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1. INTRODUCTION

The global rise in mean sea level, a problem gener-
ally associated with the climatic changes brought
about by the greenhouse effect, is now being seen as
an extremely serious threat to low-lying coastal areas.
The rise in the level of the world ocean has been
proven, although estimates of the scale of the phenom-
enon vary widely. This difficulty hinges on the fact that
tide gauge readings show only relative changes, which
depend not only on actual variations in sea level but
also on the vertical movements of the Earth’s crust in
the region of the relevant tide gauge. The necessary
corrections to sea level readings were made following
the publication of the theory of vertical post-glacial
tectonic movements (Tushingham & Peltier 1991).
However, it is hard to make estimates of the vertical
movements of the Earth’s crust with an accuracy com-
parable to that of oceanographic measurements. This
applies in particular to historical time series. If we take
into account just the readings of tide gauges where
measurable changes in the zero position have oc-

curred, we have a global sea level rise of 18 cm over
the last 100 yr (Douglas 1991). According to the more
extensive IPCC (Intergovernmental Panel on Climate
Changes) studies, however, the range of uncertainty of
this estimate is 10 to 25 cm (Warrick et al. 1996). This
same source puts the ‘best estimate’ of mean global sea
level rise for the year 2100 at 49 cm with a 20 to 86 cm
range of uncertainty. The crucial factors in any esti-
mate of sea level rise may be those resulting from
global warming, i.e. the thermal expansion of water,
as well as the melting of glaciers, ice caps, and the
circumpolar ice sheets. It is generally thought that the
global rise is not just a simple reflection of the varia-
tions in sea level at particular tide gauges. Indeed, in
some places, a drop in sea level can be expected as
a consequence of changes in atmospheric circulation
and water dynamics.

When we are considering a local, statistical forecast
of mean sea level, the main problem is establishing the
trend of relative sea level rise, in other words, estab-
lishing whether this rise is linear. The division of sea
level changes into those due to vertical shifts in the
position of the tide gauge zero and those caused by
real sea level variations is of minor importance in many
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cases. Tectonic movements merely contribute one fur-
ther aspect to the uncertainty of the future relative sea
level. Computations have demonstrated that neither in
the world ocean nor in European seas (Woodworth
1990, Gornitz & Solov 1991, Douglas 1992) has there
been any acceleration in sea level rise in the 20th cen-
tury. It is generally accepted that a linear trend best
approximates the rise, and that deviations from this
linearity will be strictly localised.

Based on global warming and the resulting factors,
IPCC forecasts for the 21st century predict a rise in
sea level ca 3 times greater than that which occurred in
the 20th century. Thus, an extrapolation of the linear
trend recorded so far will underestimate forecasts.
Nevertheless, statistical forecasts must be drawn up,
as they are of the utmost importance in the design
of hydrotechnical structures. In most countries, such
structures are built on the basis of normative return
periods of storm sea levels and their error bounds. The
lifetime of hydrotechnical structures, their capital de-
preciation period and the disastrous consequences of
their being inundated by the sea impose the need to
produce forecasts for longer periods of time. The pre-
sent paper discusses the possible application of the
linear forecast method to the mean sea level rise in a
tideless sea on the basis of computations carried out for
the Ko8obrzeg, Poland (southern Baltic Sea) tide gauge
data (Dziadziuszko 1994). The principal problem with
a linear trend forecast is that only if the confidence
intervals of the trend are enlarged will it be possible
to compute predicted values within the IPCC limits.
Analysis of the confidence intervals also enables the
effect of the predicted mean sea levels to be intro-
duced into the probabilistic computation of maximum
storm sea levels. The present paper provides a new,
predictive approach which can be treated as an ex-
tension of the author’s previous paper (Wróblewski
1994).

2. COMPUTATION OF THE
FORECAST BY EXTRAPOLATING

THE LINEAR TREND

Long-term sea level variability was
analysed on the basis of mean annual
values. Computing annual sea level
data by employing the monthly mean of
readings is equivalent to applying low-
pass filtration. For monthly mean fil-
tering the maximum aliasing error is
assessed at 0.055% of the M2 amplitude
(Pugh 1987). Along the Polish coast the
Baltic Sea is practically tideless; thus
oscillation periods of lesser signifi-
cance, shorter than annual period, have

been ignored. The aliasing error of the annual mean is
without practical meaning. If reliable data on the verti-
cal movements of the tide gauge zero are available, the
forecast should be computed separately for ξr(t) and
ξM(t) by the equation:

ξ(t )  =  ξr(t ) ± ξM(t ) (1)

where ξ(t ) = the relative annual mean sea level re-
corded at the tide gauge; ξr(t ) = the real annual mean
sea level; ξM(t ) = the apparent annual mean sea level
caused by tectonic movements t = 1, 2............, N, the
measurement time variable

In Eq. (1) the final result will be the superposition
of both components. But in the particular case of
Ko8obrzeg it was not possible to separate the compo-
nents of the relative sea level, so ξ(t ) was calculated on
the basis of the linear trend forecast and the estimates
of trend parameters using the least squares method
(Draper & Smith 1981, Zelias 1984). Sea levels are pre-
sented in Fig. 1 and given by the equation:

ξ(t )  =  c’â ± u(t ) (2)

where c’ = the transpose of the time variable vector,
c = [1

N]; â = the estimated value of the trend parameter
vector, a = [a0

a1
]; and u(t) = the random component.

In order to ascertain whether the assumed linear
form of the trend does in fact correspond with the data
under consideration, a new series of increments was
computed with the aid of the equation:

ξ*(t )  =  ∆ξ(t ) (3)

where ξ*(t ) = the increment series, and ∆ = the back-
ward difference operator.

If the trend is linear, the series should be random, i.e.
parameter â1 of ξ*(t ) should be zero in value. Applica-
tion of Student’s test at the 5% significance level indi-
cated that parameter â1, estimated for the series ξ*(t ),
does not differ significantly from zero; thus, the trend
equation has been chosen correctly. Furthermore,
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Fig. 1. Linear trend in mean annual sea levels at Ko8obrzeg. Tide gauge 
readings for 1901 to 1990
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Anderson’s test for a probability of 0.95 showed the
random component u(t) given in Eq. (2) to be indepen-
dent. Finally, at the 0.98 probability level, the distribu-
tion of the u(t) series was found to be normal (Snedecor
& Cochran 1967). It should be emphasised that the
results of testing presented here are necessary condi-
tions for the application of the proposed estimation
technique. If the variety of factors forcing sea level
changes is taken into consideration, the proven nor-
mality of the series is in accordance with the central
limit theorem.

When the trend equation is extrapolated to obtain
the forecast maximum lead time Tm, the forecast is
given by the equation:

ξ̂Tm
=  c’â (4)

where the forecast maximum lead time Tm = N + 1,
N + 2, N + . . . ; c’ = the transpose of the time variable
vector, c = [1

Tm
].

Then the forecast error in Eq. (4) is presented by the
equation:

DTm
=  ξ̂Tm

– ξTm
(5)

where DTm
= the forecast error at time Tm, and ξTm

=
the real sea level at time Tm.

Given the theoretical assumptions E(â) = a and
E(uTm

) = 0, the forecast error is presented by:

E (DTm
)  =  E (ξ̂Tm

– ξTm
)  =  E [c’(â – a) – uTm

]  =  0 (6)

where uTm
= the random component at time Tm.

When computing forecasts from Eq. (4), estimated
values of â are used in place of their real values a.
By doing this, the source of forecast errors in Eq. (5)
includes the errors in estimating the parameters of a
sample and the unknown value of uTm

. It should be
stressed that for very large values of N, theoreti-
cally for N → ∞, the variance of the random compo-
nent is the lower limit of the variance of the forecast
error.

In deriving the variance of DTm
(taking into account

the variance of the parameters, their covariance and
the variance of the random component) one arrives at
the equation:

D2
Tm

=  σ2
u[1 + c’(Φ’Φ)–1c] (7)

where (8)

D2
Tm

= the variance of the forecast error at time Tm;
σ2

u = the variance of the random component u(t).
To simplify the notation, the matrix component of Eq. (7)

will henceforth be denoted by γ in accordance with:

γ =  1 + c’(Φ’Φ)–1c (9)

DTm
denotes the mean forecast error calculated as the

standard deviation of the variable u(t) (in the absence
of other data) multiplied by γ1/2. The mathematical
transformations are given in the literature previously
cited for Eq. (2). The best way of obtaining greater
forecast errors would be to introduce confidence inter-
vals for D2

Tm
in Eq. (7) and consequently in Eq. (10), but

the interval limits are too narrow for this purpose. In
order to forecast high sea level rises we have of neces-
sity to assume that σu is taken to be the upper limit of
the normal confidence interval; hence, uTm

lies within
the interval ‹ ––u – σu, ––u + σu› with a probability of 0.68.
The normality of the series under consideration has
already been proven. Higher values of the upper limit
of occurrence of the variable are presented in the same
way. Forecasting extremely high sea level rises is
feasible if we assume a probability for uTm

> 3σu ac-
cording to Eq. (7); this however, is rarely used owing
to the Chebyshev inequality.

As an alternative to Eq. (7), one can calculate the
mean forecast error on the assumption that the only
source of error is the random component u(t). This as-
sumption is all the more probable the longer the mea-
surement series that has been used in the estimation of
parameters. As has already been mentioned, such an
approach is associated with the lower limit of variance
given by Eq. (7). In this case, the component γ in the
equation is ignored. γ depends only on the forecast ex-
trapolation time and on the series of the variable t.
Thus, it is independent of the recorded values of ξ(t).
For rational extrapolation times, not greater than 120%
of the measured data number, this component does not
much increase values computed using Eq. (7) (Fig. 2).

These are not the only possibilities for adapting the
linear trend forecast to the expected considerable sea
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Fig. 2. Values of γ with respect to length of data series and 
forecast lead time
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level rises. Estimation of the trend equation parame-
ters could be linked with the confidence level ψ. If we
assume the upper limits of these confidence intervals
according to the Student’s distribution, the forecast
values can be very much larger for high interval prob-
abilities. Given the above assumptions the final fore-
cast is presented by the equation:

ξ̂Tmαψ =  c’âψ + D̂Tmα (10)

where D̂Tmα = the forecast error with probability 1 – α
since uTmα is the upper limit of the normal interval of
u(t) for confidence α; aψ = vector a as the upper limit of
the Student’s distribution intervals for confidence ψ.

These possible applications of the linear trend fore-
cast demonstrate that the forecast depends on subjec-
tively chosen confidence levels. Similar subjective
assumptions are used in the case of maximum storm
surges, where the sea level return period and the con-
fidence interval of the extreme quantiles are always
imposed as standards. The idea of these practical as-
sumptions is to enable the linear forecast model to be
applied to the very considerable increase in the mean
sea level predicted.

If we wish to compute the forecast for different times
on identical principles, once we know the value of α
and the longest forecast lead time, it is essential to
define the forecast sea level rises when N < T < Tm

according to the equations:

ξ̂Tα0
=  c’â + ûTα0

γ0.5 (11)

(12)

where α0 = the confidence level of u(t) at time T < Tm.
One can assume the random part of the forecast

error increment to be linear and proportional to the
increase in the predicted lead time (see Eq. 12). By

means of this equation we can calculate the random
part of the forecast error for an arbitrary lead time T <
Tm and read off the confidence level αo from normal
distribution tables. These equations approximate the
nearly linear sea level rise curves published by IPCC
(Warrick et al. 1996) and increase the forecast error
with the increase in risk due to the extension of the
forecast lead time. The equations are applicable to en-
gineering structures with a depreciation time shorter
than Tm.

The principal computation parameters for Ko8obrzeg
are given in Table 1. Table 2 sets out the computations
in which the confidence intervals for the parameters
of the distribution and the random component have
been used. In accordance with the trend line (0.12 ±
0.02 cm yr–1), the mean sea level at Ko8obrzeg in 1990
was calculated at 502 cm. Assuming the probability
of the confidence interval of the parameters to be 
1 – ψ = 0.999 and that of the random component to be
1 – α = 0.997, the mean sea level in 2100 was com-
puted at 547 cm. The rise at Ko8obrzeg was 45 cm
(0.41 cm yr–1), thus very close to the ‘best estimate’ of
49 cm published by IPCC. The trend parameters had
a significance level <0.05. Higher but not calcu-
lated forecast rises could be obtained for values of
uTmα > 3σu. To facilitate practical applications, one of
the aims of this paper was to present the IPCC forecast
of the sea level as the probabilistic forecast of the
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Table 1. Principal characteristics of the linear trend in mean
annual sea levels at Ko8obrzeg. Tide gauge readings for 1901 

to 1990

σ̂u â0 â1 ξ̂N
-̂ξ

(cm) (cm) (cm yr–1) (cm) (cm)

4.6 491.0 ± 0.98 0.12 ± 0.02 501.7 496.4

Table 2. Mean sea level at Ko8obrzeg in the year 2100 according to the linear trend forecast for different confidence intervals. 
Tide gauge readings for 1901 to 1990

Confidence interval Confidence interval Upper limit of Sea level ξ̂Tmψ = c’âψ ξ̂Tmψ = c’âψ + DTmα
probability probability confidence interval for upper limit of the âψ (cm)

1 – α for DTmα 1 – ψ for â for DTmα (cm) confidence interval (cm)

– 514.9
0.95 524.2
0.99 527.2
0.999 530.9

(–u – σu, –u + σu)
0.68 0.999 5.5 530.9 536

(–u – 2σu, –u + 2σu)
0.95 0.999 10.9 530.9 542

(–u – 3σu, –u + 3σu)
0.997 0.999 16.3 530.9 547
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recorded trend. Once the probabilities of the confi-
dence intervals for Ko8obrzeg have been established,
they can be used to predict the sea level rise at the
other tide-gauges along the Polish coast, which display
different trends. In this case, engineering designs would
need to take into account only the local trend and the
same confidence probabilities for the whole coast.

3. PROBABILISTIC COMPUTATIONS OF HIGH
SEA LEVELS

Storm surge sea level computations were performed
for the maximum annual sea levels measured at
Ko8obrzeg from 1901 to 1990 (Wróblewski 1994) and
presented in Fig. 3. Gumbel’s distribution (1958) was
used to extrapolate these maxima. The uncertainty
associated with the factors generating future storm
surges is greater than that for the mean sea level rise.
This is because of the great difficulties involved in
forecasting local gale-force wind conditions, the prin-
cipal factor forcing sea level rises. The mean sea level
forecast was included in the probabilistic computations
of maximum levels by superimposing the 2 levels and
analysing their confidence limits. This is not the only
solution to the problem; other methods of computation
have been published, e.g. Bardsley et al. (1990).

Following the introduction of the reduced variable y,
Gumbel’s distribution density function and distribution
function are expressed by the equations:

ƒ(y)  =  e–y – e–y
(13)

where y =  β(ξ – µ); β and µ are the parameters of the
distribution:

F (y)  =  e–e–y
(14)

Adapted for hydrological applications, this is a distri-
bution II of Fisher & Tippet (1928), which is included

in a generalised distribution of extremes (Jenkinson
1955).The parameters of the distribution were cal-
culated using Kimball’s (1949) maximum likelihood
method given by the equations:

––––
e–βξ –  

–––βξe–βξ–––––
+ β

–––
ξe–βξ–––

=  0 (15)

(16)

Eqs (15) & (16) were solved iteratively. The results are
set out in Table 3, and the confidence intervals result-
ing from the errors in estimating the parameters in
Table 4. In probabilistic computations, the sea level
storm surges has been accounted for in that the mean
sea level forecast, i.e. c’â, is superimposed on the
quantile for the probability of the maximum level dis-
tribution (trend subtracted) according to the equation:

ξ̂Tpϕ =  ξ̂pϕ + c’âTψ ± D̂ξTpϕα (17)

where T = the forecast time; ξ̂Tpϕ = the estimated sea
level maximum quantile at time T, the exceeding
probability of the quantile is p, the probability of the
confidence interval for the quantile is 1 – ϕ; ξ̂pϕ = esti-
mated quantile (from detrended series); ψ = probability
the confidence interval is 1– ψ for the vector â; α =
probability the confidence interval is 1– α for uTα;
iD̂ξTpϕα = upper limit of the confidence interval for ξ̂Tpϕ

including sea level rise.
The distribution of the mean sea level forecast error

iD̂Tα can be assumed as normal. The error in estimating
the quantile of the maximum sea level also has an
asymptotically normal distribution for estimates ob-
tained by the maximum likelihood method. For a sam-
ple of the size analysed here, this distribution can be
regarded as normal. The errors in estimating the mean

µ
βξ

β
= −

−( )2 3026. log e

29

Fig. 3. Annual sea level maxima at Ko8obrzeg. Tide gauge 
readings for 1901 to 1990

Table 3. Probability of sea level maxima at Ko8obrzeg com-
puted by Gumbel’s method (trend eliminated). Measurements 

1901 to 1990. T: return period; p: exceeding probability

p (%) 99 90 80 70 60 50 40 30
T (yr) 1.01 1.11 1.25 1.43 1.61 2.0 2.50 3.33
ξ̂ (cm) 540 556 564 571 577 583 590 598

p (%) 20 10 5 2 1 0.5 0.2 0.1
T (yr) 5 10 20 50 100 200 500 1000
ξ̂ (cm) 609 626 642 664 680 696 717 733

Table 4. Confidence interval limits for sea level maxima at
Ko8obrzeg with probability 1– ϕ = 0.68. iD̂ξpϕ: upper limit of 

the 1– ϕ confidence interval

p (%) 10 5 2 1 0.5 0.2 0.1
iD̂ξpϕ (cm) 5 6 8 8 9 10 12
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and maximum sea levels have normal distributions and
are independent, hence their total effect is given by:

(18)

where D̂ξpϕ = upper limit of the confidence interval
for quantile ξ̂pϕ (see Table 4), and D̂Tα = upper limit of
the confidence interval for the sea level forecast error
(see Eq. 10).

Eqs (17) & (18) enable the exceeding probability
quantile of the maximum sea level for time T to be
computed. The simple superposition of the trend
forecast and detrended maximum sea level is pre-
sented by:

ξ̂•Tpϕ =  ξ̂pϕ + c’âTψ (19)

where ξ̂•Tpϕ = the maximum sea level at time T as the
superposition of the trend forecast (reference level â0)
and ξ̂pϕ.

The forecast computation was performed for the
0.001 quantile for the period 1990 to 2100; Eq. (11) was
taken into account. The results are set out in Fig. 4.

4. CONCLUSIONS

Extrapolated over a long period of time, the mean
sea level forecast has a broad interval of uncertainty.
Such a forecast for engineering purposes requires a
method accounting for the so far determined linear sea
level rise. The use of a trend-extrapolated forecast
requires that confidence intervals be extensively
applied, which enables the method to be adapted to
the various sea level rise scenarios compiled by IPCC.
The choice of confidence levels under these conditions
is subjective, as is the choice of return period and con-
fidence levels in the sea level storm surge probabilistic
computations.

The application of confidence intervals to the predic-
tion of mean and maximum sea levels facilitates the
addition of 2 forecasts, the result of which is less than
simple superposition (see Eq. 18).

The computation method enables a sea level forecast
for tide-gauges with various trends to be made at the
same level of confidence. In this case, engineering
designs would need to take into account only the local
trend and the same confidence levels for the whole
coast. Example computations were performed for the
Ko8obrzeg tide-gauge readings.
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