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1. INTRODUCTION

Global climate is a complex, adaptive system influ-
enced by biophysical relationships linking earth,
ocean and atmosphere. Like most complex, adaptive
systems climate is metastable, exhibiting aspects of
both regular and chaotic behaviour. Over the last
decade, the representation of regular climatic behav-
iour has been improved (IPCC 1996a) through better
physics and higher resolution within global climate

models (GCMs). Such improvements have also led to
better simulations of chaotic behaviour, such as short-
term climate variability and the manifestation of El
Niño-like behaviour (eg. Knutson et al. 1997, Wilson &
Hunt 1997, Timmermann et al. 1999).

Despite these advances, it is becoming clear that cli-
mate models will never be able to provide a singular
prediction for future climate. Even if the pathways for
greenhouse gas emissions were fully known, some
uncertainty within the climate system is fundamental,
yielding a range of predictions rather than a single
figure. This is especially true for representations of
regional climates. There is no consensus amongst cli-
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mate modellers about how close modelling is to reach-
ing a threshold of uncertainty that can be represented
by climate models, how far current estimates of uncer-
tainty can be reduced and what time-scale may be
required for this to be achieved (cf. Mahlman 1997).

The uncertainty within climate scenarios flows
through to the prediction of impacts. If a single sce-
nario is used to model a particular impact, the results
may be fairly precise but are conditional on that single
scenario, and are unlikely to be representative of other
possible futures. Conversely, if the major uncertainties
are incorporated into a range of projected regional cli-
mate change (eg. CSIRO 1996), when the high and low
ends of that range are applied to impact analysis, the
resulting range of outcomes is often too large to be of
real use for planning or policy purposes.

In summarising the results of impact studies pub-
lished to 1995, the Working Group II Second Assess-
ment Report of the International Panel on Climate
Change (IPCC 1996b) concluded that many ecological
and socio-economic systems were at risk from climate
change. However, to date, research has been unable to
provide the strategies needed to address the 2 major
issues raised in the United Nations Framework Con-
vention on Climate Change (FCCC) regarding climate
change impacts, namely those of mitigation and adap-
tation. Mitigation strategies aim to stabilise green-
house gas concentrations in the atmosphere at levels
preventing ‘dangerous’ anthropogenic interference
with the climate system, while adaptation strategies
recognise that some climate change is inevitable, and
that some systems sensitive to climate will prove to be
vulnerable, requiring adaptation measures.

As both of these strategies deal with the identifica-
tion and avoidance of risk, a framework is needed to
link levels of climate change with levels of impacts,
through the use of risk assessment. This paper de-
scribes a method of risk analysis that calculates condi-
tional probabilities of exceedance of impact thresholds
under climate change. An example, using a simple
irrigation demand model, is used to illustrate the tech-
nique, which forms part of a framework for the risk
assessment of individual or related activities under cli-
mate change.

2. RISK ANALYSIS TOOLS

2.1. Using and combining ranges of uncertainty 

Climate change scenarios and projections provide
the input into impact models. Excluding methods that
apply downscaling, these inputs can be classified as:
(1) Scenarios based on direct GCM output. (2) Projec-
tions based on scaled GCM-derived patterns of climate

change from 1 or more GCMs expressed as a range
with an upper and lower limit.

The major differences between these 2 types is that
direct output is subject to the sensitivity and forcing
within the individual GCM, while projected ranges
preserve local patterns of change while being scaled
for different assumptions of climate sensitivity and
greenhouse gas emissions. The method of scaling was
first suggested by Santer et al. (1990) and can be used
to scale a single GCM or a suite of GCMs (Rotmans et
al. 1994, Whetton et al. 1996). Strictly speaking, by def-
inition a scenario is a plausible future outcome that has
no further degree of probability attached. Therefore, a
projected range of climate that contains a level of prob-
ability can no longer be defined as a climate scenario
(Jones 1999).

To obtain a more comprehensive range of uncer-
tainty, Pittock (1993) recommends projected ranges of
regional climate from a suite of GCMs as being more
appropriate for impact assessment. This has seen the
development of the CSIRO regional scenarios for Aus-
tralia (CSIRO 1992, 1996, Whetton et al. 1996) and
their application in impact studies (Schreider et al.
1996, Whetton et al. 1996, Hassall & Associates 1998).
As mentioned in the ‘Introduction’, the broad outcomes
these impact studies produce have limited utility.

The major uncertainties in projected ranges of
regional climate arise from 3 main sources: (1) Emis-
sion scenarios, influenced by economic activity, popu-
lation growth and technology. (2) Global climate sensi-
tivity, measured by the sensitivity of global climate
models to greenhouse gas forcing. (3) Regional vari-
ability, which occurs between models as different re-
gional responses, and within models through chaotic
behaviour and modes of climate variability, especially
multi-decadal variability.

A number of other uncertainties, such as ranges of
uncertainty in radiative forcing and greenhouse gas
exchange between the atmosphere, biosphere and
oceans, can be acknowledged but are not commonly in-
corporated into ranges. However, there is a significant
amount of research attempting to quantify and incorpo-
rate these uncertainties into estimates of future climate.

When climate change information is applied to im-
pact assessment, additional impact-related uncertain-
ties arise. If the vertical integration of physical through
to socio-economic impacts is sought, the incorporation
of these broad ranges of uncertainty into the impact
analysis can produce a very large range of possible im-
pacts, sometimes termed the cascade of uncertainties or
uncertainty explosion (Henderson-Sellers 1993; Fig. 1).

The Climate Impact Group of CSIRO Atmospheric
Research has advised Australian impact researchers to
use the upper and lower limits of regional projections
in impact studies for 2 reasons: (1) To avoid central

90



Jones: An irrigation demand model for climate change analysis

tendencies where a ‘best bet’ estimate is applied with
what resembles a statistical error range, which is then
discarded as the single, central number is retained. A
unique outcome for the future, without an accompany-
ing range of uncertainty, looks too much like a predic-
tion. (2) Because the probability distribution function of
these ranges of uncertainty is unknown, the use of
upper and lower limits leads to the default assumption
of uniform probability, which persists through all the
steps of the impact analysis. This assumption of unifor-
mity is likely to be conservative except where the true
probability distribution function is L- or M-shaped.

However, as classical statistics show, if the steps
within the uncertainty explosion are each assumed to
have a uniform distribution and are independent of
each other, when they are multiplied together the
resultant distribution will not be uniform but will peak
around an average value.

This is demonstrated in Fig. 2, which shows the
resultant probability when 2 component ranges of

uncertainty with uniform probability are combined.
The range for global warming in 2070 of 0.7 to 2.1°C
(IPCC 1996a) is multiplied by estimates for inland Aus-
tralia of 1.0 to 1.8°C local warming per degree of global
warming (CSIRO 1996), and the resultant range of
project regional warming is 0.7 to 3.8°C. The regional
range of local warming per degree of global warming
is constructed from the scaled values of a suite of 5
GCMs as described by Whetton et al. (1996). Assuming
the independence of both these ranges, when Monte
Carlo sampling is carried out, the probability distribu-
tion produced is not uniform but is peaked (Fig. 2).
Although the range expands, as in Fig. 1, the central
values are far more probable than the extremes.

The application of known probability distributions
has been used to solve problems in many fields, such
as economics, insurance and gambling (Bernstein
1996), where, by applying historical data, statistical
methods are used to forecast the probability of a par-
ticular set of outcomes. Under climate change, projec-
tions of climate derived from physical models are used
in lieu of a statistically represented history. This tech-
nique is used here to calculate projected ranges of
regional climate for the key climatic variables that
form the input to the irrigation demand model.

To calculate probabilities from combined ranges of
uncertainty as in Fig. 2, several conditions must be
met: (1) The component ranges of uncertainty must be
independent if random sampling is to be used. If fac-
tors show dependence, this must be correctly applied
to the sampling method. (2) The major factors influenc-
ing the impact under analysis should be incorporated
into the methodology wherever possible. (3) The full
range of quantifiable uncertainty, or a comprehensive
range with adequate justification, must be applied
within each step of the process to avoid the under-
estimation of risk through the use of truncated ranges.
(4) The probability density function of each range of
uncertainty must be explicitly acknowledged.

The application of this method to projected ranges of
climate change is described in Section 3.5.

2.2. Impact thresholds

To assess risk, climate impacts are explored to deter-
mine appropriate thresholds. An impact threshold is a
generic term for any threshold that can link an ecological
or socio-economic impact to a climatic state or states (Pit-
tock & Jones 1999). Impact thresholds can be grouped
into 2 main categories: biophysical thresholds that mark
a physical discontinuity on a spatial or temporal scale,
and behavioural thresholds, where reaching a particular
state triggers a change in behaviour in the form of a so-
cial or economic outcome (R. A. Warrick pers. comm.).
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Threshold events may signal a distinct change in
conditions or a step on a scale that has been nominated
as significant (i.e. a benchmark). Climatic thresholds
include frost, snow and monsoon onset. Biophysical
thresholds represent a distinct change in conditions,
such as the drying of a wetland, floods, breeding
events, etc. Behavioural thresholds are set by bench-
marking a level of performance, e.g. the yield per unit
area of a crop in weight, volume or gross income
(Jones & Pittock 1997). An example of an operational
threshold is described in Campbell et al. (1997), where
the identification of sustainable thresholds for grazed
grassland systems under global change is recom-
mended.

Critical thresholds are a special category, being
assessed to determine the point at which the risk of an
impact becomes ‘dangerous’ (cf. Parry et al. 1996). This
assessment involves placing values on processes
and/or outcomes. The assumptions behind such valua-
tions should ideally be transparent and should be
understood by all those affected. Pittock & Jones (1999)
argue that stakeholders should ideally be involved in
the process of determining user-defined thresholds
especially if they are to be involved in planning or
implementing adaptation options.

As impacts differ within sectors and regions and vary
over time, critical thresholds for different activities and
localities will not be reached at the same time or with
the same rate of climate change. The concept of what
is critical may differ between various groups and may
also change over time in response to new information,
to adaptive capacity or to changes in social and po-
litical perspectives. Climate scenarios can be used to
determine when and where ‘dangerous’ thresholds
are reached in various sectors (Parry et al. 1996). This
can then be related back to rates of greenhouse gas
emissions.

3. MODEL APPLICATION AND RESULTS

3.1. Model description

To show how the methodology described in this
paper can be used, a simple irrigation demand model
was constructed. Data from the Model Farm at Kerang,
northern Victoria, was used to build a simple model
estimating irrigation demand on a perennial pasture
dominated by white clover Trifolium repens and
perennial ryegrass Lolium perenne. Approximately
24 ha of flood-irrigated pasture are grazed by beef
cattle with some hay produced every spring. The
irrigation season is August 1 to April 30. Maximum
and minimum temperature, rainfall and Class-A pan
evaporation are recorded at an official weather station

situated on the property; observations cover the period
1990 to 1996.

An earlier model estimating water-use during the
irrigation seasons 1989–90 to 1995–96 closely followed
evaporative demand rather than a regulated supply.
Based on rainfall, pan evaporation data and records
of water consumption for those seasons, that earlier
model estimated seasonal irrigation water-use on the
farm to within ±4%, showing that irrigation manage-
ment from 1989 to 1996 was remarkably consistent
(Jones 1997). Irrigation water-use on the Model Farm
was also correlated with the total Cohuna Irrigation
District consumption from 1976 to 1996 and the com-
bined Cohuna-Kerang District consumption from 1987
to 1996 at 0.84 and 0.88 respectively (Fig. 3). This
shows that irrigation demand on the Model Farm is
representative of irrigation demand at the district level
and implies that, for the past 20 yr, regional irrigation
demand has been largely driven by evaporative
demand.

A simple box-type irrigation demand model based
on the relationships described by Boughton (1966), and
run on a daily time-step, was constructed to simulate
irrigation demand under climate change conditions.
The model uses rainfall and potential evaporation as
inputs, and requires estimates of the field capacity of
the soil, wilting point and threshold soil moisture for
Trifolium repens (the dominant summer-growing pas-
ture plant). When soil moisture falls below the esti-
mated wilting point for T. repens, irrigation is auto-
matic and equivalent to a 75 mm rainfall. This fills the
soil water reservoir and allows for 25 mm of water lying
on the paddock after irrigation. Any subsequent rain-
fall exceeding this threshold is converted into runoff.

The model was separated into 4 separate paddock
modules allowing for differences in soil and pasture
types across the farm. Values for field capacity, wilting
point and threshold soil moisture were calibrated for
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the 1995-96 season, when the timing and volume of
irrigation for individual paddocks was available. Al-
though this model is less accurate than the more
empirical model used in Jones (1997), it is more physi-
cally realistic. The results are less precise than histori-
cal irrigation water-use, because the model irrigates
automatically in 75 mm increments once a given
threshold soil moisture is reached, whereas farmer
behaviour is more finely tuned.

A single paddock module containing the weather
station was chosen for simulations under climate
change. As demand-based irrigation from the Model
Farm is closely correlated with district water-use, this
paddock-scale irrigation model designed to model the
behaviour of the irrigator is also assumed to represent
irrigation demand at the district scale (103 km2).

3.2. Key climatic variables

The key climatic variables for measuring irrigation
demand are rainfall and potential evaporation. Inter-
annual climate variability is also important for calculat-
ing statistics for irrigation demand, so a long sequence
of these variables is required. The LARS weather gen-
erator utilising a series approach to simulate long dry
and wet-day sequences (Racsko et al. 1991) was used
to generate a 100 yr sequence of daily maximum and
minimum temperatures and rainfall based on data
from 1990 to 1996. Artificially generated potential evap-
oration was unavailable, so monthly regression rela-
tionships of daily evaporation against maximum
temperature for the period 1990 to 1996 were used
to estimate evaporation from the weather-generated
maximum temperature.

Both monthly rainfall and temperature averages
and standard deviation were well simulated on a
monthly basis in the model according to t-test and F-
test statistics, with none falling below a 5% probabil-
ity level, and were compatible with long-term means
from the nearby Kerang station (1882 to 1997). The
simulation of interannual variability of rainfall was
also adequate up to the 10th and 90th percentile,
although the highest and lowest extremes for rainfall
from the longer Kerang record were not reproduced.
This result is consistent with the limitation reproduc-
tion of annual variability shown by this and other
weather generators (Semenov et al. 1998). Evapora-
tion regressed from temperature was substituted into
the model for 1990 to 1996 and compared with the
results produced using the observed evaporation data.
The results were identical, although this is partly due
to the stochastic nature of the model, which irrigates
in 75 mm increments and thus is insensitive to small
changes in inputs.

3.3. Impact thresholds

Two thresholds were chosen for measuring changes
to irrigation demand under climate change. The first is
termed the farm cap and is the irrigation allocation for
the Model Farm during a typical irrigation season.
During the 1970s and 1980s, irrigation demands were
met by allocations exceeding the nominal water right,
so that in most years evaporative demand could be
met with few restrictions. The only restrictions im-
posed during this period were in response to the 1982-
83 drought. The largely unrestricted allocation of irri-
gation water supply has led to a gradual increase in
irrigation allocations basin-wide. This increase has
been recognised as a threat to the overall health of the
system and to the security of water supply in the long
term (Cox & Baxter 1996).

The water available to irrigators in the State of Vic-
toria has been capped at the 1993-94 level (MWEC
1997). This translates to a farm cap, which is set at
200% of the annual water right per farm (G. O. Jones
pers. comm.). In most years, the cap will be sufficient
to meet irrigation demand, but in years when demand
is high and supply is low the cap will be lowered,
increasing the likelihood of exceedance. Farmers will
have to adapt through measures such as decreasing
the area under irrigation, destocking, importing sup-
plementary feed, or by introducing more efficient irri-
gation systems.

Using the paddock-scale irrigation model, and scal-
ing up to the average area under irrigation on the
Model Farm, this cap was set at 12 Ml ha–1 yr–1. On the
basis of past management, demand above that level
would now require some form of adaptive behaviour,
since meeting that demand would exceed the farm
cap. Extra irrigation water can be purchased but at
spot market prices likely to exceed the regular price.

During dry years, any shortfall in irrigation supply
may result in the 200% cap being reduced. This cannot
be factored into the current model, as it requires esti-
mation of supply from the upper catchments and of the
behaviour of the irrigation water storage and supply
system. For the current example, it is assumed that
supply will only fall short during those years when
irrigation demand is high. Based on past irrigation
figures, this is a reasonable first-order assumption.

Farmers are adapting to the imposition of farm caps
through on-farm measures such as diversifying to
higher return activities and increasing irrigation effi-
ciency. However, if the frequency of irrigation demand
exceeding the farm cap increases due to changes
in rainfall and evaporation, there will be a level of
exceedance above which the farmer cannot adapt.
This stage is defined here as the critical threshold for
irrigated pasture under grazing. The actual level of ex-
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ceedance for this threshold is unknown and would
require further research that takes into account such
factors as levels of irrigation supply, productivity and
gross economic return. For purposes of example, the
critical threshold is set at 50%, i.e. if the farm cap is
exceeded at a frequency of 1 year in every 2, then it is
assumed that this activity can no longer continue.

The farm cap of 12 Ml ha–1 provides a threshold
above which some adaptation is required. For 100 yr
of weather-generated data based on the observed
1990 to 1996 climate data, the cap is exceeded 5% of
the time. This model therefore offers the following
thresholds for further investigation: (1) a farm cap of
12 Ml ha–1, whose frequency of exceedance can be
estimated using a 100 yr artificial record of climate;
(2) a critical threshold where the frequency of irriga-
tion demand above the farm cap exceeds the ability of
the farmer to adapt, jeopardising that activity. For this
example, this limit is assumed to be 50%, where the
farm cap is exceeded by irrigation demand 1 year in
every 2.

3.4. Sensitivity analysis

The next step in the analysis is to quantify the sensi-
tivity of the 2 thresholds to the key climatic variables.
Under current climate, the model simulates irrigation
demand exceeding the farm cap of 12 Ml ha–1 in 5% of
years. This is comparable with the estimate of Murray-
Goulburn Water, the supplier of irrigation water to the
region, that supply can be met in 97% of years (E.
Jones pers. comm.). The historical data suggests that
these years will coincide, as irrigation demand is gen-
erally higher than average during drought years.

A sensitivity matrix was calculated for temperature
increases ranging from 0 to 6.5°C and rainfall changes
ranging from +30 to –30%. Evaporation was calcu-
lated from adjusted maximum temperature using the
regression relationships described earlier. The result-
ing sensitivity matrix is shown in Fig. 4, where the
frequency of exceedance for the annual 12 Ml ha–1

farm cap ranges from a few percent to over 100%.
The 50% line is the critical threshold described

above. It requires a reasonable degree of climate
change to be reached, e.g. average temperature would
have to rise about 2.5°C with current rainfall held con-
stant.

3.5. Climate change probabilities

Ranges of projected global warming from IPCC
(1996a) and projected regional temperature and rain-
fall in northern Victoria from CSIRO (1996) were sub-

jected to the techniques described in Section 2.1. Each
component range of uncertainty was assumed to have
a uniform probability distribution, and regional tem-
perature change and rainfall change were assumed to
be independent of each other, which is the default
assumption in CSIRO (1996). For the temperature sce-
narios, 2 ranges of uncertainty, global warming and
regional uncertainty, were randomly sampled then
multiplied repeatedly, to obtain a non-uniform distrib-
ution of regional temperature change. The range of
projected global warming incorporates the IPCC-esti-
mated range of climate sensitivity and the IS92a–f
emission scenarios (Table 1, columns 1 and 2). Regional
uncertainty is expressed as local warming per degree
of global warming that has been obtained from a suite
of GCMs (Table 1, columns 3 and 4). This process was
repeated over 10 yr intervals from 2000 to 2100 and the
resultant probability distribution for regional warming
in 2070 is shown in Fig. 2.

Rainfall was calculated slightly differently. Each
time global warming was randomly sampled for cal-
culating local temperature change, the same value
was used to calculate local rainfall change. Local rain-
fall change was divided into separate ranges for sum-
mer and winter, expressed as a percentage change
per degree of global warming. Global warming was
used to scale the possible range of rainfall change, to
ensure that values anomalous to that degree of warm-
ing were not sampled. The ranges given in Table 1
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(columns 5 and 6 [summer], and 7 and 8 [winter]) are
the maximum range that can then be randomly sam-
pled. Therefore, the procedure was to use the same
sample of global warming for both temperature (as
above) and rainfall, to use that sample to define the
range of local rainfall change for both summer and
winter, to sample randomly within both ranges and to
average for an annual value. Note that this technique
assumes that summer and winter changes are inde-
pendent of each other and that no weighting in the
averaging process is given for differences in the sum-
mer/winter totals.

The results were tallied in matrices of rainfall and
temperature change constructed with an average sam-
pling density of about 100 samples bin–1 ranging in
size from 9 bins in 2000 to 400 bins in 2100. The
percentage frequency of outcomes in each bin was cal-
culated and summed from the most frequent to the
least frequent to provide cumulative probability plots
(Fig. 5).

The cumulative probability plots in Fig. 5 show that,
rather than being a large rectangle of uniform proba-
bility described by projected ranges of rainfall and
temperature as in CSIRO (1996), some outcomes are
more likely than others. For instance, combinations of
extreme changes in both temperature and rainfall are
unlikely. Fig. 5 shows that over time the projected
range with a low probability of occurrence (<5%)
occupies a larger proportion of the uncertainty space.
This shows that a large proportion of the uncertainty
created by combining results from different GCMs
can potentially be managed through simple statistical
techniques. The next section shows how the combina-
tion of climate change probabilities, impact sensitivity
analysis and impact thresholds can be used to analyse
risk.

3.6. Risk analysis

Risk analysis is carried out by measuring the ex-
ceedance of a particular threshold with reference to
projections of key climatic variables. The result is de-
picted using a risk response surface, combining a sen-
sitivity diagram as in Fig. 4 with climate probability
plots as in Fig. 5. The probabilities of all climates
occurring above a particular threshold can then be
totalled to estimate the risk of exceedance of that
threshold.

Risk analyses were carried out for irrigation demand
at 10 yr intervals between 2000 and 2100. The resul-
tant risk response surfaces for 2030 and 2070 are
shown in Fig. 6. In 2030, the annual threshold will be
exceeded in <10 to 20% of years under most climates.
By 2070, this range extends from 10 to 80%. The
critical threshold lies well above the projected ranges
of climate change in 2030 but by 2070 is exceeded by
almost one-quarter of the projected climates.

The next step is to calculate how often the farm cap
may be exceeded at specified times in the future. This
is carried out by totalling the probability of all climates
falling below a certain level of farm cap exceedance.
For example, in Fig. 6, the percentage frequencies of
projected climate lying below a contour representing a
level of exceedance are totalled. Examples for the
years 2030 and 2070 are plotted in Fig. 7. In 2030 the
annual probability that the farm cap will be exceeded
lies between 10 and 20%. 90% of all climates (the x-
axis) will see the farm cap exceeded at least 1 in every
10 yr (the y-axis), while in 95% of all climates the
annual farm cap will not be exceeded by more than 1
in every 5 yr. In 2070, this range of exceedance is much
larger, where it is possible for the farm cap to be
exceeded from 10 up to 80% of years.
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Table 1. Upper and lower bounds for scenarios used in climate probability sampling. The temperature columns list the global
range and the local range (the global range multiplied by the local change per degree of 1.0–1.8°C). Rainfall lists the summer and
winter ranges separately, which are produced by multiplying upper and lower limits of rainfall (% change per degree of global
warming: –5 to +10% for summer and –10 to +2.5% for winter) by the upper limit of global temperature. The method is based 

on CSIRO (1996)

Year Temperature (°C) Rainfall (%)
Global Global Local Local Summer Summer Winter Winter Annual Annual

low high low high low high low high low high

2000 0.1 0.2 0.1 0.4 –1 2 –2 0.5 –1.5 1.5
2010 0.2 0.4 0.2 0.8 –2 4 –4 1 –3 3
2020 0.3 0.6 0.3 1.1 –3 6 –6 1.5 –4.5 4.5
2030 0.4 0.8 0.4 1.5 –4 8 –8 2 –6 5
2040 0.5 1.1 0.5 2.0 –5.5 11 –11 3 –9 7
2050 0.5 1.3 0.5 2.4 –6.5 13 –13 3.5 –10 10
2060 0.6 1.7 0.6 3.1 –8.5 17 –17 4 –13 11
2070 0.7 2.1 0.7 3.8 –10.5 21 –21 5 –16 14
2080 0.8 2.5 0.8 4.5 –12.5 25 –25 6 –19 16
2090 0.8 3.0 0.8 5.4 –15 30 –30 7.5 –23 19
2100 0.9 3.5 0.9 6.3 –17.5 35 –35 9 –28 22
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The critical threshold, where the farm cap is ex-
ceeded in 50% or more years, is not approached in
2030, but is exceeded by 23% of climates by 2070.

3.7. Windows of adaptation

Having established a relationship between the prob-
ability of climate change and the probability of a

threshold being exceeded for a particular activity, the
topic of risk needs to be engaged. If an assessment
deems the risk being faced to be worthy of a response,
it will need to be managed. Under the FCCC, there are
2 major areas for the management of climate change:
mitigation and adaptation. Adaptation at the local or
regional scale is the most appropriate response for par-
ticular activities where the risk of impacts is assessed
to be sufficiently high. Mitigation is currently being
addressed at the national and international level and
relates to the stabilisation of emissions to prevent dan-
gerous climate change occurring.

Section 3.3 identified a critical threshold above
which a farmer involved in irrigating pastures for
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ceedance of the farm cap for annual irrigation demand for
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beef production could not adapt. If the annual irriga-
tion demand exceeds 12 Ml ha–1 in more than 50% of
years then the activity is no longer viable. In reality,
it would become uneconomic long before this, and
other activities would become more viable in relative
terms.

Fig. 7 shows that in 2070 the critical threshold of
50% will be exceeded in 23% of possible climates. The
questions that need to be asked regarding risk assess-
ment are: Does a 20% probability of a critical thresh-
old being reached in 2070 warrant concern? Do lesser
rates of exceedance require adaptation before that
date?

Such questions may be investigated in several ways.
Rational frameworks can be used, where risk is quan-
tified according to a given method (e.g. cost-benefit
analysis, where cost is multiplied by probability to
derive an index of risk). Another method is to present
the results of the analysis to the relevant stakeholders
and, using a combination of objective and subjective
methods, assess the risk faced by that particular activ-
ity through consensus.

One way of viewing the problem is to assess the rela-
tionship between the critical threshold and climate
over time through identifying windows of adaptation.
Such a window is the period between an assessment
and the point at which there is a risk of a critical
threshold being exceeded. The window of adaptation
has a temporal, just described, and a relational aspect.
The degree of adaptation required is measured by the
difference between current outcomes and those linked
to the critical threshold.

Fig. 8 shows the probability of exceedance of the
critical threshold for irrigation demand at 10 yr inter-

vals from 2000 to 2100. This probability ranges from
only 1% in 2040 to 63% by 2100. The nominated criti-
cal threshold of 50% exceedance of the farm cap does
not exceed a 10% probability until after 2060, indicat-
ing a large potential for adaptation between now and
then. However, Fig. 7 suggests that the frequency of
exceedance of the farm cap of 12 Ml ha–1 will have
doubled or tripled from the current level of 5% by
2030. Therefore, some form of adaptation is likely to be
required by the next generation of farmers.

By 2050, a second generation of farmers may be
dealing with a situation where the farm cap is being
exceeded 30% of the time, requiring a much greater
level of adaptation. A third generation, at about 2070,
will be approaching the limit of adaptation (as as-
sumed by this example) set by the critical threshold.

Mitigation can be carried out to reduced levels of
greenhouse gas to avoid such critical thresholds. How-
ever, the impetus for mitigation will not come from one
or two critical thresholds identified on a regional basis
but from parties to the FCCC who identify ‘dangerous’
climate change as a threat and seek to forge agree-
ments mitigating against it. This will require inte-
grated assessment on both a regional basis and be-
tween regions to assess the balance between critical
impacts and possible benefits. For this to occur,
methodologies that link critical thresholds to a level of
climate change need to be developed, adopted and
widely used.

4. DISCUSSION

In this paper, ranges of uncertainty for the emission
scenarios IS92a–f, global warming from IPCC (1996a)
and regional warming for northern Victoria (CSIRO
1996) have been incorporated, along with a 100 yr
sequence of daily temperature and rainfall, to allow
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for interannual variability. However, the conditions for
sampling listed in Section 2.1 have not been fully met.
As Visser et al. (1999) point out, global warming pro-
jections from IPCC (1996a) do not contain ranges of
uncertainty of greenhouse gas mixing or the radiative
forcing of greenhouse gases and sulphate aerosol.
New emission scenarios commissioned by the IPCC,
the SRES (Special Report on Emissions Scenarios) sce-
narios (Nakicenovic 1998), are a significant improve-
ment on the IS92a–f scenarios but will create a new
range of warmings.

Improved methods of sampling, incorporating re-
gional dependencies between temperature and rain-
fall (Hulme & Brown 1998, Hulme & Carter 1999), offer
potential for reducing the uncertainties within proba-
bilistic scenarios. Explicit projections for potential
evaporation that independently relate potential evapo-
ration to changes in rainfall and temperature are also
needed for studies with a hydrological component.

Although based on field data and realistic farmer
behaviour, the model presented above cannot be used
for forecasting climate impacts on irrigation agricul-
ture unless certain improvements can be added. For
instance, the following factors will impact on irrigation
demand at the paddock scale: (1) Carbon dioxide fer-
tilisation will tend to increase productivity per unit of
water supplied. This increased efficiency in water is
unlikely to result in lower net transpiration and higher
soil moisture as farmers endeavour to maximise pas-
ture production. (2) Evapotranspiration is not likely to
maintain its current relationship with maximum tem-
perature during climate change, as is assumed here.
(3) The supply side of the model has not been ad-
dressed. Changes to seasonal irrigation supply during
droughts may lead to water restrictions and reduced
farm caps. Drought frequency is also sensitive to
climate change.

Allowing for the above factors would require a crop
or pasture model coupled to a soil-moisture model,
explicit projections of evapotranspiration and a water-
supply model. Longer sequences of historical climate
data and improvements to weather generators may
improve the realisation of interannual variability.

Economics will also play an important part in the
future of such enterprises. There is a trade-off between
higher pasture production levels and increased evapo-
rative demand due to CO2 fertilisation. How this trade-
off is realised will be due to factors such as water prices
and economic yield at the farm gate in addition to the
biophysical aspects just mentioned. The issue of choos-
ing a realistic critical threshold for irrigation demand
based on biophysical and economic criteria would also
need to be addressed. Kenny et al. (1999) point out that
the derivation of management thresholds is not a
simple task that requires integrated assessment.

However, the assessment of probabilities for the ex-
ceedance of a rule of thumb threshold, or a heuristic
threshold set by stakeholders, may indicate whether
further, more resource-intensive investigation is war-
ranted.

The recent capping of water rights is changing the
way most irrigators in Victoria and much of New South
Wales operate. They can no longer operate simply by
evaporative demand as shown in Fig. 3, as the gradu-
ally increasing use of irrigation water over time has
placed the health of the entire Murray-Darling system
at risk (MWEC 1997). Capping water rights will make
irrigators much more vulnerable to evaporative de-
mand than they have been in the past, especially dur-
ing years when water shortages reduce their alloca-
tions. Irrigators will need to adapt to the new
conditions, by tying increased productivity to units of
water use (G. O. Jones pers. comm.). These adapta-
tions are likely to be compatible with the adaptations
required to allow for increased irrigation demand
under climate change. However, the modelling of irri-
gation supply under climate change is critical if this
assumption is to be tested.

5. CONCLUSION

The purpose of this paper is to describe a method of
risk analysis for calculating the conditional probabili-
ties of exceeding an impact threshold under climate
change. This is a major step forward from more limited
assessments of sensitivity and vulnerability, moving
impact assessment towards the goal of forecasting
specific impacts under expected climate change. While
this is a desirable step, many difficulties still need to be
overcome. The following caveats apply to the general
method used: (1) The probabilities for exceedance of
the critical threshold produced by this method (Fig. 8)
are conditional probabilities, since they are based on
limited ranges of uncertainty. (2) When conducting a
risk analysis the full range of quantifiable uncertainty,
or a comprehensive range with adequate justification,
should be used. Uncertainties that are known and not
yet quantifiable or that may be fundamentally un-
quantifiable should be acknowledged. (3) Default as-
sumptions of probability should be avoided. Every step
should be described, making relationships of statistical
(in)dependence and probability distribution functions
explicit.

This paper shows that by expressing impact thresh-
olds as functions of key climatic variables it is possible
to manage many of the uncertainties associated with
projected regional climate change through the analy-
sis of conditional probabilities. The example used is
one of irrigation demand, where the probability of a
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critical threshold being exceeded was assessed for
10 yr intervals between 2000 and 2100. It was found
that the probability of the farm cap being exceeded
1 year in every 2 was 1% at 2050 increasing to 60%
at 2100.

This opens a window of adaptation, where an envi-
ronment of increasing demand needs to be balanced
with recent regulatory changes that have capped
water rights for individual farmers. Further research is
needed to determine how irrigation farmers can best
adapt under current climate, and to assess links be-
tween these adaptations and those that may be best
suited for adapting to climate change.

Three further projects are continuing the work de-
scribed here. The first, assessing the risk to irrigation
supply, is being undertaken for the Macquarie River,
a catchment of the Murray-Darling Basin in eastern
Australia. The second is assessing communication
links between stakeholders and impact researchers in
order to utilise the risk assessment framework pre-
sented here in a pilot integrated impact assessment in
the Hunter Valley, on the central eastern coast of Aus-
tralia. The third is constructing probabilistic climate
change projections for a number of climatic variables,
including potential evaporation and decadal-scale
rainfall variability, for use by Australian impact re-
searchers. A risk assessment framework involving both
researchers and stakeholders, and utilising the exam-
ple of risk analysis described here, describes how
impact thresholds and key climatic variables can be
related and assessed to treat risk through adaptation
measures.
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