1. INTRODUCTION

The climates of Africa are both varied and varying: varied because they range from humid equatorial regimes, through seasonally-arid tropical regimes, to sub-tropical Mediterranean-type climates, and varying because all these climates exhibit differing degrees of temporal variability, particularly with regard to rainfall. Understanding and predicting these inter-annual, inter-decadal and multi-decadal variations in climate has become the major challenge facing African and African-specialist climate scientists in recent years.

 Whilst seasonal climate forecasting has taken great strides forward, in both its development and application (Folland et al. 1991, Stockdale et al. 1998, Washington & Downing 1999, also see http://www.ogp.noaa.gov/enso/africa.html [SARCOF: Southern Africa Regional Climate Outlook Forum]), the ultimate causes of the lower frequency decadal and multi-decadal rainfall variability that affects some African climate regimes, especially in the Sahel region, remain uncertain (see Rowell et al. 1995 vs Sud & Lau 1996, also Xue & Shukla 1998). This work examining the variability of African climate, especially rainfall, is set in the wider context of our emerging understanding of human influences on the larger, global-scale climate. Increasing greenhouse gas accumulation in the global atmo-
sphere and increasing regional concentrations of aerosol particulates are now understood to have detectable effects on the global climate system (Santer et al. 1996). These effects will be manifest at regional scales although perhaps in more uncertain terms (Mitchell & Hulme 1999, Giorgi & Francisco 2000).

Africa will not be exempt from experiencing these human-induced changes in climate. Much work remains to be done, however, in trying to isolate those aspects of African climate variability that are ‘natural’ from those that are related to human influences. African climate scientists face a further challenge in that on this continent the role of land cover changes—some natural and some human-related—in modifying regional climates is perhaps most marked (Xue 1997). This role of land cover change in altering regional climate in Africa has been suggested for several decades now. As far back as the 1920s and 1930s, theories about the encroachment of the Sahara and the desiccation of the climate of West Africa were put forward (Stebbing 1935, Aubreville 1949). These ideas have been explored over the last 25 yr through modelling studies of tropical north African climate (e.g. Charney 1975, Cunnington & Rowntree 1986, Zheng & Eltahir 1997). It is for these 2 reasons—large internal climate variability driven by the oceans and the confounding role of human-induced land cover change—that climate change ‘predictions’ (or the preferable term scenarios) for Africa based on greenhouse gas warming remain highly uncertain. While global climate models (GCMs) simulate changes to African climate as a result of increased greenhouse gas concentrations, these 2 potentially important drivers of African climate variability—for example El Niño/Southern Oscillation (ENSO) (poorly) and land cover change (not at all)—are not well represented in the models.

Nevertheless, it is of considerable interest to try and explore the magnitude of the problem that the enhanced greenhouse effect may pose for African climate and for African resource managers. Are the changes that are simulated by GCMs for the next century large or small in relation to our best estimates of ‘natural’ climate variability in Africa? How well do GCM simulations agree for the African continent? And what are the limitations/uncertainties of these model predictions? Answering these questions has a very practical relevance in the context of national vulnerability and adaptation assessments of climate change currently being undertaken by many African nations as part of the reporting process to the UN Framework Convention on Climate Change. This paper makes a contribution to these assessments by providing an overview of future climate change in Africa, particularly with regard to simulations of greenhouse gas warming over the next 100 yr.

We start the paper (Section 2) by reviewing some previous climate change scenarios and analyses for regions within Africa. Such studies have been far from comprehensive. Section 3 explains the data, models and approaches that we have taken in generating our analyses and constructing our climate change scenarios for Africa. In Section 4 we consider the salient features of African climate change and variability over the last 100 yr, based on the observational record of Africa climate. Such a historical perspective is essential if the simulated climates of the next century are to be put into their proper context. Section 5 then presents our future climate change scenarios for Africa, based on the draft Special Report on Emissions Scenarios range of future greenhouse gas emissions (http://sres.ciesin.org/index.html [SRES]) and the GCM results deposited with the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (http://ipcc-ddc.cru.uea.ac.uk/index.html [DDC]). Changes in mean seasonal climate are shown as well as some measures of changed interannual variability. Section 6 then discusses these future climate simulations in the light of modelling uncertainties and in the context of other causes of African climate variability and change. We consider how much useful and reliable information these types of studies yield and how they can be incorporated into climate change impacts assessments. Our key conclusions are presented in Section 7.

2. REVIEW OF PREVIOUS AFRICAN CLIMATE CHANGE SCENARIO WORK

There has been relatively little work published on future climate change scenarios for Africa. The various IPCC assessments have of course included global maps of climate change within which Africa has featured, and in Mitchell et al. (1990) the African Sahel was one of 5 regions for which a more detailed analysis was conducted. Kittel et al. (1998) and Giorgi & Francisco (2000) also identify African regions within their global analysis of inter-model differences in climate predictions, but no detailed African scenarios are presented.

Tyson (1991) published one of the first scenario analyses specifically focused on an African region. In this case some climate change scenarios for southern Africa were constructed using results from the first generation GCM equilibrium $2 \times \text{CO}_2$ experiments. In a further development, Hulme (1994a) presented a method for creating regional climate change scenarios combining GCM results with the newly published IPCC IS92 emissions scenarios and demonstrated the application of the method for Africa. In this study mean
annual temperature and precipitation changes from 1990 to 2050 under the IS92a emission scenario were presented.

Some more recent examples of climate scenarios for Africa use results from transient GCM climate change experiments. Hernes et al. (1995) and Ringius et al. (1996) constructed climate change scenarios for the African continent that showed land areas over the Sahara and semi-arid parts of southern Africa warming by the 2050s by as much as 1.6°C and the equatorial African countries warming at a slightly slower rate of about 1.4°C. These studies, together with Joubert et al. (1996), also suggested a rise in mean sea-level around the African coastline of about 25 cm by 2050. A more selective approach to the use of GCM experiments was taken in Hulme (1996a). They described 3 future climate change scenarios for the Southern African Development Community (SADC) region of southern Africa for the 2050s on the basis of 3 different GCM experiments. These experiments were selected to deliberately span the range of precipitation changes for the SADC region as simulated by GCMs. Using these scenarios, the study then described some potential impacts and implications of climate change for agriculture, hydrology, health, biodiversity, wildlife and rangelands. A similar approach was adopted by Conway et al. (1996) for a study of the impacts of climate change on the Nile Basin. More recently, the Africa chapter (Zinyowera et al. 1998) in the IPCC Assessment of Regional Impacts of Climate Change (IPCC 1998) also reported on some GCM studies that related to the African continent.

Considerable uncertainty exists in relation to large-scale precipitation changes simulated by GCMs for Africa (Hudson 1997, Hudson & Hewitson 1997, Joubert & Hewitson 1997, Feddema 1999). Joubert & Hewitson (1997) nevertheless conclude that, in general, precipitation is simulated to increase over much of the African continent by the year 2050. These GCM studies show, for example, that parts of the Sahel could experience precipitation increases of as much as 15% over the 1961–90 average by 2050. A note of caution is needed, however, concerning such a conclusion. Hulme (1998) studied the present-day and future simulated inter-decadal precipitation variability in the Sahel using the HadCM2 GCM. These model results were compared with observations during the 20th Century. Two problems emerge. First, the GCM does not capture the same magnitude of inter-decadal precipitation variability that has been observed over the last 100 yr, casting doubt on the extent to which the most important controlling mechanisms are being simulated in the GCM. Second, the magnitude of the future simulated precipitation changes for the Sahel is not large in relation to ‘natural’ precipitation variability for this region. This low signal/noise ratio suggests that the greenhouse gas-induced climate change signals are not well defined in the model, at least for this region. We develop this line of reasoning in this paper and illustrate it in Section 5 with further examples from Africa.

Although there have been studies of GCM-simulated climate change for several regions in Africa, the downscaling of GCM outputs to finer spatial and temporal scales has received relatively little attention in Africa. Hewitson & Crane (1998) and Hewitson & Joubert (1998) have applied empirical downscaling methods to generate climate change scenarios for South Africa using artificial neural networks and predictors relating to upper air circulation and tropospheric humidity. The usual caveats, however, apply to these downscaled scenarios (Hulme & Carter 1999)—they are still dependent on the large-scale forcing from the GCMs and they still only sample one realisation of the possible range of future possible climates, albeit with higher resolution. The application of regional climate models is still in its infancy, although some initiatives are now underway for East Africa (Sun et al. 1999), West Africa (Wang & Eltahir 2000) and southern Africa (B. Hewitson pers. comm.). These initiatives have not yet generated experimental results from regional climate change simulations for use in scenario construction.

3. DATA AND METHODS

For our analyses of observed climate variability in Africa we use the global gridded data sets of Jones (1994, updated; mean temperature), Hulme (1994b, updated; precipitation), and New et al. (1999, 2000; 10 surface climate variables). These data sets are all public domain and are available, along with some documentation on their construction, from the following Web sites: GCM results were taken from the IPCC Data Distribution Centre (DDC) (http://ipcc-ddc.cru.uea.ac.uk); most of the observed data sets used here can be obtained from the Climatic Research Unit (http://www.cru.uea.ac.uk); the draft (February 1999; non-IPCC approved, but used with permission) SRES emissions scenarios were obtained from the SRES (http://sres.ciesin.org/index.html). The data sets of Jones (1994) and Hulme (1994b) exist on a relatively coarse grid (5° latitude/longitude and 2.5° latitude by 3.75° longitude respectively), while the data set of New et al. (1999, 2000) exists with a 0.5° latitude/longitude resolution. These observed data are resolved only to monthly time steps and we therefore undertake no original analyses of observed daily climate variability. For Ethiopia and Zimbabwe we analyse unpublished
monthly mean maximum and minimum temperature data for a number of stations in each country. These data originate from the respective national meteorological agencies. For the index of the Southern Oscillation we use the updated index of Ropelewski & Jones (1987), calculated as the normalised mean sea-level pressure difference between Tahiti and Darwin and available from Climate Monitor online (http://www.cru.uea.ac.uk/cru/climon).

Other climate-related and continent-wide data sets also have value for some climate analyses, whether these data are derived from satellite observations (e.g. Normalised Difference Vegetation Index or satellite-derived precipitation estimates) or from numerical weather prediction model re-analyses (e.g. the NCEP [National Centers for Environmental Prediction] re-analysis from 1948 to present). Although these alternative data sets have some real advantages in particular environmental or modelling applications (e.g. modelling malaria; Lindsay et al. 1998; evaluating dust forcing; Brooks 1999), we prefer to limit our analysis here to the use of conventional observed climate data sets derived from surface observations.

The GCM results used in this study are mainly extracted from the IPCC DDC archive. This archive contains results from climate change experiments performed with 7 coupled ocean-atmosphere global climate models (Table 1). All these experiments were conducted using similar greenhouse gas or greenhouse gas plus aerosol forcing. In this study only the results from the greenhouse gas-forced simulations are used for reasons outlined below. We also use results from the 1400 yr control simulation of the HadCM2 climate model (Tett et al. 1997) to derive model-based estimates of natural multi-decadal climate variability. The data were re-gridded using a Gaussian space-filter onto a common grid, namely the HadCM2 grid. Later results are presented on this common grid.

Climate can be affected by a number of other agents in addition to greenhouse gases; important amongst these are small particles (aerosols). These aerosols are suspended in the atmosphere and some types (e.g. sulphate aerosols derived from sulphur dioxide) reflect back solar radiation; hence they have a cooling effect on climate. Although there are no measurements to show how these aerosol concentrations have changed over the past 150 yr, there are estimates of how sulphur dioxide emissions (one of the main precursors for aerosol particles) have risen and scenarios of such emissions into the future. A number of such scenarios have been used in a sulphur cycle model to calculate the future rise in sulphate aerosol concentrations (Penner et al. 1998). When one of these scenarios was used, along with greenhouse gas increases, as input to the DDC GCMs, the global-mean temperature rise to 2100 was reduced by between a quarter and a third. The reductions over Africa were less than this.

These are very uncertain calculations, however, due to a number of factors. First, the old 1992 IPCC emissions scenario on which it was based (IS92a; Leggett et al. 1992) contains large rises in sulphur dioxide emissions over the next century. Newer emissions scenarios, including the draft SRES scenarios, estimate only a small rise in sulphur dioxide emissions over the next couple of decades followed by reductions to levels lower than today’s by 2100 (SRES). Over Africa, sulphur emissions remain quite low for the whole of this century. The inclusion of such modest sulphur dioxide emissions scenarios in GCM experiments would actually produce a small temperature rise relative to model experiments that excluded the aerosol effect (Schlesinger et al. 2000). Results from GCM experiments using these revised sulphur scenarios are not yet widely available. Second, more recent sulphur cycle models generate a lower sulphate burden per tonne of sulphur dioxide emissions and the radiative effect of

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>Approximate resolution (lat. × long.)</th>
<th>Climate sensitivity (°C)</th>
<th>Integration length</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSR-NIES</td>
<td>5.62° × 5.62°</td>
<td>3.5</td>
<td>1890–2099</td>
<td>Emori et al. (1999)</td>
</tr>
<tr>
<td>CGCM1</td>
<td>3.75° × 3.75°</td>
<td>3.5</td>
<td>1900–2100</td>
<td>Boer et al. (2000)</td>
</tr>
<tr>
<td>CSIRO-Mk2</td>
<td>3.21° × 3.21°</td>
<td>4.3</td>
<td>1881–2100</td>
<td>Hirst et al. (2000)</td>
</tr>
<tr>
<td>ECHAM4</td>
<td>2.81° × 2.81°</td>
<td>2.6</td>
<td>1860–2099</td>
<td>Roeckner et al. (1996)</td>
</tr>
<tr>
<td>GFDL-R15</td>
<td>4.50° × 7.50°</td>
<td>3.7</td>
<td>1958–2057</td>
<td>Haywood et al. (1997)</td>
</tr>
<tr>
<td>HadCM2*</td>
<td>2.50° × 7.50°</td>
<td>2.5</td>
<td>1860–2099</td>
<td>Mitchell & Johns (1997)</td>
</tr>
</tbody>
</table>

*An ensemble of 4 climate change simulations were available from the HadCM2 model
the sulphate particles in more sophisticated radiation models is smaller than previously calculated. Third, in addition to their direct effect, sulphate aerosols can also indirectly cool climate by changing the reflectivity and longevity of clouds (Schimel et al. 1996). These indirect effects are now realised as being at least as important as the direct effect, but were not included in the present DDC GCM climate change simulations.

Fourth, there are other types of aerosols (e.g. carbon or soot) which may also have increased due to human activity, but which act to warm the atmosphere. Finally and above all, the short lifetime of sulphate particles in the atmosphere means that they should be seen as a temporary masking effect on the underlying warming trend due to greenhouse gases. For all these reasons, model simulations of future climate change using both greenhouse gases and sulphate aerosols have not been used to develop the climate change scenarios illustrated in this paper.

The future greenhouse gas forcing scenario used in the DDC experiments approximated a 1% annum\(^{-1}\) growth in greenhouse gas concentrations over the period from 1990 to 2100. Since the future growth in anthropogenic greenhouse gas forcing is highly uncertain, it is important that our climate scenarios for Africa reflect this uncertainty; it would be misleading to construct climate change scenarios that reflected just one future emissions growth curve. We therefore adopt the 4 draft marker emissions scenarios of the IPCC SRES: B1, B2, A1 and A2. None of these emissions scenarios assume any climate policy implementation; the differences result from alternative developments in global population, the economy and technology. Our method of climate change scenario construction follows that adopted by Hulme & Carter (2000) in their generation of climate change scenarios for Europe as part of the ACACIA assessment of climate impact in Europe. Full details may be found there, but we provide a short summary of the method in Section 5 below.

4. TWENTIETH CENTURY CLIMATE CHANGE

4.1. Temperature

The continent of Africa is warmer than it was 100 yr ago. Warming through the 20th century has been at the rate of about 0.5°C century\(^{-1}\) (Fig. 1), with slightly larger warming in the June–August (JJA) and September–November (SON) seasons than in December–February (DJF) and March–May (MAM). The 6 warmest years in Africa have all occurred since 1987, with 1998 being the warmest year. This rate of warming is not dissimilar to that experienced globally, and the periods of most rapid warming—the 1910s to 1930s and the post-1970s—occur simultaneously in Africa and the rest of the world.

Few studies have examined long-term changes in the diurnal cycle of temperature in Africa. Here, we show results for 4 countries for which studies have been published or data were available for analysis—for Sudan and South Africa as published by Jones & Lindesay (1993) and for Ethiopia and Zimbabwe (unpubl.). While a majority of the Earth’s surface has experienced a decline in the mean annual diurnal temperature range (DTR) as climate has warmed (Nicholls et al. 1996), our examples here show contrasting trends for these 4 African countries. Mean annual DTR decreased by between 0.5 and 1°C since the 1950s in Sudan and Ethiopia, but increased by a similar amount in Zimbabwe (Fig. 2). In South Africa, DTR decreased during the 1950s and 1960s, but has remained quite stable since then. Examination of the seasonal variation in these trends (not shown) suggests that different factors contribute to DTR trends in different seasons and in different countries. For example, in Sudan DTR shows an

![Fig. 1. Mean surface air temperature anomalies for the African continent, 1901–98, expressed with respect to the 1961–90 average; annual and 4 seasons—DJF, MAM, JJA, SON. The smooth curves result from applying a 10 yr Gaussian filter](image-url)
increasing trend during the July–September wet season, probably caused by trends towards reduced cloudiness, while DTR decreased during the rest of the year, probably due to trends for increased dustiness (Brooks 1999). Both of these factors are related to the multi-decadal drought experienced in Sudan since the 1950s (Hulme 2001). The long-term increase in annual DTR in Zimbabwe is due almost entirely to increases during the November–February wet season; trends during the rest of the year have been close to zero. We are not aware of published analyses of diurnal temperature trends in other African countries.

4.2. Rainfall

Interannual rainfall variability is large over most of Africa and for some regions, most notably the Sahel, multi-decadal variability in rainfall has also been substantial. Reviews of 20th Century African rainfall variability have been provided by, among others, Janowiak (1988), Hulme (1992) and Nicholson (1994). To illustrate something of this variability we present an analysis for the 3 regions of Africa used by Hulme (1996b)—the Sahel, East Africa and southeast Africa (domains shown in Fig. 4). These 3 regions exhibit contrasting rainfall variability characteristics (Fig. 3): the Sahel displays large multi-decadal variability with recent drying, East Africa a relatively stable regime with some evidence of long-term wetting, and southeast Africa also a basically stable regime, but with marked inter-decadal variability. In recent years Sahel rainfall has been quite stable around the 1961–90 annual average of 371 mm, although this 30 yr period is substantial drier (about 25%) than earlier decades this century. In East Africa, 1997 was a very wet year and, as in 1961 and 1963, led to a surge in the level of Lake Victoria (Birkett et al. 1999). Recent analyses (Saji et al. 1999, Webster et al. 1999) have suggested these extreme wet years in East Africa are related to a dipole
mode of variability in the Indian Ocean. In southeast Africa, the dry years of the early 1990s were followed by 2 very wet years in 1995/96 and 1996/97. Mason et al. (1999) report an increase in recent decades in the frequency of the most intense daily precipitation over South Africa, even though there is little long-term trend in total annual rainfall amount.

Fig. 3 also displays the trends in annual temperature for these same 3 regions. Temperatures for all 3 regions during the 1990s are higher than they were earlier in the century (except for a period at the end of the 1930s in the Sahel) and are currently between 0.2 and 0.3°C warmer than the 1961–90 average. There is no simple correlation between temperature and rainfall in these 3 regions, although Hulme (1996b) noted that drying in the Sahel was associated with a moderate warming trend.

4.3. Spatial patterns

Our analysis is summarised further in Fig. 4, where we show mean linear trends in annual temperature and precipitation during the 20th century. This analysis first filters the data using a 10-point Gaussian filter to subdue the effects on the regression analysis of outlier values at either end of the time period. While warming is seen to dominate the continent (see Fig. 1 above), some coherent areas of cooling are noted, around Nigeria/Cameroon in West Africa and along the coastal margins of Senegal/Mauritania and South Africa. In contrast, warming is at a maximum of nearly 2°C century⁻¹ over the interior of southern Africa and in the Mediterranean countries of northwest Africa.

Fig. 4. Mean linear trends in annual temperature (°C century⁻¹) and annual rainfall (% century⁻¹), calculated over the period 1901–95 from the New et al. (1999, 2000) data set. Data were filtered with a 10-point Gaussian filter before being subject to regression analysis. The 3 regions shown are those depicted in Figs 3 & 13.
The pattern of rainfall trends (Fig. 4) reflects the regional analysis shown in Fig. 3, with drying of up to 25% century\(^{-1}\) or more over some western and eastern parts of the Sahel. More moderate drying—5 to 15% century\(^{-1}\)—is also noted along the Mediterranean coast and over large parts of Botswana and Zimbabwe and the Transvaal in southeast Africa. The modest wetting trend noted over East Africa is seen to be part of a more coherent zone of wetting across most of equatorial Africa, in some areas of up to 10% century\(^{-1}\) or more. Regions along the Red Sea coast have also seen an increase in rainfall, although trends in this arid/semi-arid region are unlikely to be very robust.

4.4. ENSO influence on rainfall

With regard to interannual rainfall variability in Africa, the ENSO is one of the more important controlling factors, at least for some regions (Ropelewski & Halpert 1987, 1989, 1996, Janowiak 1988, Dai & Wigley 2000). These studies have established that the 2 regions in Africa with the most dominant ENSO influences are in eastern equatorial Africa during the short October-November rainy season and in southeastern Africa during the main November–February wet season. Ropelewski & Halpert (1989) also examined Southern Oscillation and rainfall relationships during La Niña or high index years. We have conducted our own more general analysis of Southern Oscillation rainfall variability for the African region over the period 1901–98 using an updated and more comprehensive data set (Hulme 1994b) than was used by these earlier studies. We also use the Southern Oscillation Index (SOI) as a continuous index of Southern Oscillation behaviour rather than designating discrete ‘warm’ (El Niño; low index) and ‘cold’ (La Niña; high index) Southern Oscillation events as was done by Ropelewski & Halpert (1996).

We defined an annual average SOI using the June–May year, a definition that maximises the coherence of individual Southern Oscillation events, and correlated this index against seasonal rainfall in Africa. We performed this analysis for the 4 conventional seasons (not shown) and also for the 2 extended seasons of June to October (Year 0) and November (Year 0) to April (Year 1; Fig. 5a). This analysis confirms the strength of the previously identified relationships for equatorial east Africa (high rainfall during a warm ENSO event) and southern Africa (low rainfall during a warm ENSO event). The former relationship is strongest during the September–November rainy season (the ‘short’ rains; not shown), with an almost complete absence of ENSO sensitivity in this region during the February–April season (‘long’ rains) as found by Ropelewski & Halpert (1996). The southern African sensitivity is strongest over South Africa during December–February before migrating northwards over Zimbabwe and Mozambique during the March–May season (not shown). There is little rainfall sensitivity to ENSO behaviour elsewhere in Africa, although weak tendencies for Sahelian June–August drying (Janicot et al. 1996) and northwest African March–May drying (El Hamly et al. 1998) can also be found.

5. TWENTY-FIRST CENTURY CLIMATE CHANGE

For a comprehensive assessment of the impact and implications of climate change, it is necessary to apply a number of climate change scenarios that span a reasonable range of the likely climate change distribution. The fact that there is a distribution of future climate changes arises not only because of incomplete understanding of the climate system (e.g. the unknown value of the climate sensitivity, different climate model responses, etc.), but also because of the inherent unpredictability of climate (e.g. unknowable future climate forcings and regional differences in the climate system response to a given forcing because of chaos). The ‘true’ climate change distribution is of course unknown, but we can make some sensible guesses as to

<table>
<thead>
<tr>
<th>Scenario/Climate sensitivity</th>
<th>Population (billions)</th>
<th>C emissions from energy (GtC)</th>
<th>Total S emissions (TgS)</th>
<th>Global ΔT (°C)</th>
<th>Global ΔSL (cm)</th>
<th>ΔpCO₂ (ppmv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-low / 1.5°C</td>
<td>8.76</td>
<td>9.7</td>
<td>51</td>
<td>0.9</td>
<td>13</td>
<td>479</td>
</tr>
<tr>
<td>B2-mid / 2.5°C</td>
<td>9.53</td>
<td>11.3</td>
<td>55</td>
<td>1.5</td>
<td>36</td>
<td>492</td>
</tr>
<tr>
<td>A1-mid / 2.5°C</td>
<td>8.54</td>
<td>16.1</td>
<td>58</td>
<td>1.8</td>
<td>39</td>
<td>555</td>
</tr>
<tr>
<td>A2-high / 4.5°C</td>
<td>11.67</td>
<td>17.3</td>
<td>96</td>
<td>2.6</td>
<td>68</td>
<td>559</td>
</tr>
</tbody>
</table>
its magnitude and shape and then make some choices so as to sample a reasonable part of its range.

We have done this at a global scale by making choices about future greenhouse gas forcings and about the climate sensitivity (see Table 1 for definition). We follow Hulme & Carter (2000) and Carter et al. (2001) in this procedure, yielding the 4 global climate scenarios shown in Table 2. We have chosen the SRES A2 emissions scenario combined with a high climate sensitivity (4.5°C), SRES A1 and SRES B2 combined with medium climate sensitivities (2.5°C) and SRES B1 combined with a low climate sensitivity (1.5°C). These 4 scenarios are subsequently termed A2-high, A1-mid, B2-mid and B1-low, respectively, and yield a range of global warming by the 2050s of 0.9 to 2.6°C. We chose the 2 middle cases deliberately because, even though the
global warming is similar, the worlds which underlie the B2 and A1 emissions scenarios are quite different (SRES). The impacts on Africa of what may be rather similar global and regional climate changes could be quite different in these 2 cases. For example, global (and African) population is lower in the A1 world than in the B2 world, but carbon and sulphur emissions and CO₂ concentrations are higher (Table 2).

Having defined these 4 global climate scenarios, we next consider the range of climate changes for Africa that may result from each of these 4 possible futures. Again, we have a distribution of possible regional outcomes for a given global warming. We use results from the 7 GCM experiments (see Table 1) to define this range. (Note: for HadCM2 there are 4 simulations for the same scenario thus the total GCM sample available to us is 10; this gives more weight in our final scenarios to the HadCM2 responses than to the other 6 GCMs.) We present the scenario results for seasonal mean temperature and precipitation for the 2020s, 2050s and 2080s in 2 different ways: Africa-wide maps and national-scale summary results for 4 representative countries within Africa.

5.1. African scenario maps

The construction of the scenario maps follows the approach of Hulme & Carter (2000) and Carter et al. (2001). We first standardise the 2071–2100 climate response patterns—defined relative to the 1961–90 model average—in the DDC GCMs using the global warming values in each respective GCM. These standardised climate response patterns are then scaled by the global warming values for our 4 scenarios and 3 time periods calculated by the MAGICC climate model (see Table 2). Scaling of GCM response patterns in this way assumes that local greenhouse gas-induced climate change is a linear function of global-mean temperature. (See Mitchell et al. 1999 for a discussion of this assumption). Only a selection of the full set of maps is shown here. For each scenario, season, variable and time slice we present 2 maps representing the change in mean seasonal climate for the respective 30 yr period (Figs 6 to 11). One map shows the Median change from our sample of 10 standardised and scaled GCM responses (left panels) and the other map shows the absolute Range of these 10 model responses (right panels).

We also introduce the idea of signal:noise ratios by comparing the Median GCM change with an estimate of natural multi-decadal climate variability. In the maps showing the Median change we only plot these values where they exceed the 1 standard deviation estimate of natural 30 yr time-scale climate variability. These estimates were extracted from the 1400 yr unforced simulation of the HadCM2 model (Tett et al. 1997). We use a climate model simulation to quantify the range of natural climate variability rather than observations because the model gives us longer and more comprehensive estimates of natural climate variability. This has the disadvantage that the climate model may not accurately simulate natural climate variability, although at least for some regions and on some time-scales, HadCM2 yields estimates of natural variability quite similar both to observations (Tett et al. 1997) and to climatic fluctuations reconstructed from proxy records over the past millennium (Jones et al. 1998). We discuss this problem further in Section 6.

The resulting African scenario maps are therefore informative at a number of levels:

- Africa-wide estimates are presented of mean seasonal climate change (mean temperature and precipitation) for the 4 adopted climate change scenarios;
- These estimates are derived from a sample (a pseudo-ensemble) of 10 different GCM simulations, rather than being dependent on any single GCM or GCM experiment;
- Only Median changes that exceed what may reasonably be expected to occur due to natural 30 yr timescale climate variability are plotted;
- The extent of inter-model agreement is depicted through the Range maps.

For our scenarios, future annual warming across Africa ranges from below 0.2°C decade⁻¹ (B1-low scenario; Fig. 6) to over 0.5°C decade⁻¹ (A2-high; Fig. 7). This warming is greatest over the interior semi-arid tropical margins of the Sahara and central southern Africa, and least in equatorial latitudes and coastal environments. The B2-mid and A1-mid scenarios (not shown) fall roughly in between these 2 extremes. All of the estimated temperature changes exceed the 1 sigma level of natural temperature variability (as defined by unforced HadCM2 simulation), even in the B1-low scenario. The inter-model range (an indicator of the extent of agreement between different GCMs) is smallest over northern Africa and the Equator and greatest over the interior of central southern Africa. For example, the inter-model range falls to less than 25% of the model median response in the former regions, but rises to over 60% of the model median response in the latter areas.

Future changes in mean seasonal rainfall in Africa are less well defined. Under the B1-low scenario, relatively few regions in Africa experience a change in either DJF or JJA rainfall that exceeds the 1 sigma level of natural rainfall variability simulated by the HadCM2 model (Figs 8 & 9). The exceptions are parts
Fig. 6. Left panels: change in mean annual temperature for the 2020s, 2050s and 2080s (with respect to 1961–90) for the B1-low scenario; median of 7 GCM experiments. Right panels: inter-model range in mean annual temperature change. See text for further explanation. Selected domains in the top left panel are the 4 ‘national’ regions used in Fig. 12.
Fig. 7. Left panels: Change in mean annual temperature for the 2020s, 2050s and 2080s (with respect to 1961–90) for the A2-high scenario, median of 7 GCM experiments. Right panels: Inter-model range in mean annual temperature change. See text for further explanation.
Fig. 8. Left panels: Change in mean DJF rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the B1-low scenario; median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma level of natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. See text for further explanation.
Fig. 9. Left panels: Change in mean JJA rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the B1-low scenario; median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma level of natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. See text for further explanation.
Fig. 10. Left panels: Change in mean DJF rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the A2-high scenario; median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma level of natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. See text for further explanation.
Fig. 11. Left panels: Change in mean JJA rainfall for the 2020s, 2050s and 2080s (with respect to 1961–90) for the A2-high scenario, median of 7 GCM experiments. For areas with no change shown the model median response fails to exceed the 1 sigma level of natural rainfall variability as defined by HadCM2. Right panels: Inter-model range in mean annual temperature change. See text for further explanation.
of equatorial East Africa where rainfall increases by 5 to 30% in DJF and decreases by 5 to 10% in JJA. Some areas of Sahelian West Africa and the Mahgreb also experience ‘significant’ rainfall decreases in JJA season under the B1-low scenario. The inter-model range for these rainfall changes is large and in the cases cited above always exceeds the magnitude of the Median model response. Over the seasonally arid regions of Africa, the inter-model range becomes very large (>100%) because of relatively large percent changes in modelled rainfall induced by very small baseline seasonal rainfall quantities.

With more rapid global warming (e.g. the B2-mid, A1-mid and A2-high scenarios), increasing areas of Africa experience changes in DJF or JJA rainfall that do exceed the 1 sigma level of natural rainfall variability. Thus for the A2-high scenario, large areas of equatorial Africa experience ‘significant’ increases in DJF rainfall of up to 50 or 100% over parts of East Africa (Fig. 10), while rainfall decreases ‘significantly’ in JJA over parts of the Horn of Africa and northwest Africa (Fig. 11). Some ‘significant’ JJA rainfall increases occur over the central Sahel region of Niger and Chad, while ‘significant’ decreases in DJF rainfall (15 to 25%) occur over much of South Africa and Namibia and along the Mediterranean coast. The inter-model range for these rainfall changes remains large, however, and with very few exceptions exceeds the magnitude of the Median model response. Even for the seasonally wet JJA rainfall regime of the Sahel, inter-model ranges can exceed 100%, suggesting that different GCM simulations yield (sometimes) very different regional rainfall responses to a given greenhouse gas forcing. This large inter-model range in seasonal mean rainfall response is not unique to Africa and is also found over much of south and southwest Asia and parts of Central America (Carter et al. 2001).

5.2. National scenario graphs

To condense this scenario information further, we also constructed ‘national’-scale summary graphs for 4 smaller regions—centred on the countries of Senegal, Tunisia, Ethiopia and Zimbabwe. These chosen domains are shown in Fig. 6 (top left panel) and reflect the diversity of existing climate regimes across the continent from north to south and from west to east. Each country graph shows, for the 2050s, the distribution of the mean annual changes in mean temperature and precipitation for each GCM simulation and for each of our 4 scenarios (Fig. 12). As with the continental maps, these changes are compared with the natural multi-decadal variability of annual-mean temperature and precipitation extracted from the HadCM2 1400 yr unforced simulation. These graphs provide a quick assessment at a ‘national’ scale of the likely range and significance of future climate change and again shows the extent to which different GCMs agree in their regional response to a given magnitude of global warming.

For each country there is a spread of results relating to inter-model differences in climate response. For example, in Tunisia the change in annual rainfall is predominantly towards drying (only ECHAM4 displays wetting), although the magnitude of the drying under the A2-high scenario is between 1 and 30%. Natural climate variability is estimated to lead to differences of up to ±10% between different 30 yr mean climates; therefore the more extreme of these scenario outcomes would appear to be ‘significant’ for Tunisia. The picture would appear at first sight to be less clear for Zimbabwe, where 4 of the GCMs suggest wetting and 3—including the HadCM2 ensemble of 4 simulations—suggest drying. However, the range of natural variability in annual rainfall when averaged over 30 yr is shown to be about ±6% and most of the wetting scenarios fall within this limit. It is the drying responses under the more extreme A2-high, B2-mid and A1-mid scenarios that would appear to yield a more ‘significant’ result.

It is also important to point out that inter-ensemble differences in response at these national scales can also be large. The 4-member HadCM2 ensemble for Tunisia yields differences in rainfall change of 15% or more, while for Ethiopia inter-ensemble differences can lead to a sign change in the rainfall scenario. In this latter case, however, few of these HadCM2 rainfall changes are larger than the estimate of natural rainfall variability for Ethiopia. It is also worth noting that the relative regional response to a given magnitude of global warming.

5.3. Changes in ENSO-related rainfall variability

Given the important role that ENSO events exert on interannual African rainfall variability, at least in some regions, determining future changes in interannual rainfall variability in Africa can only be properly considered in the context of changes in ENSO behaviour. There is still ambiguity, however, about how ENSO events may respond to global warming. This is partly because GCMs only imperfectly simulate present
ENSO behaviour. Tett et al. (1997) demonstrate that HadCM2 simulates ENSO-type features in the Pacific Ocean, but the model generates too large a warming across the Tropics in response to El Niño events. Timmermann et al. (1999), however, have recently argued that their ECHAM4 model (see Table 1) has sufficient resolution to simulate ‘realistic’ ENSO behaviour. They analysed their greenhouse gas-forced simulations and suggested that in the future there will be more frequent and more intense ‘warm’ and ‘cold’ ENSO events, a result also found in the HadCM2 model (Collins 2000).

What effects would such changes have on interannual African rainfall variability? This not only depends on how ENSO behaviour changes in the future, but also upon how realistically the models simulate the observed ENSO-rainfall relationships in Africa. Smith & Ropelewska (1997) looked at Southern Oscillation-rainfall relationships in the NCEP atmospheric GCM, where the model is used to re-create observed climate variability after being forced with observed sea surface temperatures (SSTs). Even in this most favourable of model experiments, the model relationships do not

Fig. 12. Change in mean annual temperature and precipitation for the 2050s (with respect to 1961–90) for regions centred on Senegal, Tunisia, Ethiopia and Zimbabwe (see Fig. 6, top left panel, for selected domains). Results from the 7 DDC GCMs are shown, scaled to reflect the 4 climate change scenarios adopted in this study: A2-high, A1-mid, B2-mid and B1-low. Note: the HadCM2 GCM has 4 results reflecting the 4-member ensemble simulations completed with this GCM. The bold lines centred on the origin indicate the 2 standard deviation limits of natural 30 yr time-scale natural climate variability defined by the 1400 yr HadCM2 control simulation.

always reproduce those observed. Over southeastern Africa, the simulated rainfall percentiles are consistent with the observations reported by Ropelewski & Halpert (1996), but over eastern equatorial Africa the model simulates an relationship opposite to that observed. The recently elucidated role of the Indian Ocean dipole (Saji et al. 1999, Webster et al. 1999) in modulating eastern African rainfall variability may be one reason simple ENSO-precipitation relationships are not well replicated by the GCMs in this region.

We analysed 240 yr of unforced simulated climate made using the HadCM2 GCM (see Table 1) to see to what extent this model can reproduce observed relationships. We performed the identical analysis to that performed on the observed data in Section 4 and the results are plotted in Fig. 5c,d. The 2 strongest ENSO signals in African rainfall variability are only imperfectly reproduced by the model. The East African negative correlation in November–April is rather too weak in the model and also too extensive, extending westwards across the whole African equatorial domain. The positive correlation over southern Africa is too weak in HadCM2 and displaced northwards by some 10° latitude. The absence of any strong and coherent relationship during the June–October season is reproduced by the model (Fig. 5b).

On the basis of this analysis, and our assessment of the literature, we are not convinced that quantifying future changes to interannual rainfall variability in Africa due to greenhouse gas forcing are warranted. At the very least, this issue deserves a more thorough investigation of ENSO-rainfall relationships in the GCMs used here and how these relationships change in the future. Such an analysis might also be useful in determining the extent to which seasonal rainfall forecasts in Africa that rely upon ENSO signatures may remain valid under scenarios of future greenhouse gas forcing.

Even though we have presented a set of 4 climate futures for Africa, where the range reflects unknown future global greenhouse gas emissions and 3 different values for the global climate sensitivity, we cannot place probability estimates on these 4 outcomes with much confidence. While this conclusion may well apply for most, or all, world regions, it is particularly true for Africa, where the roles of land cover change and dust and biomass aerosols in inducing regional climate change are excluded from the climate change model experiments reported here.

This concern is most evident in the Sahel region of Africa. None of the model-simulated present or future climates for this region displays behaviour in rainfall regimes that is similar to that observed over recent decades. This is shown in Fig. 13 where we plot the observed regional rainfall series for 1900–98, as used in Fig. 3, and then append the 10 model-simulated evolutions of future rainfall for the period 2000–2100. These future curves are extracted directly from the 10 GCM experiments reported in Table 1 and have not been scaled to our 4 scenario values (this scaling was performed in the construction of Figs 8 to 11 as discussed in Section 5). One can see that none of the model rainfall curves for the Sahel displays multi-decadal desiccation similar to what has been observed in recent decades. This conclusion also applies to the multi-century unforced integrations performed with the same GCMs (Brooks 1999).

There are a number of possible reasons for this. It could be that the climate models are poorly replicating ‘natural’ rainfall variability for this region. In particular the possible role of ocean circulation changes in causing this desiccation (Street-Perrott & Perrott 1990) may not be well simulated in the models. It could also be that the cause of the observed desiccation is some process that the models are not including. Two candidates for such processes would be the absence of a dynamic land cover/atmosphere feedback process and the absence of any representation of changing atmospheric dust aerosol concentration. The former of these feedback processes has been suggested as being very important in determining African climate change during the Holocene by amplifying orbitally induced African monsoon enhancement (Kutzbach et al. 1996, Claussen et al. 1999, Doherty et al. 2000). This feedback may also have contributed to the more recently observed desiccation of the Sahel (Xue 1997). The latter process of elevated Saharan dust concentrations may also be implicated in the recent Sahelian desiccation (Brooks 1999).

Without such a realistic simulation of observed rainfall variability, it is difficult to define with confidence the true magnitude of natural rainfall variability in these model simulations and also difficult to argue
that these greenhouse gas-induced attributed rainfall changes for regions in Africa will actually be those that dominate the rainfall regimes of the 21st century. Notwithstanding these model limitations due to omitted or poorly represented processes, Fig. 13 also illustrates the problem of small signal:noise ratios in precipitation scenarios. The 10 individual model simulations yield different signs of precipitation change for these 3 regions as well as different magnitudes. How much of these differences are due to model-generated natural variability is difficult to say. In our scenario maps (Figs 8 to 11) we presented the median precipitation change from these 10 (scaled) model simulations, implying that we can treat these climate change simulations as individual members of an ensemble. The ensemble-mean or median therefore yields our ‘best’ estimate of the true response to greenhouse gas forcing; much as in numerical weather prediction the ensemble-mean forecast is often taken as the ‘best’ short-range weather forecast. In our example, for the Sahel and southern African the median response was annual drying, whereas for East Africa the median response was wetting (Fig. 13).

One other concern about the applicability in Africa of climate change scenarios such as those presented here is the relationship between future climate change predictions and seasonal rainfall forecasts. There is increasing recognition (e.g. Downing et al. 1997, Ringius 1999, Washington & Downing 1999) that for many areas in the tropics one of the most pragmatic responses to the prospect of long-term climate change is a wish to strengthen the scientific basis of seasonal rainfall forecasts. Where forecasts are feasible, this should be accompanied by improvements in the management infrastructure to facilitate timely responses. Such a research and adaptation strategy focuses on the short-term realisable goals of seasonal climate prediction and the near-term and quantifiable benefits that improved forecast applications will yield. At the same time, the strengthening of these institutional structures offers the possibility that the more slowly emerging signal of climate change in these regions can be better managed in the decades to come. It is therefore an appropriate form of climate change adaptation. This means that 2 of the objectives of climate change prediction should be: (a) to determine the effect global warming may have on seasonal predictability (will forecast skill levels increase or decrease or will different predictors be needed); and (b) to determine the extent to which predicted future climate change will impose additional strains on natural and managed systems over and above those that are caused by existing seasonal climate variability. For
both of these reasons we need to improve our predictions of future climate change and in particular to improve our quantification of the uncertainties.

7. CONCLUSIONS

The climate of Africa is warmer than it was 100 yr ago. Although there is no evidence for widespread desiccation of the continent during this century, in some regions substantial interannual and multi-decadal rainfall variations have been observed and near continent-wide droughts in 1983 and 1984 had some dramatic impacts on both the environment and some economies (Benson & Clay 1998). The extent to which these rainfall variations are related to greenhouse gas-induced global warming, however, remains undetermined. A warming climate will nevertheless place additional stresses on water resources, whether or not future rainfall is significantly altered.

Model-based predictions of future greenhouse gas-induced climate change for the continent clearly suggest that this warming will continue and, in most scenarios, accelerate so that the continent on average could be between 2 and 6°C warmer in 100 yr time. While these predictions of future warming may be relatively robust, there remain fundamental reasons why we are much less confident about the magnitude, and even direction, of regional rainfall changes in Africa. Two of these reasons relate to the rather ambiguous representation in most GCMs of ENSO-type climate variability in the tropics (a key determinant of African rainfall variability) and the omission in all current GCMs of any representation of dynamic land cover-atmosphere interactions and dust and biomass aerosols. Such interactions have been suggested to be important in determining African climate variability during the Holocene and may well have contributed to the more recently observed desiccation of the Sahel.

We suggest that climate change scenarios, such as those presented here, should nevertheless be used to explore the sensitivity of a range of African environmental and social systems, and economically valuable assets, to a range of future climate changes. Some examples of such exploration were presented in Dixon et al. (1996), although in these studies there was little co-ordinated and quantified use of a coherent set of climate futures. Further work can be done to elaborate on some of the higher order climate statistics associated with the changes in mean seasonal climate shown here—particularly daily temperature and precipitation extremes. It may also be worthwhile to explore the sensitivity of these model predictions to the spatial resolution of the models—i.e. explore the extent to which downscaled scenarios differ from GCM-scale scenarios—although such downscaling techniques do not remove the fundamental reasons why we are uncertain about future African rainfall changes.

The exploration of African sensitivity to climate change must also be undertaken in conjunction with the more concrete examples we have of sensitivity to short-term (seasonal time scale) climate variability. These estimates may be based on observed reconstruction of climate variability over the last century or on the newly emerging regional seasonal rainfall forecasts now routinely being generated for southern, eastern and western Africa (e.g. NOAA 1999, SARCOF, see also http://iri.ldeo.columbia.edu [International Research Institute for Climate Prediction]). Because of the uncertainties mentioned above about future regional climate predictions for Africa, initial steps to reduce vulnerability should focus on improved adaptation to existing climate variability (Downing et al. 1997, Adger & Kelly 1999, Ringius 1999). Thus, emphasis would be placed on reducing vulnerability to adverse climate events and increasing capacity to adapt to short-term and seasonal weather conditions and climatic variability. The likelihood of significant economic and social benefits from adaptation to short-term climate variability in Africa justifies this activity. Additionally, and importantly, lessons from adaptation to short-term climate variability would build capacity to respond incrementally to longer-term changes in local and regional climates.

Acknowledgements. The Climate Impacts LINK Project (funded by DETR Contract No. EPG 1/1/68) contributed computing facilities and staff time for RMD. T.N. was supported by an IGBP/START Fellowship. The MAGICC climate model was used with the permission of Tom Wigley and Sarah Raper.

LITERATURE CITED

Carter TR, Hulme M, Tuomenvirta H, New MG, Osborn TJ,
Crossley J, Doherty RM, Jones PD (2001) Interim characterizations of regional climate and related changes up to 2100 associated with the preliminary SRES emissions scenarios. FEI Report, Helsinki
Hulme M (1994a) Regional climate change scenarios based on IPCC emissions projections with some illustrations for Africa. Area 26:33–44
Hulme M (ed) (1996a) Climate change and southern Africa: an exploration of some potential impacts and implications in the SADC region. CRU/WWF, Norwich

Mitchell JFB, Manabe S, Meleshko V, Tokioka T (1990) Equi-

Roeckner E (1999) Increased El Niño frequency in a cli-

Roeckner E (1999) Increased El Niño frequency in a cli-

Roeckner E (1999) Increased El Niño frequency in a cli-
Wigley TML, Raper SCB (1992) Implications of revised IPCC emissions scenarios Nature 357:293–300

Submitted: July 18, 1999; Accepted: October 11, 2000

Proofs received from author(s): February 12, 2001