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1. INTRODUCTION

The climates of Africa are both varied and varying:
varied because they range from humid equatorial
regimes, through seasonally-arid tropical regimes, to
sub-tropical Mediterranean-type climates, and varying
because all these climates exhibit differing degrees of
temporal variability, particularly with regard to rain-
fall. Understanding and predicting these inter-annual,
inter-decadal and multi-decadal variations in climate
has become the major challenge facing African and
African-specialist climate scientists in recent years.

Whilst seasonal climate forecasting has taken great
strides forward, in both its development and applica-
tion (Folland et al. 1991, Stockdale et al. 1998, Wash-
ington & Downing 1999, also see http://www.ogp.
noaa.gov/enso/africa.html [SARCOF: Southern Africa
Regional Climate Outlook Forum]), the ultimate causes
of the lower frequency decadal and multi-decadal
rainfall variability that affects some African climate
regimes, especially in the Sahel region, remain uncer-
tain (see Rowell et al. 1995 vs Sud & Lau 1996, also Xue
& Shukla 1998). This work examining the variability of
African climate, especially rainfall, is set in the wider
context of our emerging understanding of human
influences on the larger, global-scale climate. Increas-
ing greenhouse gas accumulation in the global atmo-
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sphere and increasing regional concentrations of
aerosol particulates are now understood to have
detectable effects on the global climate system (Santer
et al. 1996). These effects will be manifest at regional
scales although perhaps in more uncertain terms
(Mitchell & Hulme 1999, Giorgi & Francisco 2000).

Africa will not be exempt from experiencing these
human-induced changes in climate. Much work re-
mains to be done, however, in trying to isolate those
aspects of African climate variability that are ‘natural’
from those that are related to human influences.
African climate scientists face a further challenge in
that on this continent the role of land cover changes—
some natural and some human-related—in modifying
regional climates is perhaps most marked (Xue 1997).
This role of land cover change in altering regional cli-
mate in Africa has been suggested for several decades
now. As far back as the 1920s and 1930s, theories
about the encroachment of the Sahara and the desicca-
tion of the climate of West Africa were put forward
(Stebbing 1935, Aubreville 1949). These ideas have
been explored over the last 25 yr through modelling
studies of tropical north African climate (e.g. Charney
1975, Cunnington & Rowntree 1986, Zheng & Eltahir
1997). It is for these 2 reasons—large internal climate
variability driven by the oceans and the confounding
role of human-induced land cover change—that cli-
mate change ‘predictions’ (or the preferable term sce-
narios) for Africa based on greenhouse gas warming
remain highly uncertain. While global climate models
(GCMs) simulate changes to African climate as a re-
sult of increased greenhouse gas concentrations,
these 2 potentially important drivers of African climate
variability—for example El Niño/Southern Oscillation
(ENSO) (poorly) and land cover change (not at all)—
are not well represented in the models.

Nevertheless, it is of considerable interest to try and
explore the magnitude of the problem that the
enhanced greenhouse effect may pose for African
climate and for African resource managers. Are the
changes that are simulated by GCMs for the next cen-
tury large or small in relation to our best estimates of
‘natural’ climate variability in Africa? How well do
GCM simulations agree for the African continent? And
what are the limitations/uncertainties of these model
predictions? Answering these questions has a very
practical relevance in the context of national vulnera-
bility and adaptation assessments of climate change
currently being undertaken by many African nations
as part of the reporting process to the UN Framework
Convention on Climate Change. This paper makes a
contribution to these assessments by providing an
overview of future climate change in Africa, particu-
larly with regard to simulations of greenhouse gas
warming over the next 100 yr.

We start the paper (Section 2) by reviewing some
previous climate change scenarios and analyses for
regions within Africa. Such studies have been far from
comprehensive. Section 3 explains the data, models
and approaches that we have taken in generating our
analyses and constructing our climate change scenar-
ios for Africa. In Section 4 we consider the salient
features of African climate change and variability over
the last 100 yr, based on the observational record of
Africa climate. Such a historical perspective is essen-
tial if the simulated climates of the next century are
to be put into their proper context. Section 5 then
presents our future climate change scenarios for
Africa, based on the draft Special Report on
Emissions Scenarios range of future greenhouse gas
emissions (http://sres.ciesin.org/index.html [SRES])
and the GCM results deposited with the Intergovern-
mental Panel on Climate Change (IPCC) Data Distrib-
ution Centre (http://ipcc-ddc.cru.uea.ac.uk/index.html
[DDC]). Changes in mean seasonal climate are shown
as well as some measures of changed interannual vari-
ability. Section 6 then discusses these future climate
simulations in the light of modelling uncertainties and
in the context of other causes of African climate vari-
ability and change. We consider how much useful and
reliable information these types of studies yield and
how they can be incorporated into climate change
impacts assessments. Our key conclusions are pre-
sented in Section 7.

2. REVIEW OF PREVIOUS AFRICAN CLIMATE
CHANGE SCENARIO WORK

There has been relatively little work published on
future climate change scenarios for Africa. The various
IPCC assessments have of course included global
maps of climate change within which Africa has fea-
tured, and in Mitchell et al. (1990) the African Sahel
was one of 5 regions for which a more detailed analy-
sis was conducted. Kittel et al. (1998) and Giorgi &
Francisco (2000) also identify African regions within
their global analysis of inter-model differences in cli-
mate predictions, but no detailed African scenarios are
presented.

Tyson (1991) published one of the first scenario
analyses specifically focused on an African region. In
this case some climate change scenarios for southern
Africa were constructed using results from the first
generation GCM equilibrium 2 × CO2 experiments. In
a further development, Hulme (1994a) presented a
method for creating regional climate change scenarios
combining GCM results with the newly published
IPCC IS92 emissions scenarios and demonstrated the
application of the method for Africa. In this study mean
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annual temperature and precipitation changes from
1990 to 2050 under the IS92a emission scenario were
presented.

Some more recent examples of climate scenarios for
Africa use results from transient GCM climate change
experiments. Hernes et al. (1995) and Ringius et al.
(1996) constructed climate change scenarios for the
African continent that showed land areas over the
Sahara and semi-arid parts of southern Africa warming
by the 2050s by as much as 1.6°C and the equatorial
African countries warming at a slightly slower rate of
about 1.4°C. These studies, together with Joubert et al.
(1996), also suggested a rise in mean sea-level around
the African coastline of about 25 cm by 2050. A more
selective approach to the use of GCM experiments was
taken in Hulme (1996a). They described 3 future cli-
mate change scenarios for the Southern African Devel-
opment Community (SADC) region of southern Africa
for the 2050s on the basis of 3 different GCM experi-
ments. These experiments were selected to deliber-
ately span the range of precipitation changes for the
SADC region as simulated by GCMs. Using these
scenarios, the study then described some potential
impacts and implications of climate change for agri-
culture, hydrology, health, biodiversity, wildlife and
rangelands. A similar approach was adopted by Con-
way et al. (1996) for a study of the impacts of climate
change on the Nile Basin. More recently, the Africa
chapter (Zinyowera et al. 1998) in the IPCC Assess-
ment of Regional Impacts of Climate Change (IPCC
1998) also reported on some GCM studies that related
to the African continent.

Considerable uncertainty exists in relation to large-
scale precipitation changes simulated by GCMs for
Africa (Hudson 1997, Hudson & Hewitson 1997, Jou-
bert & Hewitson 1997, Feddema 1999). Joubert &
Hewitson (1997) nevertheless conclude that, in gen-
eral, precipitation is simulated to increase over much
of the African continent by the year 2050. These GCM
studies show, for example, that parts of the Sahel could
experience precipitation increases of as much as 15%
over the 1961–90 average by 2050. A note of caution
is needed, however, concerning such a conclusion.
Hulme (1998) studied the present-day and future
simulated inter-decadal precipitation variability in the
Sahel using the HadCM2 GCM. These model results
were compared with observations during the 20th
Century. Two problems emerge. First, the GCM does
not generate the same magnitude of inter-decadal
precipitation variability that has been observed over
the last 100 yr, casting doubt on the extent to which
the most important controlling mechanisms are being
simulated in the GCM. Second, the magnitude of the
future simulated precipitation changes for the Sahel
is not large in relation to ‘natural’ precipitation vari-

ability for this region. This low signal:noise ratio sug-
gests that the greenhouse gas-induced climate change
signals are not well defined in the model, at least for
this region. We develop this line of reasoning in this
paper and illustrate it in Section 5 with further exam-
ples from Africa.

Although there have been studies of GCM-simu-
lated climate change for several regions in Africa, the
downscaling of GCM outputs to finer spatial and tem-
poral scales has received relatively little attention in
Africa. Hewitson & Crane (1998) and Hewitson &
Joubert (1998) have applied empirical downscaling
methods to generate climate change scenarios for
South Africa using artificial neural networks and pre-
dictors relating to upper air circulation and tropos-
pheric humidity. The usual caveats, however, apply to
these downscaled scenarios (Hulme & Carter 1999)—
they are still dependent on the large-scale forcing from
the GCMs and they still only sample one realisation of
the possible range of future possible climates, albeit
with higher resolution. The application of regional
climate models is still in its infancy, although some
initiatives are now under way for East Africa (Sun et
al. 1999), West Africa (Wang & Eltahir 2000) and south-
ern Africa (B. Hewitson pers. comm.). These initiatives
have not yet generated experimental results from
regional climate change simulations for use in scenario
construction.

3. DATA AND METHODS

For our analyses of observed climate variability in
Africa we use the global gridded data sets of Jones
(1994, updated; mean temperature), Hulme (1994b,
updated; precipitation), and New et al. (1999, 2000;
10 surface climate variables). These data sets are all
public domain and are available, along with some
documentation on their construction, from the follow-
ing Web sites: GCM results were taken from the IPCC
Data Distribution Centre (DDC) (http://ipcc-ddc.cru.
uea.ac.uk); most of the observed data sets used here
can be obtained from the Climatic Research Unit
(http://www.cru.uea.ac.uk); the draft (February 1999;
non-IPCC approved, but used with permission) SRES
emissions scenarios were obtained from the SRES
(http://sres.ciesin.org/index.html). The data sets of
Jones (1994) and Hulme (1994b) exist on a relatively
coarse grid (5° latitude/longitude and 2.5° latitude by
3.75° longitude respectively), while the data set of New
et al. (1999, 2000) exists with a 0.5° latitude/longitude
resolution. These observed data are resolved only to
monthly time steps and we therefore undertake no
original analyses of observed daily climate variability.
For Ethiopia and Zimbabwe we analyse unpublished
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monthly mean maximum and minimum temperature
data for a number of stations in each country. These
data originate from the respective national meteoro-
logical agencies. For the index of the Southern Oscilla-
tion we use the updated index of Ropelewski & Jones
(1987), calculated as the normalised mean sea-level
pressure difference between Tahiti and Darwin and
available from Climate Monitor online (http://www.
cru.uea.ac.uk/cru/climon).

Other climate-related and continent-wide data sets
also have value for some climate analyses, whether
these data are derived from satellite observations (e.g.
Normalised Difference Vegetation Index or satellite-
derived precipitation estimates) or from numerical
weather prediction model re-analyses (e.g. the NCEP
[National Centers for Environmental Prediction] re-
analysis from 1948 to present). Although these alterna-
tive data sets have some real advantages in particular
environmental or modelling applications (e.g. model-
ling malaria; Lindsay et al. 1998; evaluating dust forc-
ing; Brooks 1999), we prefer to limit our analysis here
to the use of conventional observed climate data sets
derived from surface observations.

The GCM results used in this study are mainly
extracted from the IPCC DDC archive. This archive
contains results from climate change experiments
performed with 7 coupled ocean-atmosphere global
climate models (Table 1). All these experiments were
conducted using similar greenhouse gas or green-
house gas plus aerosol forcing. In this study only the
results from the greenhouse gas-forced simulations are
used for reasons outlined below. We also use results
from the 1400 yr control simulation of the HadCM2 cli-
mate model (Tett et al. 1997) to derive model-based
estimates of natural multi-decadal climate variability.
The data were re-gridded using a Gaussian space-
filter onto a common grid, namely the HadCM2 grid.
Later results are presented on this common grid.

Climate can be affected by a number of other agents
in addition to greenhouse gases; important amongst
these are small particles (aerosols). These aerosols are
suspended in the atmosphere and some types (e.g. sul-
phate aerosols derived from sulphur dioxide) reflect
back solar radiation; hence they have a cooling effect
on climate. Although there are no measurements to
show how these aerosol concentrations have changed
over the past 150 yr, there are estimates of how sul-
phur dioxide emissions (one of the main precursors for
aerosol particles) have risen and scenarios of such
emissions into the future. A number of such scenarios
have been used in a sulphur cycle model to calculate
the future rise in sulphate aerosol concentrations (Pen-
ner et al. 1998). When one of these scenarios was used,
along with greenhouse gas increases, as input to the
DDC GCMs, the global-mean temperature rise to 2100
was reduced by between a quarter and a third. The
reductions over Africa were less than this.

These are very uncertain calculations, however, due
to a number of factors. First, the old 1992 IPCC emis-
sions scenario on which it was based (IS92a; Leggett et
al. 1992) contains large rises in sulphur dioxide emis-
sions over the next century. Newer emissions scenar-
ios, including the draft SRES scenarios, estimate only a
small rise in sulphur dioxide emissions over the next
couple of decades followed by reductions to levels
lower than today’s by 2100 (SRES). Over Africa, sul-
phur emissions remain quite low for the whole of this
century. The inclusion of such modest sulphur dioxide
emissions scenarios in GCM experiments would actu-
ally produce a small temperature rise relative to model
experiments that excluded the aerosol effect (Schles-
inger et al. 2000). Results from GCM experiments
using these revised sulphur scenarios are not yet
widely available. Second, more recent sulphur cycle
models generate a lower sulphate burden per tonne of
sulphur dioxide emissions and the radiative effect of
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Table 1. Characteristics of the 7 global climate models available at the IPCC Data Distribution Centre from which experimental
results were used in this study. Only the greenhouse gas-forced integrations were used here. The climate sensitivity describes the
estimated equilibrium global-mean surface air temperature change of each model following a doubling of atmospheric carbon 

dioxide concentration

Country of Approximate resolution Climate sensitivity Integration Source
origin (lat. × long.) (°C) length

CCSR-NIES Japan 5.62° × 5.62° 3.5 1890–2099 Emori et al. (1999)
CGCM1 Canada 3.75° × 3.75° 3.5 1900–2100 Boer et al. (2000) 
CSIRO-Mk2 Australia 3.21° × 5.62° 4.3 1881–2100 Hirst et al. (2000)
ECHAM4 Germany 2.81° × 2.81° 2.6 1860–2099 Roeckner et al. (1996)
GFDL-R15 USA 4.50° × 7.50° 3.7 1958–2057 Haywood et al. (1997)
HadCM2a UK 2.50° × 3.75° 2.5 1860–2099 Mitchell & Johns (1997)
NCAR1 USA 4.50° × 7.50° 4.6 1901–2036 Meehl & Washington (1995)

aAn ensemble of 4 climate change simulations were available from the HadCM2 model
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the sulphate particles in more sophisticated radiation
models is smaller than previously calculated. Third, in
addition to their direct effect, sulphate aerosols can
also indirectly cool climate by changing the reflectivity
and longevity of clouds (Schimel et al. 1996). These
indirect effects are now realised as being at least as
important as the direct effect, but were not included in
the present DDC GCM climate change simulations.
Fourth, there are other types of aerosols (e.g. carbon or
soot) which may also have increased due to human
activity, but which act to warm the atmosphere. Finally
and above all, the short lifetime of sulphate particles in
the atmosphere means that they should be seen as a
temporary masking effect on the underlying warming
trend due to greenhouse gases. For all these reasons,
model simulations of future climate change using both
greenhouse gases and sulphate aerosols have not been
used to develop the climate change scenarios illus-
trated in this paper.

The future greenhouse gas forcing scenario used in
the DDC experiments approximated a 1% annum–1

growth in greenhouse gas concentrations over the
period from 1990 to 2100. Since the future growth in
anthropogenic greenhouse gas forcing is highly uncer-
tain, it is important that our climate scenarios for Africa
reflect this uncertainty; it would be misleading to con-
struct climate change scenarios that reflected just one
future emissions growth curve. We therefore adopt the
4 draft marker emissions scenarios of the IPCC SRES:
B1, B2, A1 and A2. None of these emissions scenarios
assume any climate policy implementation; the differ-
ences result from alternative developments in global
population, the economy and technology. Our method
of climate change scenario construction follows that
adopted by Hulme & Carter (2000) in their generation
of climate change scenarios for Europe as part of the
ACACIA assessment of climate impact in Europe. Full
details may be found there, but we provide a short
summary of the method in Section 5 below.

4. TWENTIETH CENTURY CLIMATE CHANGE

4.1. Temperature

The continent of Africa is warmer than it was 100 yr
ago. Warming through the 20th century has been at
the rate of about 0.5°C century–1 (Fig. 1), with slightly
larger warming in the June–August (JJA) and Sep-
tember–November (SON) seasons than in December–
February (DJF) and March–May (MAM). The 6
warmest years in Africa have all occurred since 1987,
with 1998 being the warmest year. This rate of warm-
ing is not dissimilar to that experienced globally, and
the periods of most rapid warming—the 1910s to 1930s

and the post-1970s—occur simultaneously in Africa
and the rest of the world.

Few studies have examined long-term changes in the
diurnal cycle of temperature in Africa. Here, we show
results for 4 countries for which studies have been pub-
lished or data were available for analysis—for Sudan
and South Africa as published by Jones & Lindesay
(1993) and for Ethiopia and Zimbabwe (unpubl.). While
a majority of the Earth’s surface has experienced a de-
cline in the mean annual diurnal temperature range
(DTR) as climate has warmed (Nicholls et al. 1996), our
examples here show contrasting trends for these 4
African countries. Mean annual DTR decreased by be-
tween 0.5 and 1°C since the 1950s in Sudan and
Ethiopia, but increased by a similar amount in Zim-
babwe (Fig. 2). In South Africa, DTR decreased during
the 1950s and 1960s, but has remained quite stable
since then. Examination of the seasonal variation in
these trends (not shown) suggests that different factors
contribute to DTR trends in different seasons and in dif-
ferent countries. For example, in Sudan DTR shows an
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increasing trend during the July–September wet
season, probably caused by trends towards reduced
cloudiness, while DTR decreased during the rest of the
year, probably due to trends for increased dustiness
(Brooks 1999). Both of these factors are related to the
multi-decadal drought experienced in Sudan since the
1950s (Hulme 2001). The long-term increase in annual
DTR in Zimbabwe is due almost entirely to increases
during the November–February wet season; trends
during the rest of the year have been close to zero. We
are not aware of published analyses of diurnal tem-
perature trends in other African countries.

4.2. Rainfall

Interannual rainfall variability is large over most of
Africa and for some regions, most notably the Sahel,
multi-decadal variability in rainfall has also been
substantial. Reviews of 20th Century African rainfall
variability have been provided by, among others,
Janowiak (1988), Hulme (1992) and Nicholson (1994).

To illustrate something of this variability we present an
analysis for the 3 regions of Africa used by Hulme
(1996b)—the Sahel, East Africa and southeast Africa
(domains shown in Fig. 4). These 3 regions exhibit con-
trasting rainfall variability characteristics (Fig. 3): the
Sahel displays large multi-decadal variability with
recent drying, East Africa a relatively stable regime
with some evidence of long-term wetting, and south-
east Africa also a basically stable regime, but with
marked inter-decadal variability. In recent years Sahel
rainfall has been quite stable around the 1961–90
annual average of 371 mm, although this 30 yr period
is substantial drier (about 25%) than earlier decades
this century. In East Africa, 1997 was a very wet year
and, as in 1961 and 1963, led to a surge in the level of
Lake Victoria (Birkett et al. 1999). Recent analyses (Saji
et al. 1999, Webster et al. 1999) have suggested these
extreme wet years in East Africa are related to a dipole
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mode of variability in the Indian Ocean. In southeast
Africa, the dry years of the early 1990s were followed
by 2 very wet years in 1995/96 and 1996/97. Mason et
al. (1999) report an increase in recent decades in the
frequency of the most intense daily precipitation over
South Africa, even though there is little long-term
trend in total annual rainfall amount.

Fig. 3 also displays the trends in annual temperature
for these same 3 regions. Temperatures for all 3 regions
during the 1990s are higher than they were earlier in the
century (except for a period at the end of the 1930s in the
Sahel) and are currently between 0.2 and 0.3°C warmer
than the 1961–90 average. There is no simple correlation
between temperature and rainfall in these 3 regions, al-
though Hulme (1996b) noted that drying in the Sahel
was associated with a moderate warming trend.

4.3. Spatial patterns

Our analysis is summarised further in Fig. 4, where
we show mean linear trends in annual temperature
and precipitation during the 20th century. This ana-
lysis first filters the data using a 10-point Gaussian
filter to subdue the effects on the regression analysis
of outlier values at either end of the time period.
While warming is seen to dominate the continent (see
Fig. 1 above), some coherent areas of cooling are
noted, around Nigeria/Cameroon in West Africa and
along the coastal margins of Senegal/Mauritania and
South Africa. In contrast, warming is at a maximum
of nearly 2°C century–1 over the interior of southern
Africa and in the Mediterranean countries of north-
west Africa.
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The pattern of rainfall trends (Fig. 4) reflects the
regional analysis shown in Fig. 3, with drying of up to
25% century–1 or more over some western and eastern
parts of the Sahel. More moderate drying—5 to 15%
century–1—is also noted along the Mediterranean
coast and over large parts of Botswana and Zimbabwe
and the Transvaal in southeast Africa. The modest
wetting trend noted over East Africa is seen to be part
of a more coherent zone of wetting across most of
equatorial Africa, in some areas of up to 10% century–1

or more. Regions along the Red Sea coast have also
seen an increase in rainfall, although trends in this
arid/semi-arid region are unlikely to be very robust.

4.4. ENSO influence on rainfall

With regard to interannual rainfall variability in
Africa, the ENSO is one of the more important control-
ling factors, at least for some regions (Ropelewski &
Halpert 1987, 1989, 1996, Janowiak 1988, Dai &
Wigley 2000). These studies have established that the
2 regions in Africa with the most dominant ENSO
influences are in eastern equatorial Africa during the
short October-November rainy season and in south-
eastern Africa during the main November–February
wet season. Ropelewski & Halpert (1989) also exam-
ined Southern Oscillation and rainfall relationships
during La Niña or high index years. We have con-
ducted our own more general analysis of Southern
Oscillation rainfall variability for the African region
over the period 1901–98 using an updated and more
comprehensive data set (Hulme 1994b) than was used
by these earlier studies. We also use the Southern Os-
cillation Index (SOI) as a continuous index of Southern
Oscillation behaviour rather than designating discrete
‘warm’ (El Niño; low index) and ‘cold’ (La Niña; high
index) Southern Oscillation events as was done by
Ropelewski & Halpert (1996).

We defined an annual average SOI using the June–
May year, a definition that maximises the coherence of

individual Southern Oscillation events, and correlated
this index against seasonal rainfall in Africa. We per-
formed this analysis for the 4 conventional seasons (not
shown) and also for the 2 extended seasons of June to
October (Year 0) and November (Year 0) to April (Year
1; Fig. 5a). This analysis confirms the strength of the
previously identified relationships for equatorial east
Africa (high rainfall during a warm ENSO event) and
southern Africa (low rainfall during a warm ENSO
event). The former relationship is strongest during the
September–November rainy season (the ‘short’ rains;
not shown), with an almost complete absence of ENSO
sensitivity in this region during the February–April
season (‘long’ rains) as found by Ropelewski & Halpert
(1996). The southern African sensitivity is strongest
over South Africa during December–February before
migrating northwards over Zimbabwe and Mozam-
bique during the March–May season (not shown).
There is little rainfall sensitivity to ENSO behaviour
elsewhere in Africa, although weak tendencies for
Sahelian June–August drying (Janicot et al. 1996) and
northwest African March–May drying (El Hamly et
al. 1998) can also be found.

5. TWENTY-FIRST CENTURY CLIMATE CHANGE

For a comprehensive assessment of the impact and
implications of climate change, it is necessary to apply
a number of climate change scenarios that span a rea-
sonable range of the likely climate change distribution.
The fact that there is a distribution of future climate
changes arises not only because of incomplete under-
standing of the climate system (e.g. the unknown value
of the climate sensitivity, different climate model re-
sponses, etc.), but also because of the inherent unpre-
dictability of climate (e.g. unknowable future climate
forcings and regional differences in the climate system
response to a given forcing because of chaos). The
‘true’ climate change distribution is of course un-
known, but we can make some sensible guesses as to
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Table 2. The 4 climate scenarios. Estimates shown here are for the 2050s (i.e., 2055), but the values for the 2020s and 2080s were
also calculated. Temperature and sea-level changes assume no aerosol effects and are calculated from a 1961–90 baseline using
the MAGICC climate model (Wigley & Raper 1992, Raper et al. 1996, Wigley et al. 2000). C is annual carbon emissions from fossil
energy sources, S is annual sulphur emissions, ∆T is change in mean annual temperature, ∆SL is change in mean sea-level and 

pCO2 is the atmospheric carbon dioxide concentration

Scenario/ Population C emissions from Total S Global ∆T Global ∆SL pCO2

Climate sensitivity (billions) energy (GtC) emissions (TgS) (°C) (cm) (ppmv)

B1-low / 1.5°C 8.76 9.7 51 0.9 13 479
B2-mid / 2.5°C 9.53 11.3 55 1.5 36 492
A1-mid / 2.5°C 8.54 16.1 58 1.8 39 555
A2-high / 4.5°C 11.67 17.3 96 2.6 68 559
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its magnitude and shape and then make some choices
so as to sample a reasonable part of its range.

We have done this at a global scale by making choices
about future greenhouse gas forcings and about the
climate sensitivity (see Table 1 for definition). We fol-
low Hulme & Carter (2000) and Carter et al. (2001) in
this procedure, yielding the 4 global climate scenarios
shown in Table 2. We have chosen the SRES A2 emis-

sions scenario combined with a high climate sensitivity
(4.5°C), SRES A1 and SRES B2 combined with medium
climate sensitivities (2.5°C) and SRES B1 combined
with a low climate sensitivity (1.5°C). These 4 scenarios
are subsequently termed A2-high, A1-mid, B2-mid
and B1-low, respectively, and yield a range of global
warming by the 2050s of 0.9 to 2.6°C. We chose the
2 middle cases deliberately because, even though the
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Fig. 5. Correlation between annual (June–May) Southern Oscillation Index (SOI) and seasonal rainfall; (a,c) June–October
(Year 0) rainfall; (b,d) November–April (Year 0 to +1) rainfall. (a,b) Observed relationship over the period 1901–98; (c,d) HadCM2
model-simulated relationship over a 240 yr unforced simulation. Correlations are only plotted where they are significant at 95% 

and in regions where the respective seasonal rainfall is greater than 20 mm and greater than 20% of annual total
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global warming is similar, the worlds which underlie
the B2 and A1 emissions scenarios are quite different
(SRES). The impacts on Africa of what may be rather
similar global and regional climate changes could be
quite different in these 2 cases. For example, global
(and African) population is lower in the A1 world than
in the B2 world, but carbon and sulphur emissions and
CO2 concentrations are higher (Table 2).

Having defined these 4 global climate scenarios, we
next consider the range of climate changes for Africa
that may result from each of these 4 possible futures.
Again, we have a distribution of possible regional out-
comes for a given global warming. We use results from
the 7 GCM experiments (see Table 1) to define this
range. (Note: for HadCM2 there are 4 simulations for
the same scenario thus the total GCM sample available
to us is 10; this gives more weight in our final scenarios
to the HadCM2 responses than to the other 6 GCMs.)
We present the scenario results for seasonal mean tem-
perature and precipitation for the 2020s, 2050s and
2080s in 2 different ways: Africa-wide maps and
national-scale summary results for 4 representative
countries within Africa.

5.1. African scenario maps

The construction of the scenario maps follows the
approach of Hulme & Carter (2000) and Carter et al.
(2001). We first standardise the 2071–2100 climate
response patterns—defined relative to the 1961–90
model average—in the DDC GCMs using the global
warming values in each respective GCM. These stan-
dardised climate response patterns are then scaled by
the global warming values for our 4 scenarios and 3
time periods calculated by the MAGICC climate model
(see Table 2). Scaling of GCM response patterns in this
way assumes that local greenhouse gas-induced cli-
mate change is a linear function of global-mean tem-
perature. (See Mitchell et al. 1999 for a discussion of
this asumption). Only a selection of the full set of maps
is shown here. For each scenario, season, variable and
time slice we present 2 maps representing the change
in mean seasonal climate for the respective 30 yr
period (Figs 6 to 11). One map shows the Median
change from our sample of 10 standardised and scaled
GCM responses (left panels) and the other map shows
the absolute Range of these 10 model responses (right
panels).

We also introduce the idea of signal:noise ratios by
comparing the Median GCM change with an estimate
of natural multi-decadal climate variability. In the
maps showing the Median change we only plot these
values where they exceed the 1 standard deviation
estimate of natural 30 yr time-scale climate variability.

These estimates were extracted from the 1400 yr
unforced simulation of the HadCM2 model (Tett et al.
1997). We use a climate model simulation to quantify
the range of natural climate variability rather than
observations because the model gives us longer and
more comprehensive estimates of natural climate vari-
ability. This has the disadvantage that the climate
model may not accurately simulate natural climate
variability, although at least for some regions and on
some time-scales, HadCM2 yields estimates of natural
variability quite similar both to observations (Tett et al.
1997) and to climatic fluctuations reconstructed from
proxy records over the past millennium (Jones et al.
1998). We discuss this problem further in Section 6.

The resulting African scenario maps are therefore
informative at a number of levels:

• Africa-wide estimates are presented of mean sea-
sonal climate change (mean temperature and pre-
cipitation) for the 4 adopted climate change sce-
narios;

• These estimates are derived from a sample (a
pseudo-ensemble) of 10 different GCM simulations,
rather than being dependent on any single GCM or
GCM experiment;

• Only Median changes that exceed what may reason-
ably be expected to occur due to natural 30 yr time-
scale climate variability are plotted;

• The extent of inter-model agreement is depicted
through the Range maps.

For our scenarios, future annual warming across
Africa ranges from below 0.2°C decade–1 (B1-low sce-
nario; Fig. 6) to over 0.5°C decade–1 (A2-high; Fig. 7).
This warming is greatest over the interior semi-arid
tropical margins of the Sahara and central southern
Africa, and least in equatorial latitudes and coastal
environments. The B2-mid and A1-mid scenarios (not
shown) fall roughly in between these 2 extremes. All of
the estimated temperature changes exceed the 1 sigma
level of natural temperature variability (as defined by
unforced HadCM2 simulation), even in the B1-low sce-
nario. The inter-model range (an indicator of the extent
of agreement between different GCMs) is smallest
over northern Africa and the Equator and greatest over
the interior of central southern Africa. For example, the
inter-model range falls to less than 25% of the model
median response in the former regions, but rises to
over 60% of the model median response in the latter
areas.

Future changes in mean seasonal rainfall in Africa
are less well defined. Under the B1-low scenario, rela-
tively few regions in Africa experience a change in
either DJF or JJA rainfall that exceeds the 1 sigma
level of natural rainfall variability simulated by the
HadCM2 model (Figs 8 & 9). The exceptions are parts
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Fig. 6. Left panels: change in mean annual temperature for the 2020s, 2050s and 2080s (with respect to 1961–90) for the B1-low
scenario; median of 7 GCM experiments. Right panels: inter-model range in mean annual temperature change. See text for 

further explanation. Selected domains in the top left panel are the 4 ‘national’ regions used in Fig. 12
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Fig. 7. Left panels: Change in mean annual temperature for the 2020s, 2050s and 2080s (with respect to 1961–90) for the A2-high
scenario; median of 7 GCM experiments. Right panels: Inter-model range in mean annual temperature change. See text for 

further explanation
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Fig. 8. Left panels: Change in mean DJF rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the B1-low scenario;
median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma level of
natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. See text 

for further explanation
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Fig. 9. Left panels: Change in mean JJA rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the B1-low scenario;
median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma level of
natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. See text 

for further explanation
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Fig. 10. Left panels: Change in mean DJF rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the A2-high sce-
nario; median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma
level of natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. 
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Fig. 11. Left panels: Change in mean JJA rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the A2-high sce-
nario; median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma
level of natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. 
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of equatorial East Africa where rainfall increases by 5
to 30% in DJF and decreases by 5 to 10% in JJA. Some
areas of Sahelian West Africa and the Mahgreb also
experience ‘significant’ rainfall decreases in JJA sea-
son under the B1-low scenario. The inter-model range
for these rainfall changes is large and in the cases cited
above always exceeds the magnitude of the Median
model response. Over the seasonally arid regions of
Africa, the inter-model range becomes very large
(>100%) because of relatively large percent changes
in modelled rainfall induced by very small baseline
seasonal rainfall quantities.

With more rapid global warming (e.g. the B2-mid,
A1-mid and A2-high scenarios), increasing areas of
Africa experience changes in DJF or JJA rainfall that
do exceed the 1 sigma level of natural rainfall vari-
ability. Thus for the A2-high scenario, large areas of
equatorial Africa experience ‘significant’ increases in
DJF rainfall of up to 50 or 100% over parts of East
Africa (Fig. 10), while rainfall decreases ‘significantly’
in JJA over parts of the Horn of Africa and northwest
Africa (Fig. 11). Some ‘significant’ JJA rainfall increases
occur over the central Sahel region of Niger and Chad,
while ‘significant’ decreases in DJF rainfall (15 to 25%)
occur over much of South Africa and Namibia and
along the Mediterranean coast. The inter-model range
for these rainfall changes remains large, however, and
with very few exceptions exceeds the magnitude of the
Median model response. Even for the seasonally wet
JJA rainfall regime of the Sahel, inter-model ranges
can exceed 100%, suggesting that different GCM sim-
ulations yield (sometimes) very different regional rain-
fall responses to a given greenhouse gas forcing. This
large inter-model range in seasonal mean rainfall
response is not unique to Africa and is also found over
much of south and southwest Asia and parts of Central
America (Carter et al. 2001).

5.2. National scenario graphs

To condense this scenario information further, we
also constructed ‘national’-scale summary graphs for 4
smaller regions—centred on the countries of Senegal,
Tunisia, Ethiopia and Zimbabwe. These chosen do-
mains are shown in Fig. 6 (top left panel) and reflect
the diversity of existing climate regimes across the
continent from north to south and from west to east.
Each country graph shows, for the 2050s, the distribu-
tion of the mean annual changes in mean temperature
and precipitation for each GCM simulation and for
each of our 4 scenarios (Fig. 12). As with the continen-
tal maps, these changes are compared with the natural
multi-decadal variability of annual-mean temperature
and precipitation extracted from the HadCM2 1400 yr

unforced simulation. These graphs provide a quick
assessment at a ‘national’ scale of the likely range and
significance of future climate change and again shows
the extent to which different GCMs agree in their
regional response to a given magnitude of global
warming.

For each country there is a spread of results relating
to inter-model differences in climate response. For
example, in Tunisia the change in annual rainfall is
predominantly towards drying (only ECHAM4 dis-
plays wetting), although the magnitude of the drying
under the A2-high scenario is between 1 and 30%.
Natural climate variability is estimated to lead to dif-
ferences of up to ±10% between different 30 yr mean
climates; therefore the more extreme of these scenario
outcomes would appear to be ‘significant’ for Tunisia.
The picture would appear at first sight to be less clear
for Zimbabwe, where 4 of the GCMs suggest wetting
and 3—including the HadCM2 ensemble of 4 simula-
tions—suggest drying. However, the range of natural
variability in annual rainfall when averaged over 30 yr
is shown to be about ±6% and most of the wetting sce-
narios fall within this limit. It is the drying responses
under the more extreme A2-high, B2-mid and A1-mid
scenarios that would appear to yield a more ‘signifi-
cant’ result. 

It is also important to point out that inter-ensemble
differences in response at these national scales can
also be large. The 4-member HadCM2 ensemble for
Tunisia yields differences in rainfall change of 15% or
more, while for Ethiopia inter-ensemble differences
can lead to a sign change in the rainfall scenario. In
this latter case, however, few of these HadCM2 rainfall
changes are larger than the estimate of natural rainfall
variability for Ethiopia. It is also worth noting that the
relative regional response of different GCMs is not
always the same. Thus, for Ethiopia, the CCSR-NIES
GCM generates the most extreme wetting scenario,
whereas for Tunisia the same model yields the most
extreme drying scenario. We discuss the significance
of some of these differences and similarities between
different GCMs in our discussion of uncertainties in
Section 6.

5.3. Changes in ENSO-related rainfall variability

Given the important role that ENSO events exert on
interannual African rainfall variability, at least in some
regions, determining future changes in interannual
rainfall variability in Africa can only be properly con-
sidered in the context of changes in ENSO behaviour.
There is still ambiguity, however, about how ENSO
events may respond to global warming. This is partly
because GCMs only imperfectly simulate present
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ENSO behaviour. Tett et al. (1997) demonstrate that
HadCM2 simulates ENSO-type features in the Pacific
Ocean, but the model generates too large a warming
across the Tropics in response to El Niño events. Tim-
mermann et al. (1999), however, have recently argued
that their ECHAM4 model (see Table 1) has sufficient
resolution to simulate ‘realistic’ ENSO behaviour. They
analysed their greenhouse gas-forced simulations and
suggested that in the future there will be more frequent
and more intense ‘warm’ and ‘cold’ ENSO events, a
result also found in the HadCM2 model (Collins 2000).

What effects would such changes have on interan-
nual African rainfall variability? This not only depends
on how ENSO behaviour changes in the future, but
also upon how realistically the models simulate the
observed ENSO-rainfall relationships in Africa. Smith
& Ropelewski (1997) looked at Southern Oscillation-
rainfall relationships in the NCEP atmospheric GCM,
where the model is used to re-create observed climate
variability after being forced with observed sea surface
temperatures (SSTs). Even in this most favourable of
model experiments, the model relationships do not
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always reproduce those observed. Over southeastern
Africa, the simulated rainfall percentiles are consistent
with the observations reported by Ropelewski &
Halpert (1996), but over eastern equatorial Africa the
model simulates an relationship opposite to that
observed. The recently elucidated role of the Indian
Ocean dipole (Saji et al. 1999, Webster et al. 1999) in
modulating eastern African rainfall variability may be
one reason simple ENSO-precipitation relationships
are not well replicated by the GCMs in this region.

We analysed 240 yr of unforced simulated climate
made using the HadCM2 GCM (see Table 1) to see to
what extent this model can reproduce observed rela-
tionships. We performed the identical analysis to that
performed on the observed data in Section 4 and the
results are plotted in Fig. 5c,d. The 2 strongest ENSO
signals in African rainfall variability are only imper-
fectly reproduced by the model. The East African neg-
ative correlation in November–April is rather too weak
in the model and also too extensive, extending west-
wards across the whole African equatorial domain.
The positive correlation over southern Africa is too
weak in HadCM2 and displaced northwards by some
10° latitude. The absence of any strong and coherent
relationship during the June–October season is repro-
duced by the model (Fig. 5b).

On the basis of this analysis, and our assessment of
the literature, we are not convinced that quantifying
future changes to interannual rainfall variability in
Africa due to greenhouse gas forcing are warranted.
At the very least, this issue deserves a more thorough
investigation of ENSO-rainfall relationships in the
GCMs used here and how these relationships change
in the future. Such an analysis might also be useful in
determining the extent to which seasonal rainfall fore-
casts in Africa that rely upon ENSO signatures may
remain valid under scenarios of future greenhouse gas
forcing.

6. UNCERTAINTIES AND LIMITATIONS
TO KNOWLEDGE

In the introduction to this paper we alluded to some
of the limitations of climate change scenarios for Africa
and those shown in this paper are no exception. These
limitations arise because of, inter alia, (1) the problem
of small signal:noise ratios in some scenarios for pre-
cipitation and other variables, (2) the inability of cli-
mate model predictions to account for the influence of
land cover changes on future climate, and (3) the rela-
tively poor representation in many models of some
aspects of climate variability that are important for
Africa (e.g. ENSO). Some of these limitations have
been revealed by analyses presented earlier.

Even though we have presented a set of 4 climate
futures for Africa, where the range reflects unknown
future global greenhouse gas emissions and 3 different
values for the global climate sensitivity, we cannot
place probability estimates on these 4 outcomes with
much confidence. While this conclusion may well
apply for most, or all, world regions, it is particularly
true for Africa, where the roles of land cover change
and dust and biomass aerosols in inducing regional cli-
mate change are excluded from the climate change
model experiments reported here.

This concern is most evident in the Sahel region of
Africa. None of the model-simulated present or future
climates for this region displays behaviour in rainfall
regimes that is similar to that observed over recent
decades. This is shown in Fig. 13 where we plot the
observed regional rainfall series for 1900–98, as used
in Fig. 3, and then append the 10 model-simulated
evolutions of future rainfall for the period 2000–2100.
These future curves are extracted directly from the 10
GCM experiments reported in Table 1 and have not
been scaled to our 4 scenario values (this scaling was
performed in the construction of Figs 8 to 11 as dis-
cussed in Section 5). One can see that none of the
model rainfall curves for the Sahel displays multi-
decadal desiccation similar to what has been observed
in recent decades. This conclusion also applies to the
multi-century unforced integrations performed with
the same GCMs (Brooks 1999).

There are a number of possible reasons for this. It
could be that the climate models are poorly replicating
‘natural’ rainfall variability for this region. In particular
the possible role of ocean circulation changes in caus-
ing this desiccation (Street-Perrott & Perrott 1990) may
not be well simulated in the models. It could also be
that the cause of the observed desiccation is some pro-
cess that the models are not including. Two candidates
for such processes would be the absence of a dynamic
land cover/atmosphere feedback process and the ab-
sence of any representation of changing atmospheric
dust aerosol concentration. The former of these feed-
back processes has been suggested as being very im-
portant in determining African climate change during
the Holocene by amplifying orbitally induced African
monsoon enhancement (Kutzbach et al. 1996, Claussen
et al. 1999, Doherty et al. 2000). This feedback may
also have contributed to the more recently observed
desiccation of the Sahel (Xue 1997). The latter process
of elevated Saharan dust concentrations may also be
implicated in the recent Sahelian desiccation (Brooks
1999).

Without such a realistic simulation of observed rain-
fall variability, it is difficult to define with confidence
the true magnitude of natural rainfall variability in
these model simulations and also difficult to argue
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that these greenhouse gas-induced attributed rainfall
changes for regions in Africa will actually be those that
dominate the rainfall regimes of the 21st century.
Notwithstanding these model limitations due to omit-
ted or poorly represented processes, Fig. 13 also
illustrates the problem of small signal:noise ratios in
precipitation scenarios. The 10 individual model simu-
lations yield different signs of precipitation change for
these 3 regions as well as different magnitudes. How
much of these differences are due to model-generated

natural variability is difficult to say. In
our scenario maps (Figs 8 to 11) we pre-
sented the median precipitation change
from these 10 (scaled) model simula-
tions, implying that we can treat these
climate change simulations as individual
members of an ensemble. The ensem-
ble-mean or median therefore yields our
‘best’ estimate of the true response to
greenhouse gas forcing; much as in
numerical weather prediction the en-
semble-mean forecast is often taken as
the ‘best’ short-range weather forecast.
In our example, for the Sahel and south-
ern African the median response was
annual drying, whereas for East Africa
the median response was wetting
(Fig. 13).

One other concern about the applica-
bility in Africa of climate change sce-
narios such as those presented here is
the relationship between future climate
change predictions and seasonal rainfall
forecasts. There is increasing recogni-
tion (e.g. Downing et al. 1997, Ringius
1999, Washington & Downing 1999) that
for many areas in the tropics one of
the most pragmatic responses to the
prospect of long-term climate change is
a wish to strengthen the scientific basis
of seasonal rainfall forecasts. Where
forecasts are feasible, this should be
accompanied by improvements in the
management infrastructure to facilitate
timely responses. Such a research and
adaptation strategy focuses on the short-
term realisable goals of seasonal climate
prediction and the near-term and quan-
tifiable benefits that improved forecast
applications will yield. At the same time,
the strengthening of these institutional
structures offers the possibility that the
more slowly emerging signal of climate
change in these regions can be better
managed in the decades to come. It is

therefore an appropriate form of climate change adap-
tation. This means that 2 of the objectives of climate
change prediction should be: (a) to determine the
effect global warming may have on seasonal predict-
ability (will forecast skill levels increase or decrease or
will different predictors be needed); and (b) to deter-
mine the extent to which predicted future climate
change will impose additional strains on natural and
managed systems over and above those that are
caused by existing seasonal climate variability. For
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both of these reasons we need to improve our predic-
tions of future climate change and in particular to
improve our quantification of the uncertainties.

7. CONCLUSIONS

The climate of Africa is warmer than it was 100 yr
ago. Although there is no evidence for widespread
desiccation of the continent during this century, in
some regions substantial interannual and multi-de-
cadal rainfall variations have been observed and near
continent-wide droughts in 1983 and 1984 had some
dramatic impacts on both the environment and some
economies (Benson & Clay 1998). The extent to which
these rainfall variations are related to greenhouse gas-
induced global warming, however, remains undeter-
mined. A warming climate will nevertheless place
additional stresses on water resources, whether or not
future rainfall is significantly altered.

Model-based predictions of future greenhouse gas-
induced climate change for the continent clearly sug-
gest that this warming will continue and, in most sce-
narios, accelerate so that the continent on average
could be between 2 and 6°C warmer in 100 yr time.
While these predictions of future warming may be rel-
atively robust, there remain fundamental reasons why
we are much less confident about the magnitude, and
even direction, of regional rainfall changes in Africa.
Two of these reasons relate to the rather ambiguous
representation in most GCMs of ENSO-type climate
variability in the tropics (a key determinant of African
rainfall variability) and the omission in all current
GCMs of any representation of dynamic land cover-
atmosphere interactions and dust and biomass aero-
sols. Such interactions have been suggested to be
important in determining African climate variability
during the Holocene and may well have contributed to
the more recently observed desiccation of the Sahel.

We suggest that climate change scenarios, such as
those presented here, should nevertheless be used to
explore the sensitivity of a range of African environ-
mental and social systems, and economically valuable
assets, to a range of future climate changes. Some
examples of such exploration were presented in Dixon
et al. (1996), although in these studies there was little
co-ordinated and quantified use of a coherent set of
climate futures. Further work can be done to elaborate
on some of the higher order climate statistics associ-
ated with the changes in mean seasonal climate shown
here—particularly daily temperature and precipita-
tion extremes. It may also be worthwhile to explore
the sensitivity of these model predictions to the spatial
resolution of the models—i.e. explore the extent to
which downscaled scenarios differ from GCM-scale

scenarios—although such downscaling techniques do
not remove the fundamental reasons why we are un-
certain about future African rainfall changes. 

The exploration of African sensitivity to climate
change must also be undertaken in conjunction with
the more concrete examples we have of sensitivity to
short-term (seasonal time scale) climate variability.
These estimates may be based on observed recon-
struction of climate variability over the last century or
on the newly emerging regional seasonal rainfall fore-
casts now routinely being generated for southern, east-
ern and western Africa (e.g. NOAA 1999, SARCOF,
see also http://iri.ldeo.columbia.edu [International
Research Institute for Climate Prediction]). Because of
the uncertainties mentioned above about future
regional climate predictions for Africa, initial steps to
reduce vulnerability should focus on improved adapta-
tion to existing climate variability (Downing et al. 1997,
Adger & Kelly 1999, Ringius 1999). Thus, emphasis
would be placed on reducing vulnerability to adverse
climate events and increasing capacity to adapt to
short-term and seasonal weather conditions and cli-
matic variability. The likelihood of significant eco-
nomic and social benefits from adaptation to short-
term climate variability in Africa justifies this activity.
Additionally, and importantly, lessons from adaptation
to short-term climate variability would build capacity
to respond incrementally to longer-term changes in
local and regional climates.
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