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1. INTRODUCTION

The 2 most recent, major publications in the field of
sea level rise and the coast are those of Bird (1993), and
Milliman & Haq (1996). Milliman & Haq’s comprehen-
sive collection of edited papers on sea level rise and
coastal subsidence includes studies from around the
world covering many of the natural and anthropogenic
causes of sea level rise. These focus mainly on the
extraction of water, oil and gas in coastal areas, e.g. the
impact of land subsidence in coastal lowlands (Jel-
gersma 1996). The present paper extends the subject
by considering the extraction of coal from depth
beneath macro-tidal coasts, in particular the hard-
cliffed coasts of northern England, and the impact on
the overlying strata in relation to changes in the sur-
face.

2. REVIEW OF GEOLOGICAL PARAMETERS CON-
TRIBUTING TO MINING-INDUCED SUBSIDENCE

Table 1 shows the scale of vertical movement (and
subsequent relative sea level rise) due to subsidence
following the extraction of coal, other minerals, and
water from coastal or estuarine areas. In many cases
the total amount of subsidence, especially that due to
extraction of coal, potash and salt, is of the same order
as or exceeds the predicted global, eustatic rise in sea
level for this century of between 30 and 110 cm (Haq &
Milliman 1996). The following section reviews the lit-
erature relating to factors which influence amount and
form of surface subsidence following the extraction of
coal at depth beneath the coast, the consequent col-
lapse of mined tunnels and the transmission of strains
from these collapsed voids. Two factors in particular
are examined: firstly processes related to the mining
methods employed in the extraction of coal and sec-
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ondly the influence of the overlying rock type on the
transmission of strains to the surface. 

2.1. Mining methods

Surface damage from the extraction of deep-mined
coal has been extensively investigated in the UK
mainly in relation to damage to property (SEH 1975).
In offshore areas attention has focused on the engi-
neering requirements of a minimum overburden of
rock to maximise safety for mining operations. Con-
cerns centre on protecting the tunnelled voids from the
ingress of water from the seabed (Whittaker & Breeds
1977). Little attention has been paid to the nearshore
coastal zone (except for a passing reference to changes
in the sediment transport patterns related to under-
mined areas in NE England; Tooley 1989). While many
of the cases of subsidence arising from abstraction of
water are situated near or on the coastline due to the
needs of industry or development, local geology deter-
mines the location of coal and other mineral reserves.
Whittaker & Reddish (1989) give a major review of the
technical aspects of coal mining subsidence. The
authors credit Wardell (1950, 1953-54, 1954) and
Orchard (1956-57) for their work in laying the founda-
tions for the collation of field observations that ulti-
mately resulted in the UK Coal Mining Industry’s Sub-
sidence Engineers’ Handbook (SEH 1966, 1975). This
publication has been the basis for the prediction of
land surface subsidence in the UK for the past 30 yr.

Coal mine subsidence is caused by the collapse of a
mined-out or tunnelled void. Subsidence depends on

the number, type and lateral extent of the voids (NRC
1991). Subsidence due to coal mining at depth
depends partly on the method of extraction. With older
methods such as room and pillar mining, the pillars,
columns of coal, are left to support the roof. More mod-
ern methods include longwall mining, where sections
are completely extracted and the roof allowed to col-
lapse behind the advancing wall. The older methods
led to less subsidence in the short term due to more
roof support, but the subsidence could occur for up to
100 yr after extraction. This was due to the unpre-
dictable rate of collapse of the pillars. With longwall
mining, the subsidence is controlled, it can be esti-
mated to within 10% (Whittaker & Reddish 1989), and
the duration of residual subsidence is likely to be up to
12 mo after mining operations halt. Whittaker & Red-
dish (1989) conclude that longwall operations appear
to have a virtually instantaneous response; residual
subsidence is 5 to 10% of the maximum and is likely to
be less. 

Maximum subsidence occurs over the centre of the
extracted panel of coal. The overlying strata are also
affected some distance outside the immediate extrac-
tion area, up to the limit line. The latter is determined
by the angle of draw, which is approximately 35° in the
UK (Whittaker & Reddish 1989). When surface rock is
subject to subsidence, the subsidence trough overlying
an extracted panel of coal produces regions of exten-
sion and compression because of relative displacement
towards the centre of the trough (Whittaker & Breeds
1977). The tensile strain (negative values) and com-
pressive strain (positive values) are measured in mm
per m of displacement. Donnelly & Reddish (1994) sug-
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Region Vertical move- Principal cause Sources of data
ment (mm)

Newcastle, New South Wales, Australia 52–168 Coal extraction Kapp (1977)
River Trent, England 25 Coal extraction Shadbolt (1972)
Lynmouth Beach, England 3000 Coal extraction Anon (1985)
Dawdon Beach, NE England 4000–5000 Coal extraction Humphries & Ligdas (1997)
Saskatchewan, Canada 100 (yr–1) Potash extraction Bawden & Mottahed (1986)
Alsace, France 160 Potash extraction McClain (1963), Potts (1964)
Esparza mine, Spain 670 Potash extraction Oyanguren (1972)
Windsor, Ontario, Canada Solution mining of rock salt Terzhagi (1969)
Cheshire, England 1000–1500 Solution mining of rock salt Calvert (1915)
Twente, Netherlands 345 Solution mining of rock salt Bekendam & van Vliet (1995)
Hengelo area, Netherlands 10000 Solution mining of rock salt Bekenden & van Vliet (1995)
Boulby Cliff, Yorkshire, England Aluminium working Steers (1953)
Wilmington, Long Beach, CA, USA >9000 Oil extraction Mayuga & Allen (1969)
Ameland, Wadden Sea, Netherlands 180 Gas extraction Eysink et al. (1996)
Coastal Louisiana, USA 8 (yr–1) Oil and gas extraction Davis (1985)
Houston, TX, USA >2000 Groundwater NRC (1991), Holla (1986)
Port-Adelaide Estuary, South Australia 2.8 (yr–1) Groundwater Belpeiro (1993)
Ravenna, Italy 1300 Water and gas extraction Gambolati et al. (1991), Bird (1993)

Table 1. Summary of anthropogenically induced subsistence (adapted from Lambeck & Johnston 1995, Table 1)
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gested that geomorphological steps, even in the
absence of fault outcrops, are most likely to occur
within a certain proportion of the subsidence trough
subject to tensile strains. The step is more likely to
occur at prominent joints or at a well-defined disconti-
nuity. 

If these coal reserves extend under the seabed, then
their extraction is tightly controlled. The Production
Department Instrument, PI/1968/8 (Whittaker & Red-
dish 1989), which forms the basis of the safe design of
undersea coal mining operations, governs the extrac-
tion of coal seams under the sea in the UK. It is
designed to protect mines and workers rather than
consider the impact on beach or marine processes. One
of the major constraints is to set a maximum amount of
coal thickness to be extracted under a particular thick-
ness of cover between extraction and the seabed. For
example, a maximum of 1.7 m may be extracted by the
longwall method of operation for a cover thickness of
105 m. The maximum strain value of 10 mm m–1 should
also not be exceeded (Whittaker et al. 1985). 

2.2. Influence of rock type on surface subsidence

Studies of the natural subsidence from solution
under calcareous beds in South Wales (Thomas 1952)
found general surface depressions and swallow holes,
the linear development of swallow holes being associ-
ated with major fault lines. Similarly, for mining, geo-
logical factors such as lithological type and also mining
techniques influence the subsidence and strain charac-
teristics that occur in the overlying strata. ICE (1977)
also highlighted the importance of geological structure
in ground control aspects of subsidence. The nature of
the overlying strata, faulting systems, fractures and
breaks are mentioned as special factors. The presence
of thick strong competent beds in the overburden has
been shown to steepen the subsidence profile and
increase surface strain values. 

Shadbolt (1972) described the general influence of
near-surface rocks on subsidence. The pre-existence
of natural jointing, fissuring or faulting offers potential
lines of weakness, which can cause the concentration
of mining subsidence strains. Valley bulging encour-
ages the opening of fissures and joints in limestone
(Shadbolt et al. 1973). Whittaker & Breeds (1977) stud-
ied the influence of surface geology on mining subsi-
dence in Triassic sandstones and Permian limestone
(noted for brittle joint controlled character), and coal
measures rocks (mudstones, siltstones, sandstones and
coal seams) which demonstrated greater plasticity on a
massive scale. Kapp (1985), in his paper on mine subsi-
dence in the Newcastle district of New South Wales,
found that the massive, strong conglomerates overly-

ing the extracted seams had a significant effect on the
value of maximum subsidence. Limestone cliffs back-
ing coastlines such as those in North East England
(Humphries & Ligdas 1997) are under the same natural
strains, causing their joints and fissures to open. Mag-
nesian limestone exhibits brittle properties and pos-
sesses a well-developed regional trend (King et al.
1974). ICE (1977) recognised one lithology in particu-
lar, Magnesian limestone, as exhibiting significant
fracturing and intense differential displacements. They
suggest that this lithology has the potential to cause
serious damage at the surface. In the UK, the coastline
from Co. Durham to the River Tyne has the only coastal
exposure of Magnesian limestone and is also exten-
sively undermined, so there is potential for extensive
coastal subsidence. 

Another surface impact of deep extraction is the
effect on surface water and streams. Peng et al. (1996)
modelled the effects of stream ponding associated with
longwall mining. They found that impacts included
change in the angle of stream flow and a change in
gradient of stream flow associated with the formation
of troughs caused by subsidence. Other impacts on the
water table are caused by rebound after the mines
have closed, when water is no longer pumped from the
mine shafts. Smith & Colls (1996) found that fieldwork
and inspection of abandoned mine plans demonstrated
renewed subsidence associated with groundwater re-
bound in the Leicestershire, UK, coalfield. Damage is
more apparent where there are differential ground
movements (Donnelly & Reddish (1994), such as that
caused by a fault step at depth. Donnelly & Reddish
(1994) give an example from the Donetz coalfield in
the Ukraine of subsidence of 3 to 4 m at the surface
where coal mining at a depth of 500 m and the pres-
ence of a fault step has worked its way to the surface
through thick superficial glacial cover. 

2.3. Dynamics of shoreline processes and its impact
on subsided coasts

One of the difficulties in predicting the impact of the
extraction of coal at depth from beneath coastlines is
that changes to the surface are masked by the mobile
nature of beach sediment. Subsidence may affect a
large area and cause a general lowering of the cliffs
and beaches or act differentially, causing local varia-
tions in beach gradient. The aim of the following
review of the parameters affecting the ways in which
beaches are classified is to assess how the impact of
physical changes on subsided beaches changes beach
classification. 

Beach classification classically depends on the mor-
phodynamics of the beach system. Morphodynamics
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has been defined as ‘the mutual adjustment of topog-
raphy and fluid dynamics involving sediment trans-
port’ (Wright et al. 1977). The questions to be asked
when considering morphodynamics and how it affects
subsided coasts are to what extent subsidence may
affect the responses of beaches to breaking wave
energy and to what extent modifications to substrate
gradient may affect on- or offshore sediment transport.
Pilkey et al. (1993) questioned the assumption that
underlying geology does not play a role in profile
shape. 

Many shoreline change models such as the ‘Aus-
tralian School’ of coastal geomorphology (Wright &
Short 1983, 1984) provide a framework for studying
beach and nearshore changes. Wright & Short (1983,
1984) summarised earlier models into 6 beach states
ranging from dissipative at one extreme to reflective at
the other, with 4 intermediate states. Studies of beach
changes are often conveniently studied using the 2-
dimensional, shore-normal variations in morphology
using beach profiles. 

Recent developments in the classification of beaches
have been reviewed in Carter (1988), Pilkey et al.
(1993), Short (1996) and Anthony (1998). All macro-
tidal beaches exhibit predominantly high-tide reflec-
tive conditions and mid- to low-foreshore dissipative
conditions. Anthony’s (1998) review of the use of sedi-
ment-wave parameters to identify thresholds between
various beach morphodynamic states argues that the
problems of temporal wave height variability, large
tide ranges and sediment variability mean that beach
morphodynamic systems cannot be meaningfully char-
acterised by sediment wave parameters. He concluded
that beach slope is a better index of characterisation of
spatial and temporal changes in the reflective to dissi-
pative beach morphodynamic continuum. If beach
slope is to be used to characterise coasts, we need to
consider how a mining-induced permanent change in
beach topography will impact beach stage models.

2.4. Models of beach response to a relative rise in
sea level

The substrate gradient used in the classification of
beaches is assumed to be constant. In the case of
beaches affected by subsidence, the premise is that
there may be an increased gradient in the substrate
and a consequent increase in water depth at the clif-
fline or shoreline. Many papers on the response of
beaches and cliff recession in response to a sea level
rise discuss the use of a modified form of the Bruun
Rule (Hands 1979, Everts 1991, Bray & Hooke 1997).
The basic Bruun Rule (Bruun 1962) is given by the
equation:

Shoreline erosion (R) = 
profile width (x) × sea-level rise (S ’) / profile depth (z)

In addition to the horizontal rate of recession,
Zenkovich (1976) related the lowering of subaquous
bedrocks, dz/dt, to the rate of horizontal erosion of a
sub-aerial cliff, dx/dt, by the equation:

dz/dt = dx/dt × tanβ

where β is the angle of the beach slope as measured
from the horizontal. 

Wave parameters such as wave height (H) and wave
length (L) are important in initiating sediment trans-
port. H/L is a measure of wave steepness, which
affects sediment transport on- and off-shore and tends
to build beaches or level them. This in turn affects the
shape and hence the slope of the beach. Doornkamp &
King (1971), King (1972) and Hardisty (1990a) in their
empirical studies related the beach gradient to values
for H/L. All the models show an increasing beach gra-
dient with a decreasing wave steepness; thus the
beach gradient varies indirectly with wave steepness
(H/L). Therefore conditions favouring steep waves
(large values of H/L) give rise to low gradient beaches.
More recently, Hsu (1998) undertook a theoretical
analysis to determine the most important parameter
governing beach profile changes. He considered that
beach gradient, tanβ, the height of the breaking wave
at the shoreline, Hb, the grain size, D, and the wave
period, T, were the important parameters. The rela-
tionship is denoted by Sunamura’s (1992) formula:

tanβ = 0.12 (Hb/gD50T 2)–0.25

where g is the acceleration due to gravity (9.81 m s–2)
and D50 is the median grain size. Hardisty (1990b)
explained the form of equilibrium beach morphology
in terms of the velocity fields shoreward of the break-
ing point. Dynamic equilibrium is only achieved when
shoreward sediment transport is balanced by seaward
transport of the returning flow. He concluded that if
the gradient increases the breaker type will change.
Shoreward sediment transport in the breaker zone
decreases with increasing beach gradient. 

2.5. Breaking waves and the dissipation of energy

The dynamic pressure (as opposed to static pressure,
which relates to the depth of water) depends on the
wave type. This in turn depends on the wave dimen-
sions and the bottom slope (Kirkoz 1982).The pressure
rises dramatically when the leading face of the wave is
vertical, i.e. when both trough and crest hit the cliff at
the same time as the water level rises (wave height
held constant); the wave type changes through
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spilling, plunging and eventually reflecting waves
(greatest erosion) (Kirkoz 1982). Wave energy interacts
with beaches and nearshore zones and is either re-
flected or dissipated across it. One important measure
of the energy reflected by sloping beaches is the
reflection coefficient KR, which is defined as the ratio of
the reflected wave height to the incident wave height
(Horikawa 1988). Battjes (1974) obtained an empirical
formula for the reflection coefficient of a sloping bot-
tom:

KR = 0.1ξ2

where ξ is the surf similarity parameter. ξ is defined as

For breaking waves this is also known as the Iribar-
ren number. Okazaki & Sunamura’s (1991) laboratory
study plotted H0/L0 against tanβ and demonstrated the
demarcation between breaker types. For the same
wave conditions, i.e. the same steepness values of H0/L0

or the breaking equivalent Hb/L0, beaches with a shal-
low gradient (0.038) and values of H0/L0 of say 0.030
give spilling waves. A beach with a steeper gradient of
0.1 creates plunging breakers. This was supported by
Hsu (1998) in his experimental work, which showed
that the steeper beach profiles had values of ξ which
showed a transition from spilling to plunging waves.

Anderson et al. (1999), starting from an expression
for an exponential decay water-depth dependence of
the sea bed erosion rate based on Sunamura’s (1992)
work, calculated the energy needed to drive cliff ero-
sion by integrating an expression for the wave energy
dissipation rate over the shelf. The energy Ecliff avail-
able for driving cliff retreat (see Fig. 2) is Eo, the origi-
nal energy in the wave field climate, reduced by the
spatial integral along its path

Ecliff = Eo – ∆E

where

For a simple case of a planar shelf with a uniform
slope of θ, h = x sinθ, and the integral then becomes

where V is the component of the wave speed normal to
the coast. The horizontal length scale is

x* = 4h/sinθ

where x* corresponds to the length of shelf over which
most of the energy is dissipated. The expression shows
that regions with extensive shallow shelves (low values
of θ) should dissipate most of the energy, leaving less to
drive cliff erosion. The corollary is that increased val-
ues of θ will shorten the shelf, allowing less energy dis-
sipation. Fig. 1a–c shows the dissipation in energy as
waves approach the cliffs. 

2.6. North East England case study

The North East England coastline has been sub-
jected to more extraction of coal at multiple levels than
any other site and also the largest lateral extent of
extraction under a coastline. It is a good model for test-
ing relative sea level (RSL) change due to anthro-
pogenic causes because of the minimum influence by
other causes of RSL rise on this coast. ‘The present con-
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Fig. 1. Location map of areas of the Northumberland and
Durham coast under which coal has been extracted at depth
(compiled from Taylor et al. 1971, Smith & Francis 1967, Smith
1994). Hatched area: concealed coalfield from which coal has
been extracted. Insets (a–c) based on Fig. 4 in Anderson et al.
(1999) and (d) based on Fig. 2 in Mohammed et al. (1998). The
rate of dissipation of wave energy decays exponentially with
water depth (h). The water depth profile dictates the dissipation
rate and the erosion rate. The energy remaining in the wave
declines rapidly near the shore to leave Eo – ∆E = Ecliff at the cliff
edge; Eo is the fraction of energy remaining to drive cliff retreat
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figuration of the coastline of the southern North Sea
basin was more or less established by 7.5 to 7.8 ka B.P.
and isostatic recovery in northern England has out-
stripped eustatic sea level rise’ (Devoy 1987). The pre-
sent pattern of land uplift and subsidence in North
West Europe, which is based on tidal data, shows this
same region lying between the –1 mm yr–1 isobase
(North Yorkshire) and the 0 mm yr–1 isobase (Northum-
berland coast) (Devoy 1987, Fig. 4.9). This is in line
with the 10 to 15 cm rise over the last century reported
by Gornitz et al. (1982), Barnett (1984) and Titus
(1987), so any changes in RSL on this coastline can be
attributed to the general global rise in sea level plus
the local anthropogenic changes. It should be possible
to test the hypothesis that subsided coasts show differ-
ent response to wave processes by a detailed examina-
tion of wave processes and cliff recession from the
published work on this particular coastline.

One of the earliest studies to highlight anomalous
beach response was an empirical study of the factors
affecting beach gradient on UK shore platforms by
Trenhaile (1973). He found, for most of the UK beaches
studied, a positive correlation with tidal range and a
negative correlation with tidal fetch. However his
results from the Magnesian limestone platforms of
North East England found that some beaches (beneath
which coal was being extracted) had structural prob-
lems, and he had to disregard all but the data from
Hartlepool. Tooley (1989) reported that coastal dump-
ing of mine waste in Northumberland may have been
responsible for a change in sea currents leading to sand
no longer being replaced on the beach at Newbiggin.
The loss of sand was blamed on mining subsidence in
the bay and in areas of offshore rocks that protected
the bay by absorbing wave energy. Tooley stated that
wherever there was significant mining settlement on
the foreshore along the North East coast the result
would be coastal erosion and coastal protection prob-
lems. An engineering report on coastal recession for
Sunderland Council (UK) (Anon 1990) found problems
in ground control along the coast south of Sunderland
and suggested that an estimated subsidence of 200 mm
under the cliffs was the cause. The anomalous behav-
iour of these beaches was also noted by Humphries’
(1996) study of the beach classification on this coastline
from Ryhope to Hartlepool. Humphries (1996), using
geomorphological parameters based on the Australian
School of beach classification (Wright & Short 1983,
1984), found steeper gradients (4 to 9°) and smaller
beach widths on beaches from Ryhope to Horden
(Fig. 1) compared with a larger beach widths and shal-
lower gradients (2 to 3°) at Crimdon and Hartlepool.

Three of the parameters that may possibly change if
an area of coast has been undermined by the extrac-
tion of minerals are the depth of water at the cliffline,

the position of breaking waves and the beach gradient.
The occurrence of different types of waves arriving at
the foot of a cliff depends on the relative magnitude of
the breaking depth of incoming waves, hb, and the
water depth in front of the cliff, h (Sunamura 1992).
Sunamura’s (1992) model for the evolution of rocky
cliffs through a prolonged stable sea level has been
applied to 5 initial landforms, Coasts I to V, ranging
from a uniformly sloping coast with a low gradient with
waves breaking offshore through to the other extreme
where water depth at the cliff is greater than the wave
height so that waves are always reflected from the cliff
face. 

In a scenario of mining-induced subsidence this
could be adapted so that a Coast II landform, where
h = 0, develops into a Coast IV landform, where h = hb,
with time (Fig. 1). Fig. 2 is an adaptation of Sunamura’s
model of rocky coast evolution in which it is assumed
that different types of beaches can be assigned to a
subsidence-induced change in coast (Coast IV) com-
pared to an unaltered type (Coast II). The assumption
is based on the morphology of the beaches described
in Humphries’ (1996) study. The cliffed coastline of
North East England, from Ryhope to Crimdon, can be
classed as a Type A coastline according to the Suna-
mura classification (1992, p. 181) with Crimdon being
Coast II and Ryhope being Coast IV. These beaches
form part of the same coastal sub-cell (Motyka & Bevan
1986), but classifying the beaches according to Suna-
mura’s classification puts beaches within this same cell
in different categories. 

The beaches at Ryhope and Crimdon are exposed to
the same wave and wind conditions and should show
similar profile responses and form. As the beach classi-
fications demonstrate their difference in form and
response, the most notable difference is that the more
northerly beaches have been undermined by the
extraction of coal at depth, while Crimdon and Hartle-
pool are unaffected by mining extraction at depth be-
neath the coast (Fig. 1).

3. DISCUSSION

Using Sunamura’s (1992) equation (p. 7) on a shore-
line where wave characteristics are the same, if the
breaking wave height Hb remains numerically the
same (but breaks nearer the cliffs) and the beach slope
(tan β) increases, the mean diameter of the sediment
would have to increase for the beach to remain in equi-
librium. This may limit profile changes caused by
onshore or offshore transport of sediment in response
to changing wave conditions. Disentangling the effects
of rising sea level and the role of sand budget can be
difficult. The eastern coast of the USA experiences
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mostly a slow marine transgression but locally where
there is an imbalance in sediment supply this counter-
balances or reinforces the effect of rising sea level (Roy
et al. 1994). Similarly an artificially increased input into
the sediment budget by the tipping of millions of
tonnes of colliery spoil onto the beaches of North East

England has until the closure of the mines masked the
impact of RSL rise (Humphries & Scott 1991, Hum-
phries & Ligdas 1997). Pringle (1985), in a study of cliff
erosion and volume of beach material, found that there
was a 4 times increase in sediment transport where
‘ords’, a locally occurring geomorphological feature,
lowered the beach level in front of the cliffs. There is a
parallel here with local variations in beach height
caused by subsidence on the Co. Durham beaches.
The difference in beach widths may partly be ex-
plained by reduced sediment supply in the longshore
drift direction (southwards on the North East England
coastline) because of beach defences to the north of the
Co. Durham beaches, especially at Ryhope. However,
this does not explain the increased gradients on
beaches supplied with an abundance of sediment from
mining activities; millions of tonnes of shale and other
mine waste was tipped onto these beaches until 1993
(Humphries & Ligdas 1997). 

The collapse of voids at depth may increase the
strains produced in some rock types, e.g. massive
sandstones and Magnesian limestone. The instability
of cliffs may increase because of mining-induced
strains opening up joints. Local rates of cliff erosion
may be decreased by cliff resistance forces (FR) and
increased by wave assailing forces (Fw). The balance of
these 2 forces determines cliff recession (Sunamura
1992). Fig. 3 is presented as a summary of the above
arguments and as a conceptual model of the interac-
tion of factors affecting cliff recession on a subsided
coast.

4. CONCLUSION

Where there is an abundance of sediment, beach
profiles will respond to changing conditions by pro-
ducing shallow gradients under high values of wave
steepness (H/L), which is related to large tidal fetch
values. However, on the North East England coastline,
where some beaches have been undermined, anom-
alous behaviour in response to the same conditions on
nearby beaches which have not been undermined sug-
gests that the substrate gradient has increased. These
beaches exhibit an increased beach profile gradient
and a smaller beach width. The conditions allow a dif-
ferent type of wave to break (a change from spilling to
plunging breakers) very close to the cliff. Less energy
has therefore been dissipated across the steeper, short-
ened profile and more is available to increase the rate
of cliff erosion. 

The review suggests that profile changes are a good
indicator of changes in beach morphodynamics, but
the range of classification of beaches is limited on sub-
sided coasts to reflective beaches with higher beach
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gradients. The changed morphology of beaches which
have been undermined by the extraction of coal at
depth is most likely a result of a change in the sub-
strate gradient. Such an increase in gradient would
allow a different kind of breaker to form, and the
waves will break nearer to the cliffs with less energy
being dissipated. The consequence of this is an
increase in the local rate of erosion. As shoreward
movement of sediment decreases with increased
beach gradient, a permanent increase in beach gradi-
ent may result in a net loss of sediment offshore. 

Coastal management where beaches have been
undermined will require long-term monitoring of
beach width and gradient and observation of breaker
type to confirm a permanent change to the substrate
gradient. 
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