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ABSTRACT: Weather data generators can be used to produce long periods of synthetic weather records
from a limited amount of input data. They provide a useful tool for supplementing existing climate data
for risk assessment and decision support systems. They also can be adapted for use in climate change
studies where only limited data are available on a course spatial grid. A number of studies have demon-
strated the failure of data produced with stochastic weather data generators to mimic the statistical
properties of observed daily climate data. Differences may be large enough to limit the usefulness of
the output data. This study suggests that the lack-of-fit is related to simplifying assumptions incorpo-
rated in these models which may be acceptable in some climates but lead to significant discrepancies
when applied under very different climate conditions. Methods are proposed to address these limita-
tions. The challenge related to choosing an appropriate probability distribution for each climate vari-
able is addressed by approximating the probability distribution of the data using an observed fre-
quency distribution. It is becoming increasingly clear that the correlation between climate variables
may differ significantly on a seasonal and regional basis. To account for this, the interrelationship
between climate parameters is evaluated for each site once every 2 mo. The way the relationship
between the wet or dry status of the day and temperature and solar radiation is accounted for is
improved in the model. Observed climate data for 3 selected Canadian climatological stations are used
to assess the proposed weather data generator. The results indicate an overall improvement in the cor-
respondence between the means, standard deviations, correlations, probability distributions and
extreme values of the observed and estimated weather data series when compared with previously
reported results. Related parameters such as the length of wet periods, the length of dry periods and
the length of frost-free periods are also found to compare favourably with the observed values.
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1. INTRODUCTION

With the growing use of computer simulation models
in weather sensitive fields such as hydrology and agri-
culture there is frequently a requirement for weather
generators to supplement observed daily climatologi-
cal data and to provide a way to simulate the long term
effects of weather variability. A number of weather
data generators have been developed to meet these
requirements: WXGEN is the frequently used model
for generating daily weather variables that is used in
EPIC, the Erosion/Productivity Impact Calculator
(Sharpley & Williams 1990a,b). It is based on the
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weather data generator developed by Richardson
(1981) and Richardson & Wright (1984). Racsko et al.
(1991) developed a weather generator based on the
series approach. Semenov & Porter (1995) have
demonstrated the use of this weather generator to fore-
cast crop yields throughout the growing season by
combining available observed weather data with gen-
erated data for the remainder of the period. More
recently Semenov et al. (1998) made a comparison of
WGEN described by Richardson & Wright (1984) and
LARS-WG version 2.6 described by Racsko et al. (1991)
and Semenov & Barrow (1997). Greer et al. (1994) used
a weather generator with a decision support system to
generate scenarios for grain production under both
extreme and normal erosion levels on the Canadian
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Prairies. Wilks (1998) has developed a multisite gener-
alization for stochastic generation of daily precipita-
tion.

There is growing interest in the potential usefulness
of weather generators in climate change studies. Wilks
(1992) proposed linking scenarios from general circu-
lation models (GCM) to local weather characteristics
using a weather generator in order to develop weather
scenarios. Semenov & Porter (1995) used a stochastic
weather generator to examine the effect of climate
variability on estimates of crop yields from the model
AFRCWHEAT. They found that changes in climate
variability could have more of an effect on yield and
yield variability than changes in mean climate. Schu-
bert (1994) and Dubrovsky (1997) have described the
use of weather generators to downscale large-scale cli-
mate change data produced with GCM to estimate
regional climate changes.

A concern with using stochastic generation of weather
variables is that they may fail to adequately represent
the statistical properties of observed weather series. As
pointed out by Semenov et al. (1998), the output of a
weather generator should be tested to ensure the qual-
ity is acceptable for a given climate and application.
WXGEN simulated values have frequently been unre-
alistic (Hayhoe & Stewart 1996). Wallis & Griffiths
(1995) found that 30 yr simulated maximum (T,) and
minimum temperature (T,), degree-days, monthly and
event precipitation (P) were all outside the expected
range in 28 to 60% of the tests. In addition, frost risks
were underestimated. Hayhoe (1998b) demonstrated
for Canadian conditions that data generated with
WXGEN failed to preserve the correlation between
weather variables. In a comparison between the
weather generators WGEN (Richardson & Wright
1984) and LARS-WG for sites in Asia, Europe and the
USA, Semenov et al. (1998) found that LARS-WG was
able to match the observed data much better because
it uses semi-empirical distributions which are more
flexible than the simple distributions in WGEN. Both
generators were subject to errors because they failed
to account for differences in the correlation between
variables.

The evidence suggests that improved accuracy in
weather generators is associated with more accurately
representing the daily probability distributions of
weather parameters and accounting for the relation-
ship between variables. It is well recognized that cor-
relations between weather variables are significant
and vary between locations and seasons (Dubrovsky
1997, Hayhoe 1998a,b). The use of a first-order Markov
chain to model the occurrence of wet and dry days has
been identified as a source of error (Schubert 1994,
Wallis & Griffiths 1995, Semenov et al. 1998). Wilks
(1999) found that a simple first-order Markov depen-

dence was generally appropriate for central and east-
ern locations but was inadequate for western stations
in the US. The general use of simple distributions as
probability models for weather variables has been
shown to be invalid in many cases (Hayhoe & Stewart
1996) and a likely source of error (Semenov et al.
1998). The use of a simple normal distribution is inade-
quate in many cases, particularly for solar radiation (R).
The use of semi-empirical distributions as imple-
mented in LARS-WG has been shown to reduce dis-
crepancies between observed and simulated values
but they require more parameters. Schubert (1994) has
pointed out that one is faced with making a compro-
mise between simplicity in estimating model parame-
ters and adequacy of the model.

The objective of the study is to resolve some of the
problems that have been identified in current weather
generators and demonstrate that the changes lead to
improvements in the generated data for 3 sites across
Canada. Starting with the basic modelling approach
used in WGEN (Richardson 1981, Semenov et al.
1998), changes are introduced to address current limi-
tations. A first-order Markov chain is replaced with a
second-order chain to better represent the probability
of wet and dry periods. Simple probability models are
replaced with empirical models derived from observed
relative frequencies for each location. Changes in cor-
relation between sites and seasons are accounted for
(Hayhoe 1998a,b). A series of weather data is gener-
ated for each location using the stochastic model and
compared with the corresponding observed weather
records using graphical and statistical procedures.

2. METHODS

Frequently, weather generators include a first-order
Markov chain to generate the occurrence of wet or dry
days and a simple probability model, such as a normal
distribution, for the magnitude of weather variables
(Richardson 1981, Dubrovsky 1997). A dry day is
defined here as a day with less than 0.2 mm of P. A
random number generator is used in conjunction with
the probability models to generate a random series.
When a wet day is generated, the P amount may be
generated according to a skewed normal distribution
(Nicks 1974) or a gamma distribution (Schubert 1994,
Dubrovsky 1997). Wilks (1999) successfully used a
mixed exponential distribution for P. The input para-
meters generally include: monthly relative frequency
of wet and dry day sequences, monthly mean, standard
deviation and skewness of P and monthly mean and
standard deviation of daily T,, T,, and R.

The weather generator presented by Richardson
(1981) uses a continuous multivariate stochastic pro-
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cess to model T,, T, and R. The time series of each vari-
able is reduced to a time series of residual elements by
subtracting smoothed daily means and dividing by the
standard deviations. The means and standard devia-
tions are adjusted for the wet or dry status of the day
(Richardson 1981). The residual series is generated
with the equation

Xii(1) = AXgi-1(]) + Begi()) (1)

where x,;(j) is a (3 x 1) matrix for Day i of Year k whose
elements are the residuals of T, (j =1), T, (j =2) and R
(J = 3); &xi()) is a (3 x 1) matrix of independent random
components that are normally distributed with a mean
of zero and a variance of unity (Matalas 1967); and A
and B are (3 x 3) matrices whose elements are defined
such that the new sequences have the desired serial
correlation and cross-correlation coefficients. In
WXGEN, the version adapted for use in EPIC (Sharp-
ley & Williams 1990a,b), A and B are not input para-
meters but are assumed to be fixed. The daily values of
the weather variables are derived by multiplying the
residuals by the monthly standard deviation and then
adding the monthly mean.

In this study the first-order Markov chain is replaced
with a second-order chain. The assumption of a
Markov chain of the first-order is that the wet or dry
status of the day is dependent only on the state of the
previous day, while with a second-order chain it is
dependent on the 2 previous days (Hayhoe & Baier
1974, Wilks 1999). Monthly values for dry and wet day
means and standard deviations are input into the sim-
ulation. Rather than use the same monthly means and
standard deviation for all days in the month as is done
in WXGEN (Sharpley & Williams 1990a,b), a spline
interpolation procedure (Press et al. 1992) is used to
calculate daily wet and dry day values from the
monthly means and standard deviations input into the
model. The daily values of the generated weather vari-
ables are derived by multiplying the residual series by
the corresponding interpolated daily standard devia-
tion and then adding the interpolated daily mean. The
interpolated daily wet and dry day values for means
and standard deviations derived from observed
monthly values are also used to calculate a standard-
ized series from the observed weather data by sub-
tracting the daily mean and dividing by the standard
deviation (Richardson 1981). The observed standard-
ized series is used in calculating input parameters used
by the weather generator.

Cross and serial correlations for the residual series
are calculated on a bimonthly basis (Matalas 1967).
Bimonthly is defined here as once in 2 months. The
monthly groupings were: January and February,
March and April, May and June, July and August,
September and October and finally November and

December. The lag O cross-correlation matrix is
denoted by M. It consists of elements py(i,j), which are
the lag O cross-correlation coefficients between vari-
ables i, j. The lag 1 serial correlation matrix is denoted
by M;. It consists of elements p4(i,j), which are lag 1
cross-correlation coefficients between variables i, j. Ty
corresponds to an index value of 1, T, to a value of 2
and R to a value of 3. For example, p,(1,3) is the corre-
lation between T, and R lagged by 1 d. The matrix A in
Eg. (1) is given by

A = M Mgt (2
and
BBT = MO—MlMO_lMlT (3)

The Jacobi transformation of BB is used to solve for
B (Press et al. 1992). A matrix v, with columns contain-
ing the standardized eigenvectors of BBT, is found
such that (v'B)(v'B)T is a diagonal matrix in which the
the diagonal elements are the eigenvalues of BBT.
Then

B = v(v'B) 4)

where v'B is a diagonal matrix in which the diagonal
elements are the square roots of the eigenvalues of
BBT. Automating the calculation of A and B is required
when bimonthly values are required for a number of
locations.

The bimonthly wet and dry day cumulative fre-
quency distributions are calculated from the standard-
ized observed data for Ty, T,and R. By combining the
observations from 2 mo over 30 yr, approximately 1800
observations are available to characterize the cumula-
tive frequency distributions. The approach provides an
alternative to the requirement of selecting a simple
probability model, such as the normal distribution,
since it uses the cumulative frequency distribution
derived from the observed data. The data are sorted in
ascending order. The probability of exceeding any
specified level is estimated from the relative frequency
that this occurred in the observed data. 101 grid points
are used so that the relative frequencies are calculated
to 2 decimal places over the full range in probability
from 0 to 1. Cubic spline interpolation is used to derive
the continuous cumulative probability distribution for
each parameter following algorithms from Press et al.
(1992). This procedure was felt to provide an adequate
representation of the distribution and meet the
requirement to limit the size of the data file. It was
found that in some cases it is better to use the loga-
rithm of P amounts on wet days throughout the gener-
ation process and then apply the exponential function
to the generated values to obtain P. The distribution of
the logarithm of P on wet days is closer to the normal
shape than P and therefore may facilitate the approxi-
mation of the extremes.
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Richardson (1981) notes that the use of Eq. (1)
implies that the residuals of T,, T, and R are normally
distributed. For locations where this is not a valid
assumption, the use of Eq. (1) can lead unfavourable
results. For these conditions, a normal score transfor-
mation can be used (Johnson 1987). The normal score
transformation converts the observed cumulative
probability distribution into a cumulative normal prob-
ability distribution for input into Eq. (1). The output
from Eq. (1) is then transformed back to the observed
cumulative distribution using the inverse of the normal
score transformation. The normal score transformation
is frequently used in stochastic simulations (Deutsch &
Journel 1992).

The parameters for the second-order Markov chain
are all estimated from relative frequencies of wet and
dry day sequences on a monthly basis. Two probabili-
ties are estimated for a first-order chain and 4 for a sec-
ond-order chain. Random sequences of wet and dry
days are generated using a random number generator
and assuming the second-order Markov chain model.
Once the wet or dry status of the day is determined, the
appropriate cumulative probability distribution is
selected and residual elements are generated from it
using output from a random number generator. Eq. (1)
is used to account for the correlation between vari-
ables. The spline interpolated daily wet and dry day
values for means and standard deviations are used to
produce the actual weather parameters from the gen-
erated residual series.

There are a number of physical constraints which
must be satisfied by the generated data series. P
amounts and R must be greater than or equal to zero. It
is preferable to refine the model to deal with these
physical constraints rather than force the values to sat-
isfy the constraints after the data has been generated.
At each step in the generating process, the residual
series is checked and adjusted as required to maintain
the appropriate parameters, such as R, greater than or
equal to zero. In the generated data, daily values of T,
may happen to be greater than T,. This is a contradic-
tion which is usually resolved by adjusting T,. For
example, in the LAR-WG model this problem is
resolved by replacing T, with T, less 0.1 (Semenov et
al. 1998). Making adjustments to generated data will
change the means, standard deviations and the distri-
bution of the corrected data. One method used to
reduce the likelihood of T,, being greater than T, is to
account for the correlation between T, and T, with
Eqg. (1). A further refinement is incorporated in the
model to avoid changing the value of T,. It involves
sorting days where T, = (T, — 5) and matching higher
T, values with the higher T, values.

It can be useful to be able to specify the monthly
means and standard deviations of the generated data

such that they correspond to observed data or to near-
by stations with slightly different monthly means. To
do this, the monthly means and standard deviations of
daily values for the generated data are calculated and
used to evaluate the residual series. A new generated
weather series is reproduced using these residual val-
ues and specified monthly mean and standard devia-
tion. The procedure is specified by the equation

Xa = [(Xg - )_fg)/sg + }_fa] Sa (5)

where x4 is the generated value of a daily weather
variable such as Ty, T,or R, Xy and sy are the monthly
mean and standard deviation of the variable and x4 is
the adjusted value of a daily weather variable with
specified X, and s,. This procedure was used to make
minor changes to the generated weather series for T,,
T, and R so that monthly means and standard devia-
tions corresponded to the observed values. This
approach could be used to adjust the means and stan-
dard deviations for climate change scenarios.

Three climate stations were selected from different
climate zones in Canada: Fredericton (45°55’N,
66° 37’ W), Ottawa (45° 23’ N, 75° 43" W) and Swift Cur-
rent (50°16’ N, 107° 44’ W). Thirty years (1960 to 1989)
of observed daily data for each station are input and
used in a computer program to produce all the
required inputs for the weather data generator inclu-
ding transition probabilities for the second-order
Markov chain for wet and dry days, daily means, daily
standard deviations, residual values, correlations, A
and B matrices for Eq. (1), and cumulative probability
distributions of observed daily T,, T,, P and R. Both
wet and dry day means and standard deviations were
calculated on a monthly basis and interpolated using
splines to generate daily values. The residual series
generated with these daily values was used to estimate
monthly lag 0 and lag 1 cross-correlation coefficients
and to calculate bimonthly values of the A and B matri-
ces in Eq. (1). Bimonthly cumulative frequency distrib-
utions were calculated for wet day P and for wet and
dry day values of T,, T, and R, using the residual
series. The cumulative frequency distributions pro-
vided the probability models in this computer imple-
mentation. The inputs were used by the weather data
generator to produce 30 yr of data for each station.

Throughout the analysis the t-test was used to test
the significance (p < 0.05) of differences in means; the
F-test was used to test the significance (p < 0.05) of dif-
ferences in standard deviations; and the Kolmogorov-
Smirnov test was used to test the significance (p < 0.05)
of differences in the distribution. The unequal variance
t-test was used with variances estimated from the data.
The fact that some of the variables might not always be
normally distributed was overlooked for T,, T,and R
and for frost-free periods, since it has been found that
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in many cases one can still use the normal distribution-
based tests if the size of the sample is large enough.
Based on the central limit theorem, the shape of the
distribution of a statistic, such as the mean derived
from a sample, approaches the normal shape even if
the distribution of the variable in question is not nor-
mal. Values of P for wet days were transformed using
the logarithm function before applying the t-test and
F-test. The observed and generated weather data
series were assumed to be independent because of the
random nature of the stochastic generation process.
This was confirmed by checking the correlation
between variables in the generated and observed
series. The Kolmogorov-Smirnov test is a nonparamet-
ric test. The 2-distribution form of the test was used to
test the null hypothesis that the observed and gener-
ated series were drawn from the same distribution. The
1-distribution form of the test was used to test the null
hypothesis that the observed or generated series was
drawn from the normal distribution. Estimation of the
parameters for the normal distribution is not accounted
for with the 1-distribution Kolmogorov-Smirnov test,
but this is not considered to be a problem because of
the large number of data points in the series (approxi-
mately 900). STATISTICA (StatSoft, Inc. 1997) was
used to provide statistical analyses of results.

3. RESULTS

The weather data generated in this study have statis-
tical properties which are generally not significantly
different from the observed weather data. Table 1 pro-

Table 1. Results of statistical tests showing the number of

months with significant differences (p < 0.05) between means,

standard deviations and probability distributions for observed
and generated weather data series

Variable Fredericton  Ottawa Swift Current
Precipitation

Mean 0 0 0
Variance 0 0 3
Distribution 0 0 0
Maximum temperature

Mean 0 0 0
Variance 0 0 0
Distribution 1 0 0
Minimum temperature

Mean 0 0 0
Variance 0 0 0
Distribution 2 0 2
Solar radiation

Mean 0 0 0
Variance 0 0 0
Distribution 0 0 1

vides a summary of how well the generated and ob-
served data correspond. These results give fewer sig-
nificant differences than in previous published results
using WXGEN (Hayhoe & Stewart 1996).

The stochastic model generated values for P and R
which consistently satisfied physical constraints. Gen-
erated values of P and R were greater than or equal to
zero. The value of R remained below the maximum
possible clear day value. The number of times T, was
greater than T, varied generally between 50 and 100
over the 30 yr simulation period. As indicated, rather
than arbitrarily forcing T, to be less than T,, days
where T, = (T, — 5) were sorted and then higher T, val-
ues were matched with the higher T, values. This was
done on a monthly basis and on average it involve
about 8% of the generated temperatures. Using this
approach generally eliminated the cases where T, was
greater than T, and when it did not there were at most
a few cases where the values of T, and T, were close.
These few remaining cases were eliminated by replac-
ing T,, with T, less 0.1 (Semenov et al. 1998).

There were few significant differences in the
monthly standard deviation of daily values of P, with a
total of 3 occurring at Swift Current. It is interesting to
note that there were no corresponding significant dif-
ferences in the distribution of P. At Ottawa, none of the
generated series for T,, T,, or R had significantly differ-
ent distributions from the observed, but at Fredericton
there was 1 month (November) where the distribution
of T, was significantly different and 2 months (March
and October) where the distribution of the generated
series for T,, had significant differences. At Swift Cur-
rent there were no months where the distribution of T,
was significantly different, 2 months (March and April)
where the distribution of the generated series for T,
had significant differences and 1 month (October)
where the distribution of the generated series for R had
significant differences. Significant differences most fre-
quently occurred during periods of seasonal change.

Fig. 1 provides a graphical comparison of selected
frequency distributions of generated and observed
series. These results are typical of what was found.
Fig. 1a,b show the correspondence for the frequency
distribution for P during the month of May at Ottawa
and Swift Current. Differences were occasionally as
large as 12 mm but it was felt that they could be attrib-
uted to natural variability. The differences in the distri-
butions were not found to be statistically significant.
Fig. 1c,d illustrate the frequency distribution of T, in
March at Fredericton and of T, in April at Swift Cur-
rent respectively. The observed frequency distribution
in Fig. 1c was found to be significantly different from
the normal distribution and from the distribution of the
generated series. In contrast, the distribution of the
generated series was not significantly different from
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Fig. 1. Frequency distribution derived from observed and generated data for: (a) P for May at Ottawa, (b) P for May at Swift Cur-
rent, (c) T,, for March at Fredericton, (d) T, for April at Swift Current, (e) R for January at Ottawa and (f) R for August at Ottawa
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the normal distribution. These differences could result
from using distributions calculated for 2 months
(March and April) in a period of seasonal change. In
contrast, for T, in April at Swift Current, the observed
frequency distribution in Fig. 1d was not found to be
significantly different from the normal distribution or
from the distribution of the generated series. Fig. le,f
show the distribution of R at Ottawa for January and
August. The observed frequency distribution of R in
January in Fig. 1le was not found to be significantly dif-
ferent from the distribution of the generated series. In
August (Fig. 1f) the observed distribution appeared
skewed but not significantly different from the distrib-
ution of the generated distribution. It was found to be
significantly different from the normal distribution.

It has been suggested that extremes and the tails of
distributions may have more impact on the use of the
generated data than statistical parameters such as
means and standard deviations. Wilks (1999) used
graphical presentations to illustrate the extreme-value
characteristics of a number of probability models. For
example, 1-to-1 graphs of largest observed daily pre-
cipitation were plotted against the largest modelled
daily precipitation. A similar approach is used in Fig. 2
to examine the extreme-value characteristics of
observed and generated series for monthly values P,
T,, Tnand R. Fig. 2a is a plot of the largest observed
against the largest generated P for each month for all 3
locations combined. There is considerable scatter in
the data but it fits the 1-to-1 line well. The means of the
observed and generated monthly extreme values of P
were 48.7 and 45.9 mm respectively and the corre-
sponding standard deviation of the difference between
the observed and generated was 10.9 mm. Fig. 2b illus-
trates the same results for R. There is an excellent cor-
respondence between the extremes in the generated
and observed series. The means of the observed and
generated monthly extreme values of R were both
equal to 22.4 MJ m™2 and the corresponding standard
deviation of the differences was 0.7 MJ m~2. Fig. 2c,d
illustrate the strong 1-to-1 correspondence between
lowest and largest extreme values for observed and
generated T, respectively. The means of the observed
and generated monthly extreme values of T, were 26.4
and 26.5°C for the largest and —7.2 and -7.4°C for the
lowest respectively. The corresponding standard devi-
ations of the differences between the observed and
generated monthly extreme values of T, were 2.3°C for
the lowest and 2.2°C for the largest. Fig. 2e,f illustrate
the 1-to-1 correspondence between lowest and largest
extreme values for observed and generated T,, respec-
tively. The means of the observed and generated
monthly extreme of T, were 13.6 and 13.9°C respec-
tively for the largest and -17.3°C for both the lowest
observed and generated extremes. The corresponding

standard deviations of the differences between the
observed and generated monthly extremes of T, were
2.4°C for the lowest and 2.8°C for the largest.

It is important to look at how well some derived cli-
mate indices are reproduced in the generated data.
Fig. 3 shows results for frost-free period. There is more
random variability in the observed distribution because
it is based on 30 yearly values rather than the approxi-
mately 900 values used to characterize the monthly dis-
tribution of weather variables such as T,. The observed
frequency distribution of the frost-free period was
found to be significantly different at Fredericton but not
significantly different at Ottawa and Swift Current from
the generated distribution (Fig. 3). The lack-of-fit at
Fredericton can be associated with the fact that the
mean frost-free period for the generated series was
found to be significantly different from the observed. At
Ottawa and Swift Current, no significant differences
were found between observed and generated frost-free
period means or standard deviations.

Another concern is how well the frequency and
length of wet or dry periods correspond to observed
frequencies. Semenov et al. (1998) have opted to use
observed wet and dry day distributions in LARS-WG
because of concern over the lack-of-fit of the first-order
Markov chain. Wilks (1999) discussed the use of
higher-order and hybrid-order Markov chains as alter-
natives to the first-order chains. The frequencies pre-
sented here are derived from the Markov chain model,
which in this case is assumed to be second-order. The
distribution of the length of wet periods is illustrated in
Fig. 4 for all 3 sites. The frequency of wet periods
dropped quickly as the number of days in the period
increases. These figures show the excellent correspon-
dence between observed and generated series which
resulted from using the second-order Markov chain
model. There were no significant differences between
the distributions at either Fredericton, Ottawa or Swift
Current. Table 2 provides an indication of the close
agreement between the observed and generated
means and standard deviations. The mean length in
days of wet periods did not vary much between loca-
tions, with a high of 2.11 d at Ottawa and a low of
1.90 d at Swift Current.

Table 2 also contains results for dry periods. The
mean length of dry day periods varied more between
locations, with a low of 2.77 d at Fredericton and a high
of 4.31 d at Swift Current. There was also greater vari-
ation in the standard deviation of dry periods with a
low of 2.38 at Ottawa and a high of 4.51 at Swift Cur-
rent. The graphs of the distributions are not presented,
but the Kolmogorov-Smirnov test did not indicate sig-
nificant differences (p < 0.05) between observed and
generated distributions at either Fredericton, Ottawa
or Swift Current.
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Fig. 2. One-to-one relationship between the monthly extreme-values of observed and generated weather variables at Frederic-
ton, Ottawa and Swift Current combined for: (a) largest daily P, (b) largest daily R, (c) lowest daily T,, (d) largest daily T,,
(e) lowest daily T,, and (f) largest daily T,

The relationship between T,, T,, and R for the gener-
ated data is controlled by the values in the A and B ma-
trices in Eq. (1). Hayhoe (1998a) showed that monthly
values of A and B estimated using the observed
weather data vary regionally and seasonally. Elements

in these matrices have been shown to vary substantially
both in magnitude and sign depending on the location
and month. Figs. 5 & 6 illustrate the correspondence of
the correlation between weather variables in the ob-
served and stochastically generated data series at
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Fig. 3. Frequency distribution derived from observed and
generated data for frost-free period: (a) at Fredericton, (b) at
Ottawa and (c) at Swift Current
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Ottawa and Swift Current respectively. Every correla-
tion in Figs. 5 & 6 with magnitude greater than 0.07 was
found to be significant (p < 0.05). The generated data
were derived using bimonthly values of A and B. The

observed weather showed seasonal and regional varia-
tions in the correlation between all parameters. The
generated data gave correlations that correspond well
with the value from the observed data (Figs. 5 & 6). It

Table 2. Means and standard deviations for wet and dry periods

Site Wet period (d) Dry periods (d)
Mean Standard deviation Mean Standard deviation
Obs Gen Obs Gen Obs Gen Obs Gen
Fredericton 2.05 2.05 1.42 1.4 2.92 2.92 2.43 2.36
Ottawa 2.11 2.12 1.46 1.45 2.77 2.85 2.38 2.43
Swift Current 1.9 1.84 1.3 1.25 4.31 4.42 451 4.32
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Fig. 5. Correlations derived on a monthly basis from observed and generated data at Ottawa for: (a) T, with T, T, with R, and T,
with R, and (b) T, with P, T,, with P and R with P
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has been shown (Hayhoe 1998b) that models, such as
WXGEN, which do not account for seasonal or regional
variation in A and B produce generated data with rela-
tively constant correlation between variables for all the
stations and seasons. This is to be expected since the
values in the matrices A and B are held constant.

The highest observed correlation of 0.88 occurred at
Swift Current in February (Fig. 6a). Figs. 5a & 6a show
that the generated data gave correlations between T,
and T, throughout the year that corresponded well
with the value from the observed data. Correlations
between T, and T, were always significant (p < 0.05)
both in the observed and generated data for Ottawa

and Swift Current. The seasonal variation in the corre-
lation was greater at Swift Current than at Ottawa.
Using bimonthly values of A and B produced gener-
ated data which accounted for the seasonal variation in
the observed relationship between T, and R. For ex-
ample, at Ottawa in January the observed correlation
was -0.53 and the corresponding value for generated
data was -0.52 (Fig. 5a). The corresponding values for
Ottawa in June were 0.42 and 0.40 (Fig. 5a). The ob-
served correlation between T, and R was always nega-
tive from December through February, suggesting
higher radiation on cooler days, while it was always
positive from April through October, suggesting

Observed and Generated Correlations at Swift Current
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Fig. 6. Correlations derived on a monthly basis from observed and generated data at Swift Current for: (a) T, with T,, T, with R,
and T, with R, and (b) T, with P, T,, with P and R with P
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higher radiation on warmer days. The poorer corre-
spondence between correlations for T, and R in the ob-
served and generated data during March and April
(Figs. 5a & 6a) may result from using bimonthly rather
than monthly values for A and B during seasonal
change (Hayhoe 1998a,b). There were also regional
differences, as illustrated by the higher correlations at
Swift Current in July and August than at Ottawa (Figs.
5a & 6a). There was less seasonal variation in the cor-
relation between T, and R than with T,. The correla-
tions remained negative throughout the year at Ottawa
(Fig. 5a). The magnitude of the correlation was gener-
ally lower at Swift Current and remained positive from
April through November (Fig. 6a).

In the observed data, the correlation between T, and
P was positive from November through February and
negative from April through October at Ottawa
(Fig. 5b). The corresponding correlation was always
negative at Swift Current (Fig. 6b). The weather data
generated using observed wet and dry day parameters
(Richardson 1981) followed the same seasonal pattern
as the observed (Figs. 5b & 6b). The observed data
showed that the magnitude of the correlation was fre-
quently higher between P and T, than between P and
T,. At Ottawa, the correlation between P and T, was
consistently positive throughout the year. The relation-
ship between P and T, is frequently ignored in
weather generators (Hayhoe & Stewart 1996).

The correlation between R and P was always nega-
tive for the observed data. Correlations between P and
R were always significant (p < 0.05) both in the
observed and generated data for Ottawa and Swift
Current. The weather data generated here used
observed wet and dry day means and standard devia-
tions. The resulting correlations tended to follow the
seasonal and regional pattern of the observed data but
generally underestimated the magnitude of the corre-
lation (Figs. 5b & 6b). This may be related to the fact
that the model does not account for the possible effect
of the amount of precipitation on solar radiation. It only
considers whether or not a given day is classified as
wet or dry.

The generated data also maintains the lag 1 serial
correlations, including the seasonal variation. Lag 1
correlations are contained in the matrix M, whose ele-
ments are p4(i,j), the lag 1 cross-correlation coefficients
between variables i, j where T, corresponds to an
index value of 1, T,, to a value of 2 and R to a value of
3. Eq. (6) indicates the correlations for Ottawa in Janu-
ary and February and Eq. (7) gives the corresponding
values for July and August for both the observed series
and the generated series. The matrices confirm the
excellent agreement between the observed and gener-
ated series as well as showing the substantial seasonal
change.

00.62 061 -0.377 [$0.60 0.58 -0.33[
M pos 250.64 0.68 —0.42% Mmgen :50.63 0.65 —0.39%

(30.22 -0.26 0.150 (3-0.20 -0.22 0.150
(6)

0055 0.47 0.090 0058 052 0.050

M pbs =BO.67 0.65 —0.09% mgen =go.69 0.68 —0.10%
00.02 0.01 0.120 00.01 0.02 0.090

(1)

4. DISCUSSION AND CONCLUSION

The results indicate an overall improvement in the
correspondence between observed and estimated
weather data series when compared with previously
reported results (Hayhoe & Stewart 1996, Hayhoe
1998a,b, Semenov et al. 1998). For example, at Ottawa
the number of months with significant differences
between observed and WXGEN generated distribu-
tions was 3 for Ty, 6 for T,,, 9 for P and 12 for R (Hayhoe
& Stewart 1996) compared with no significant differ-
ences for Ottawa indicated in Table 1. A further test of
the model is the correspondence between observed
and generated extreme values. The results indicate
that there was in general a good 1-to-1 relationship
between extremes for P, T,,, T, and R. The distributions
derived from generated data for frost-free periods at
Ottawa and Swift Current and for wet or dry periods at
all locations were not found to differ significantly from
the observed. This is attributable to a number of
improvements in the model. These include using ob-
served monthly means and standard deviations of wet
and dry day T,, T, and R and generating daily values
from the monthly values using spline interpolation.
Another improvement was the use of bimonthly
observed distributions for P and separate observed dis-
tributions for T,, T, and R for wet and dry days. Fur-
ther, replacing the conventional first-order Markov
chain with a second-order chain provided for a more
reliable estimate of wet and dry day sequences. Corre-
lation between variables was accounted for using local
values for A and B calculated on a bimonthly basis.

It is difficult to assess the importance of some of the
differences between observed and generated weather
data. Since the weather data generator is a stochastic
model, some of the differences can be attributed to nat-
ural variability of weather that would occur even if the
model were a perfect representation of the real cli-
mate. Other differences may result from limitations
and simplifying assumptions in the model. Statistical
significance tests provide some indication of whether
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or not differences such as those illustrated in the
graphs of frequency distributions (Figs. 2, 3 & 4) are the
result of natural variability or limitations of the model.
The indication is that in many cases one is justified in
concluding that differences between observed and
generated data could result from the inherent variabil-
ity of weather. Differences which result from limita-
tions in the model are a concern and should be care-
fully evaluated for a given climate to ensure that the
generated data are acceptable for the intended appli-
cation (Semenov et al. 1998).

Lack-of-fit of the statistical properties of the gener-
ated with the observed series can be attributed to a
number of factors. It is felt that the model as presented
here addresses many, but not all the potential sources
of error. It is very difficult to account for the daily
change in the statistical properties of the weather data
particularly during times of seasonal change. It
becomes a trade off between having enough observed
data to properly characterize means, standard devia-
tion, distributions and correlations and not masking
the changes in these values over time. A longer period
of record could improve the characterization of the cli-
mate. For example, bimonthly rather than monthly val-
ues were used for correlations, for A and B and for
probability distributions. Although the use of relative
frequencies and spline interpolation for the observed
distributions could be a source of errors, it may be
preferable in situations where there is not an appropri-
ate simple distribution. Using observed data, to gener-
ate a probability distribution could be a problem if
there were significant errors in the observed data as
was suggested by Semenov et al. (1998). The data used
here are of the highest quality, with very few missing
observations. They were empirically checked for obvi-
ous outliers. Using A and B matrices to account for the
correlation between residual series with different dis-
tributions which may be significantly different from
the normal distribution may be a source of errors
(Matalas 1967), although the approach seems fairly
robust. For Swift Current, where some distributions
were significantly skewed, the results were improved
by using the normal score transformation. A further
source of error could be the requirement to force the
generated data to satisfy the physical constraints of the
system. Refining the model to deal with these physical
constraints rather than forcing the values to satisfy the
constraints can improve the generated data.
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