
generally developed in the context of process-based
studies that occur at resolutions between a meter and
a hectare, aggregation error will likely occur when
the models are applied to a larger area by using
inputs that have been averaged over the larger area.
There are a number of techniques that can be
employed in ecosystem models to reduce aggregation
error. One technique of scaling plot-level data to
larger resolutions is transmutation (see O’Neill 1979),
which involves the flattening of fine-scale process-
based relationships with respect to driving variables.
This technique was employed by Raich et al. (1991) in
developing the first version of TEM, and is applicable
to process-based relationships that tend to become
asymptotic as the driving variables get larger, i.e. con-
cave relationships (e.g. see Fig. 1 of Rastetter et al.
1992). In applying this technique to the calculation of
processes that depend on driving variables, Raich et
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Fig. 7. Distribution of differences in forest response to climate change: 
(a) dOS10 – dOS50 and (b) dGQ10 – dGQ50
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al. (1991) assumed that the greater the point-to-point
heterogeneity of the driving variable, the lower the
range observed in the dependent process. This appli-
cation of transmutation as a scaling technique de-
creases the sensitivity of relationships according to
the expected heterogeneity of the dependent variable
at coarse resolution (Raich et al. 1991).

In addition to transmutation, Rastetter et al. (1992)
described 4 additional techniques to reduce aggrega-
tion error. These techniques include moment expan-
sions, partial transformations, calibration, and parti-
tioning. Moment expansions are derived from Taylor
series expansion of the fine-scale function in the
expectation operator; an infinite number of terms in
the Taylor expansion will result in a corrected estimate
that converges to the ‘true’ value. The disadvantage
of this technique is that it is not clear how many terms
are required before the series converges to a reason-

able estimate of the aggregated relation-
ship (Rastetter et al. 1992). This technique
has not been employed in the development
of TEM.

Partial transformation is a technique that
uses an expectation operator to correct fine-
scale relationships to make coarse-scale
estimates when the probability density
function of the driving variable is known,
i.e. when the fine-scale statistical properties
of driving variable are understood at the
coarser resolution of model application.
This technique was applied to improve the
effects of sub-monthly precipitation events
on the monthly estimates of soil moisture by
the water balance model of Vorosmarty et
al. (1989; see Vorosmarty & Moore 1991).
Thus, the technique of partial transforma-
tions has been employed in the TEM simu-
lations to correct for temporal aggregation
error in soil moisture estimates. Although
this technique is powerful, it has not been
used to correct for spatial aggregation error
in TEM because the technique is tedious
and requires that each process is corrected
for all sources of variability (Rastetter et al.
1992).

The technique of calibration involves
altering the parameters in a fine-scale rela-
tionship so that the altered relationship
simulates the coarse resolution dependent
variable when using the coarse resolution
driving variables. In comparing the per-
formance of different scaling techniques,
Rastetter et al. (1992) found that application
of the calibration technique was very effec-
tive at reducing aggregation error, particu-

larly when combined with the partial transformation
technique. In TEM, rate-limiting parameters of ecosys-
tem processes have been calibrated to the fluxes and
pools of intensively studied sites for each of the major
vegetation types in the terrestrial biosphere in the con-
text of the 0.5° driving variables of the grid cell con-
taining the site. This application of the calibration
technique in TEM assumes that fluxes and pools of an
intensively studied site are representative of the fluxes
and pools of the 0.5° grid cell. Although TEM has been
calibrated to 0.5° input data, it is not clear where the
underlying resolution of the model lies on the contin-
uum between stand-level and 0.5° resolution. Some
large-scale biogeochemical models have taken a
biome-scale approach to calibration. For example, the
flux equations of the Frankfurt Biosphere Model (FBM,
Kindermann et al. 1993, 1996, Lüdeke et al. 1994,
Kohlmaier et al. 1997) contain free parameters that are
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Fig. 8. Aggregation error for (a) OSU and (b) GFDL-Q climates, EOS and 
EGQ (Eqs. 12 & 13)

Relative % Difference
–44.00 to –20.00 0.01 to 10.00
–20.01 to –10.00 10.01 to 20.00
–10.01 to 0.00 20.01 to 30.00

Aggregation Error for OSU Climate

Aggregation Error for GFDL-Q Climate

a

b
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calibrated until the NPP of a vegetation type equals
average ecological estimates. The FBM and many
other large-scale ecosystem models, including TEM,
have conducted validation analyses by comparing 0.5°
estimates with stand-based estimates (e.g. see Melillo
et al. 1993, Kohlmaier et al. 1997). Although FBM uses
0.5° input data to make estimates for each grid cell
within a vegetation type, it is not clear where the
underlying resolution of the model lies on the contin-
uum between stand-level and biome-level resolution.
The lack of coarse resolution data for both model cali-
bration and validation is the primary limitation of using
calibration to reduce spatial aggregation error in
large-scale models. Although models are calibrated to
a particular resolution, without coarse resolution vali-
dation data there is no guarantee that models have
effectively reduced aggregation error associated with
sub-grid variability. Partitioning is a scaling technique
that has the potential to reduce spatial aggregation
error in calibrated models.

The technique of partitioning reduces spatial aggre-
gation error by partitioning some of the driving vari-
ables into relatively homogeneous units within the
coarse resolution spatial unit. The key to employing
this technique is to identify the driving variables to be
partitioned by ascertaining model sensitivity to the
variability of driving variables within the coarse reso-
lution spatial unit. This technique has been employed
in TEM by having the model make separate calcula-
tions for vegetation types that are clearly mosaics at
coarse resolution. For example, for each grid cell in
temperate mixed forest TEM makes separate simula-
tions based on parameters for temperate deciduous
forest and temperate conifer forest. The estimates
based on these simulations contribute equally to the
estimated fluxes and pools of each grid cell. An exten-
sion of this partitioning strategy would be to weight
simulations by the relative area occupied by each for-
est type within a grid cell. A related application of par-
titioning is to collect fine-scale heterogeneity in land
cover from several coarse resolution grid cells that are
in close proximity to each other into a single coarse
resolution grid cell. This strategy, which conserves the
area of each land cover type, assumes that the effect of
climatic variability on aggregation error is minimal. A
partitioning strategy could be applied to climatic vari-
ables in order to evaluate this assumption. In this study
we evaluated whether a partitioning strategy applied
to different driving variables has the potential to
reduce spatial aggregation error in large-scale ecosys-
tem models that are used to assess the impacts of
climate change on the supply and demand of timber.

Although the responses of large-scale ecosystem
models have been used to assess the potential impacts
of climate change on the supply and demand of timber

(Joyce et al. 1995, Perez-Garcia et al. 1997, Sohngren
et al. 1998), there have been no studies that have
examined how the resolution of input data influences
the responses of the models over the spatial scope of
impact assessments. The availability of input data with
10 km resolution for the spatial scope of the contermi-
nous U.S. provided the opportunity for us to examine
how both the baseline estimates and climate change
responses of large-scale ecosystem models might be
influenced by the resolution of the input data. The
influence of the spatial resolution of input data on the
baseline estimates and climate change responses de-
pends on the scale of analysis. In this study we focused
our analysis at 3 spatial scales: grid cell, forest type,
and national.

The grid-cell resolution, which is 50 km in this study,
is most relevant to stand-level forest managers. Al-
though the grid-cell aggregation error of the baseline
NPP estimates ranges up to approximately 25% in our
simulations, most of the variation in aggregation error
is within 9% (2 standard deviations). Because it is
difficult to measure stand-level NPP within 20%, this
level of aggregation error is generally acceptable in
the context of estimating NPP of a typical stand within
a 50 km grid cell. Our analyses indicate that aggrega-
tion error is largest in transition regions and regions
with substantial variability in temperature. In transi-
tion regions, aggregation error is primarily associated
with the representation of a mosaic of forest types with
a single forest type at 50 km resolution. This source of
aggregation error can easily be minimized by making
NPP estimates for each forest type within a 50 km grid
cell and aggregating estimates based on the propor-
tion of each forest type within the grid cell. This
approach has been used by Bonan (1995) as a means of
representing vegetative heterogeneity for estimating
carbon, water, and energy exchange in the surface
boundary layer of GCMs. In regions with substantial
variability in temperature, the averaging of tempera-
ture across the 50 km grid cell also influences aggre-
gation error of the baseline estimates by TEM. Pierce &
Running (1995) found that averaging temperature sub-
stantially influenced aggregation error in regions with
substantial temperature variability. It may be possible
to achieve computational efficiency at 50 km resolution
by aggregating temperature for a limited number of
mean annual temperature bands, making NPP esti-
mates for each band, and aggregating estimates based
on the proportion of each temperature band within the
grid cell.

Compared to the baseline estimates of NPP at the
grid-cell resolution, the aggregation errors of the NPP
estimates for the OSU and GFDL climates have similar
means and standard deviations. The ranges of aggre-
gation error are also similar, although the range of
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mixed temperate forest for the GFDL is larger in com-
parison to the OSU and baseline simulations. Thus, we
conclude that aggregation error is relatively insensi-
tive to potential climate changes. In integrated eco-
logical-economic assessments of the forest sector re-
sponses to climate change, relative responses of NPP
are communicated between ecological and economic
models (e.g. see Joyce et al. 1995, Perez-Garcia et al.
1997). Because aggregation error of the absolute esti-
mates is insensitive to different climates, the relative
responses of NPP are generally insensitive to inputs at
the 2 resolutions in this study. The differences in NPP
responses at the 2 resolutions are small in comparison
to NPP responses to different climate scenarios. Thus,
differences in NPP responses at the 2 resolutions can
be ignored in impact assessments that evaluate sensi-
tivities to different climate change scenarios.

The resolution of forest types is most relevant to
country-specific economic assessments of the impacts
of climate change on timber resources. For example,
relative climatic responses of NPP for different forest
types in different regions were used as inputs for a
national assessment (Joyce et al. 1995). Except for
boreal and forested boreal wetland forests, the mean
aggregation error of baseline NPP estimates is less
than 2% for each forest type. In contrast, aggregation
error for boreal and forested boreal wetland forests is
approximately 10%. This level of error is caused pri-
marily by the over-representation of boreal and
forested boreal wetland forests and under-representa-
tion of more highly productive forests in the 50 km
simulation. In comparison to the baseline simulations,
mean aggregation error for the absolute estimates of
each forest type in the climate change simulations is
similar except for temperate conifer forest (–3.7% for
OSU and –5.5% for GFDL vs –1.6% for baseline
climate). Similar to aggregation error, the relative
responses of NPP at each resolution are similar except
for conifer forests (2.9 and 5.6% lower response for the
fine resolution OSU and GFDL simulations). The nega-
tive aggregation errors and lower responses for tem-
perate conifer forests are associated with the sub-
stantial forest and temperature heterogeneity in the
northern Rocky Mountains and in western Washing-
ton, Oregon, and California. Because differences be-
tween the responses of NPP at different resolutions are
small compared with the responses to different climate
scenarios, they can generally be ignored in impact
assessments that evaluate sensitivities to different
climate change scenarios.

The national resolution is most relevant to global
economic assessments of the impacts of climate
change on timber resources. For example, relative
climatic responses of NPP of hardwoods and softwoods
for different regions were used as inputs for a national

assessment (Perez-Garcia et al. 1997). For the conter-
minous United States, aggregation error was –0.4% in
the baseline simulation, –0.5% in the OSU simulation,
and –0.8% in the GFDL simulation. Responses of NPP
were 0.1 and 0.7% lower for the fine resolution OSU
and GFDL simulations. Because these differences are
minuscule compared to the national NPP responses,
they can be ignored in impact assessments that evalu-
ate sensitivities to different climate change scenarios.

Our results indicate that NPP responses of TEM to
projected climate change are insensitive to the resolu-
tion of inputs in this study, but that aggregation error of
absolute NPP estimates is sensitive to the resolution of
inputs for some situations. Except for transition regions
and regions with substantial variability in temperature,
our simulations indicate that the use of 0.5° resolution
provides an acceptable level of aggregation error at
the 3 scales of analysis in this study. Although aggre-
gation error is a concern for grid cells and forest types
in these regions, NPP estimates at the national scale
were not influenced by the different resolutions of
inputs. Because aggregation error is generally less
than measurement error, it is important to consider the
computational costs associated with finer resolution
estimates. In terms of computational cost, improving
the homogeneity of grid cells may be preferable to sim-
ulations at a finer resolution. There are a number of
techniques to improve the homogeneity of landscape
units (e.g. Klemes 1983, Rastetter et al. 1992, Marceau
et al. 1994, Kite 1995, Lathrop et al. 1995, Pierce &
Running 1995). At large spatial scales, we recommend
using the partitioning technique discussed by Rastetter
et al. (1992) to reduce aggregation errors associated
with vegetation and temperature inputs. To reduce
aggregation error in transition regions, we suggest
making NPP estimates for each forest type within a
50 km grid cell and aggregating estimates based on
the proportion of each forest type within the grid cell.
To reduce aggregation error in regions with substan-
tial variability in temperature, we suggest making NPP
estimates for each forest type within different mean
annual temperature bands within a 50 km grid cell
and aggregating these estimates. These recommenda-
tions focus computational intensity in heterogeneous
regions, and avoid computational intensity in regions
that are relatively homogeneous.

It is important to recognize that our conclusions in
this study are based on 2 resolutions and 1 biogeo-
chemical model. Pierce & Running (1995) used a
different biogeochemical model to simulate NPP for
various resolutions ranging from 1 to 110 km2 in a
region of complex topography. At the coarsest scale,
they found coarse resolution NPP was overestimated
by up to 30% relative to NPP estimates based on esti-
mates at the finest resolution. Although our results
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agree with those of Pierce & Running (1995) in identi-
fying a sensitivity of aggregation error of baseline
estimates in regions with substantial variability in tem-
perature, our results indicate that vegetation hetero-
geneity may be a more important source of aggrega-
tion error than temperature variability. Because most
large-scale biogeochemical models can be calibrated
to stand-level data using either stand-level or coarse-
resolution inputs, we believe a systematic analysis of
aggregation error with several biogeochemical models
across a range of spatial resolutions from stand to 0.5°
(e.g. 100 m2 to 1 km2 to 100 km2 to 2500 km2) should be
undertaken in different forest regions to determine
whether models agree on the relative roles of vegeta-
tion and climatic heterogeneity in aggregation error.
Finally, it is important to verify our conclusion about
the insensitivity of NPP responses to the resolution of
inputs with other biogeochemical models. By clarifying
the scaling issues associated with biogeochemical esti-
mates and responses, these suggested studies would
improve impact assessments that rely on the estimates
of large-scale ecological models.
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