Modelling comparison to evaluate the importance of phenology for the effects of climate change on growth of temperate-zone deciduous trees

Koen Kramer

Institute for Forestry and Nature Research (IBN-DLO), PO Box 23, 6700 AA Wageningen, The Netherlands

ABSTRACT. The importance of 3 phenological types of deciduous trees for the effects of climate change on growth was evaluated using the model FORGRO. The climate change scenarios used were a doubling of the CO₂ concentration (700 µmol mol⁻¹) and an increase in temperature ranging from 0 to 7°C. To elucidate the relative importance of photosynthesis and allocation for this evaluation, models with different levels of mechanistic detail of photosynthesis and allocation were used. The photosynthesis approach of FORGRO was compared to the Farquhar & von Caemmerer approach as formulated in PGEN (FORGRO-PGEN). Similarly, the allocation approach of FORGRO was compared to the transport-resistance approach, as formulated in the ITE-Edinburgh model (ITE-FORGRO). A sensitivity analysis was performed to ascertain whether the response of gross photosynthesis to a climate change scenario depends on the value assigned to parameters in these models, and to compare this sensitivity with the differences found between the phenological types. The differences in the response of gross photosynthesis (Pₚ) to the climate change scenarios between the phenological types were smaller according to ITE-FORGRO as compared to FORGRO. These differences are of a similar magnitude when comparing the 2 photosynthesis models. Furthermore, FORGRO-PGEN showed that the response of Pₚ to a 2× [CO₂] increases with rising temperature, thus compensating for the increase in respiration. For both FORGRO and ITE-FORGRO this CO₂ and temperature interaction was not found. Consequently, in these models the increase in respiration exceeded the increase in gross photosynthesis at the higher range of temperature rise. The sensitivity analysis showed that the models differ in the sensitivity of the response of Pₚ to a 2× [CO₂] scenario combined with a temperature rise of 2°C (C₇₀₀/T₂), when parameter values change by ±25%. In FORGRO-PGEN, the magnitude of the response of Pₚ depended on the values of some of its parameters, especially those determining the Michaelis-Menten kinetics of Rubisco, which for these parameters exceeded the differences between the phenological types in this scenario. In both FORGRO and ITE-FORGRO this sensitivity is similar to or less than the difference between the phenological types in the C₇₀₀/T₂ scenario.

KEY WORDS: Climate change · Deciduous trees · Growth · Models · Phenology

INTRODUCTION

As a result of natural selection, the annual biological cycle of the growth and dormancy of trees is synchronized to the annual climatic cycle of light, temperature and precipitation, thus determining growth. If the climate changes within the life-span of a tree, this synchronization may be partly lost. Consequently, either a part of the growing period of a tree may occur when the climate is not favourable for growth, or the growing period may not fully exploit the period when the climate is favourable for growth. On the other hand, the species may be able to adjust by phenotypic plasticity. Earlier studies have predicted that, based on climate change scenarios, the probability of spring frost damage is likely to decrease in temperate zone Europe (Kramer 1994, Murray et al. 1989). It has also been found that trees do possess a considerable plasticity to accommodate a change in their local environment phenotypically (Kramer 1995). The aim of the study reported in this paper was to evaluate the importance of differences in phenological response to...
temperature for the effects of climate change on the growth of deciduous, temperate-zone tree species. Two models of photosynthesis and 2 models of allocation were compared, to elucidate the consequences of describing these processes with different levels of mechanistic detail.

In an earlier study 3 phenological patterns induced by a structural rise in temperature were found: (1) a similar advance of both leaf unfolding and leaf fall; (2) an advance of leaf unfolding, but no change in leaf fall; and (3) a larger advance of leaf fall than leaf unfolding (Kramer 1995). These 3 phenological types correspond to Betula, Fagus, and Quercus, respectively.

Models incorporating detailed descriptions of light interception, photosynthesis, respiration and allocation are required to evaluate the effects of climate change on growth of deciduous trees. The models compared in this study were: (1) FORGRO (Mohren 1987, 1994) using the descriptions of photosynthesis of Goudriaan et al. (1985) and fixed keys for allocation; (2) FORGRO coupled to PGEN (Friend 1993), substituting the biochemical photosynthesis model of Farquhar & von Caemmerer (1982) for the photosynthesis model; and (3) FORGRO coupled to the ITE-Edinburgh model (Thornley 1991), in which the allocation keys of FORGRO are replaced by the transport-resistance approach of partitioning.

Two aspects of climate change and growth of deciduous trees were studied through model comparison: (1) the consequences of the phenological types on the effects of climate change scenarios on gross photosynthesis, and (2) the sensitivity of the scenario-induced response of gross photosynthesis to a change in parameter values of the models.

MATERIALS AND METHODS

Phenology. To avoid inaccuracies in the date of both leaf unfolding and leaf fall in the analysis of the species response to the different scenarios, historical phenological observations for a 14 yr period were used. Phenological observations of Betula pubescens (birch), Fagus sylvatica (beech) and Quercus robur (oak) in The Netherlands were available for every year from 1940 until 1953, except for 1945. For 1945 the average value of the phenological events was used. The phenological events monitored were leaf unfolding, full leaf and leaf fall. The observers had been provided with detailed instructions for each species, including pictures, of the exact event to observe, and instructions on how to select the trees (Anonymous 1950). The shifts of these events with either mean winter or summer temperature, based on an extensive data set containing phenological observations of clones relocated over a large latitudinal throughout Europe (Kramer 1995), are presented in Table 1. When the temperature was increased according to a scenario, the observed dates of leaf unfolding, full leaf and leaf fall were adjusted according to the known responses of Betula, Fagus and Quercus (Table 1). The shift in full leaf with winter temperature was assumed to be similar to leaf unfolding.

Scenarios. Daily meteorological measurements for the period 1940 to 1953 were available for De Bilt (52° N, 6° E), located in the centre of The Netherlands, and used as input to the models. In all calculations, this series was adjusted according to a scenario. The variable evaluated was the annual rate of gross photosynthesis, P_g (t CH_2O ha^-1 yr^-1), averaged over the simulation period.

To evaluate the importance of phenology, the CO_2 concentration was set at 700 μmol mol^-1, and the temperature was increased uniformly by a maximum of 7°C in steps of 1°C. The benchmark scenario (no change in temperature) was also examined. The response for P_g of Betula, Fagus and Quercus to these scenarios was calculated according to the 3 models. The results were expressed relative to the scenario with [CO_2] = 350 μmol mol^-1, without an increase in temperature.

The sensitivity of the response of P_g to a change of ± 25% in parameter value was evaluated by comparing the response to the scenario with [CO_2] = 700 μmol mol^-1 and a uniform 2°C rise in temperature with the reference scenario with [CO_2] = 350 μmol mol^-1 and no increase in temperature. These scenarios will be referred to as C700/T2 and C350/T0, respectively. The pheno-
of Betula (Table 1) was used for this analysis.

Table 1. Phenological characteristics of Betula, Fagus and Quercus. U: average date of leaf unfolding; G: date of the stage full leaf; F: date of leaf fall; ΔU/ΔT_w: change in date of leaf unfolding with mean winter temperature (T_w, 1 November until leaf unfolding); ΔG/ΔT_w: change in date of full leaf; ΔF/ΔT: change in date of leaf fall with mean summer temperature (T_s, 1 May until leaf fall); I: average cumulative irradiance (MJ m^-2 growing season^-1); ΔI/ΔT_w: change in I caused by advancement of leaf unfolding (MJ °C^-1); ΔI/ΔT: change in I caused by advancement of leaf fall (MJ °C^-1).

<table>
<thead>
<tr>
<th></th>
<th>Betula</th>
<th>Fagus</th>
<th>Quercus</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>22 April</td>
<td>1 May</td>
<td>5 May</td>
</tr>
<tr>
<td>G</td>
<td>2 May</td>
<td>8 May</td>
<td>15 May</td>
</tr>
<tr>
<td>F</td>
<td>4 October</td>
<td>16 October</td>
<td>20 October</td>
</tr>
<tr>
<td>I</td>
<td>2504</td>
<td>2488</td>
<td>2413</td>
</tr>
<tr>
<td>ΔU/ΔT_w</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>ΔG/ΔT_w</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>ΔF/ΔT</td>
<td>44 (1.8%)</td>
<td>28 (1.1%)</td>
<td>32 (1.3%)</td>
</tr>
<tr>
<td>ΔI/ΔT_w</td>
<td>-24 (-1.0%)</td>
<td>0 (0%)</td>
<td>-28 (-1.1%)</td>
</tr>
</tbody>
</table>
Models. Three models with different levels of detail of photosynthesis and allocation were used, i.e. FORGRO, PGEN and the ITE-Edinburgh model. Briefly, FORGRO (Mohren 1987, 1994) is a process-based model suitable for predicting the growth of an even-aged monoculture of coniferous tree species. The photosynthesis-light response curve is modelled using a negative exponential function. An increase in the external CO₂ concentration alters both the initial light use efficiency and the CO₂-limited rate of gross photosynthesis (Goudriaan et al. 1985). Allocation of assimilates is modelled using fixed allocation keys. PGEN (Friend 1993) is a model aiming to predict the rate of photosynthesis at the biochemical level (Farquhar & von Caemmerer 1982), and the optimization of stomatal conductance given a set of environmental and biological parameters. The ITE-Edinburgh model (Thornley 1991) is a transport-resistance model of forest growth and partitioning based on counter-gradients of carbon and nitrogen substrate between foliage and roots. In the foregoing account the processes in which the models differ and those parts which were adjusted to calculate the growth of deciduous trees have been emphasized: see also Appendices 1 & 2.

FORGRO: Fig. 1 presents a simplified scheme of FORGRO. For photosynthesis, the minimum was taken of the rate of photosynthesis limited by either CO₂ or the maximum value measured at light saturation (Figs. 2 & 3; Eqs. 1 to 4 in Appendix 2). Mesophyll resistance was calculated using: \(r_m = (C_i - 1)/F_m \) (Fig. 2), assuming a constant ratio of internal to external CO₂ concentration (Goudriaan et al. 1985). The boundary layer conductance was set at a constant value, and the stomatal conductance depends solely on temperature. The temperature dependency of the CO₂ compensation point is described using a multiplier (Eq. 5). To relate the light-saturated rate of gross photosynthesis, a temperature multiplier was obtained by linear interpolation of literature data, using a broad plateau of near-unity in the range 10 to 30°C, and declining to zero outside this temperature range. A similar approach was taken to determine the actual mesophyll resistance as a function of temperature, with values similar to the photosynthesis-temperature relationship. Daily gross canopy photosynthesis was calculated by integrating hourly over both sunlit and shaded leaf layers using a Gaussian integration scheme (Goudriaan 1986), dividing the canopy into 5 shaded and sunlit leaf layers. Growth and maintenance respiration were calculated using the approach of Penning de Vries, which is based on the costs of biosynthetic processes and the biochemical composi-
light interception and photosynthesis

\[\text{Light interception and photosynthesis} \]

\[\text{Foliation} \]

\[\text{Branches} \]

\[\text{Stem} \]

\[\text{Coarse roots} \]

\[\text{Fine roots, mycorrhizas} \]

\[\text{Structure, } X \]

\[\text{Growth} \]

\[\text{Meristem, } M \]

\[\text{Carbon substrate, } C \]

\[\text{Nitrogen substrate, } N \]

\[\text{Soil mineral nitrogen, } \text{NH}_4^+, \text{NO}_3^- \]

\[\text{Uptake} \]

\[\text{Maintenance respiration} \]

\[\text{CO}_2 \]

\[\text{Growth respiration} \]

\[\text{Growth respiration} \]

\[\text{Meristem activity requires C and N substrates} \]

\[\text{Fig. 4. Simplified diagram of the structure of ITE-FORGRO. Light interception and photosynthesis are described as in FORGRO. (Figure redrawn from Thornley 1991)} \]
which calculate light interception, photosynthesis and stomatal conductance. A reserve pool was required to start leaf growth after bud burst, and to allow for maintenance respiration in the leafless period. Therefore, a reserve pool was added for each organ. The growth rate of each reserve pool was set at a fixed fraction (0.05) of the growth rate of the structural biomass of the organ. Furthermore, it was assumed that the utilization of carbon and nitrogen and the respiration of the reserve pool are similar to the respiration of the structural biomass. During the build up of the canopy (the period from bud burst until full leaf), reserves are mobilized from all organs, i.e. converted into labile C and N, according to a first-order process. During this phase the foliage is the only organ allowed to grow. Consequently, a gradient of both C and N substrate from the fine roots to the foliage develops, since the foliage acts as the only sink. The leaves start to photosynthesize immediately, which causes the C substrate gradient to reverse as soon as the carbon production exceeds carbon utilization, or when the full leaf stage is reached. During the leafless period, the costs of maintenance respiration are directly compensated for from the reserve pool of each organ. The leaf area index was truncated to the same maximum value as used in FORGRO.

The ITE-FORGRO model was developed using SENeca v1.5, a Simulation ENVironment for ECological Application (De Hoop et al. 1992). The integration method was Eulerian with variable time steps. Preliminary runs indicated that it takes approximately 3 yr for the ITE-FORGRO model to attain stable gradients of labile carbon and nitrogen. Therefore, runs were started at 1937, using average values for the phenological events, but output of the 1940 to 1953 period is presented.

RESULTS

Phenology

An impression of the importance of the differences between the phenological types can be obtained by examining the amount of light available on average during the growing period, and how this changes with a rise in temperature (Table 1). On average, most irradiance is available for Betula, Fagus and Quercus have respectively 1.4 % and 3.6 % less. When the temperature changes, the net result is a gain in the average available irradiance of 0.8 % for Betula, 1.1 % for Fagus and 0.2 % for Quercus, per degree temperature rise, relative to the total cumulative irradiance available on average during the growing season for each of these phenological types. In The Netherlands, the irradiance gained on average when leaf unfolding is advanced by 1 d is more than twice what is lost when leaf fall advances 1 d (e.g. 15 MJ m⁻² d⁻¹ on 1 May and 6 MJ m⁻² d⁻¹ on 15 October).

Table 1 presents the results of FORGRO-PGEN and ITE-FORGRO for the C₃₅/O/T₀ scenario. Clearly, the differences in phenology only cause small differences in growth and radiation use efficiency, and are consistent with the pattern between the phenological types found in Table 1. For this parameterization of the models the Pₙ calculated by FORGRO is similar to ITE-FORGRO, but higher than that of FORGRO-PGEN. For this parameterization of ITE-FORGRO, more carbon is respired by growth respiration than by maintenance respiration, whereas in FORGRO the opposite is true. Furthermore, the growth rates of the organs differ because of the different mechanism of allocation (results not presented).

The results of the 3 models when [CO₂] = 700 μmol mol⁻¹ are that differences in the response of Pₙ between Betula, Fagus and Quercus increase with temperature (Figs. 5 to 7). The difference in the response between Fagus and Quercus increases by approximately 4 % in the C₇₀₀/T₁ scenario and by approximately 20 % in the C₇₀₀/T₃ scenario, for FORGro and FORGRO-PGEN, but the corresponding increases according to ITE-FORGRO are 4 % and 13 %, because of the different mechanism of allocation. This is consistent with the differences between the phenological types based on the change in average available irradiance with temperature (Table 1). Figs. 5 to 7 further show that the response of Pₙ to a doubled [CO₂] is
greatest according to FORGRO-PGEN, and least in ITE-FORGRO, and that the response increases with temperature according to FORGRO-PGEN (Fig. 6), but decreases with temperature according to both FORGRO and ITE-FORGRO (Figs. 5 & 7).

The causes of the differences between FORGRO and FORGRO-PGEN are depicted in Figs. 8 & 9. For the current parameterization of FORGRO and FORGRO-PGEN it can be seen that: (1) FORGRO yields a higher P_g than FORGRO-PGEN for any CO$_2$, temperature and light combination; (2) the sensitivity of P_g to CO$_2$ at a constant light level increases with temperature according to FORGRO-PGEN, but decreases slightly according to FORGRO; (3) the sensitivity of P_g to CO$_2$ at 10°C increases with irradiance similarly in FORGRO and FORGRO-PGEN; and (4) there is a temperature and light interaction for the sensitivity of P_g to CO$_2$ according to FORGRO-PGEN, but not according to FORGRO.

The consequence of these differences between FORGRO and FORGRO-PGEN are that in FORGRO and thus ITE-FORGRO, the increase in respiration with temperature is not compensated for by an increase in photosynthesis (Figs. 5 & 7), whereas this is the case in FORGRO-PGEN (Fig. 6).

Sensitivity analysis

A sensitivity analysis was performed to evaluate which parameters are most important in determining the response of gross photosynthesis, P_g, to an increase

![Diagram](image)
Fig. 9. Response of P_g to CO$_2$ at different temperature and light levels, according to FORGRO-PGEN

of both CO$_2$ and temperature. The response of P_g to the C_{100}/T_2 scenario relative to the C_{300}/T_0 scenario was used to compare the sensitivities of the parameters. The general trend which can be seen for FORGRO is that when a parameter is set so that P_g is lower than the default parameter value, then the response to the C_{100}/T_2 scenario is greater (Fig 10). For example, a high ratio between internal and external CO$_2$ concentration, C_i/C_a, reduces the P_g relative to a low ratio; consequently P_g is increased more by the C_{100}/T_2

scenario compared with the low ratio (24% versus 18%). High values of C_i/C_a, the CO$_2$ compensation point, and stomatal resistance, and low values of the initial light use efficiency, the light extinction coefficient and specific leaf area reduce P_g, and thus show the large response to C_{100}/T_2. However, for P_{max} the opposite is true: the largest response to C_{100}/T_2 is at the high value of P_{max}, which clearly gives high values of P_g. This was caused by the fact that at low P_{max}, this asymptote was met more frequently than at high P_{max}, thus the sensitivity to the scenarios is less. In general it can be concluded that response of P_g in FORGRO to the C_{100}/T_2 scenario is similar over a wide range of values of the main parameters which determine light interception and photosynthesis.

A clear effect of the PGEN formulation is that the response of P_g to the scenarios increases or decreases, depending on the value assigned to a parameter. This is especially true for the parameters describing the temperature response of a parameter ($\Delta S, m, n, E_u, E_g$). The reason for this can be seen from Eqs. (20) to (22): a change of 1 unit in a parameter in the exponent is equivalent to leaf temperature changing by approximately 0.03°C, because the temperature is presented in Kelvin. Thus, these parameters need to be estimated accurately, although a change of 25% in the values of these parameters may exceed the range which is found experimentally.

For the ITE-FORGRO model, the most pronounced effect was found for the total leaf nitrogen (N_{tot}) and the fraction nitrogen in meristem and structural biomass of all organs (f_{NM} and f_{NX}). However, the magnitude of the response of P_g to the scenario is only slightly affected by a large change in the values of these parameters. The absolute response of the other parameters of the ITE-FORGRO model tested in this manner was much less than that of the nitrogen parameters, whilst only the coefficient determining the potential meristem size showed a P_g response which differed more than 2% between the scenarios.

DISCUSSION AND CONCLUSIONS

Both FORGRO and FORGRO-PGEN showed that the difference in the response of gross photosynthesis to a doubled CO$_2$ concentration between the phenological types ranges from 4 to 20% if the corresponding temperature rises by 2 to 7°C, respectively. However, these models diverge in the degree of the
response of \(P_g \) to doubled \(CO_2 \) scenarios: in FORGRO, this response ranges on average from +20% when there is no temperature rise to -16% when the rise is 7°C, while the corresponding range according to FORGRO-PGEN is +22% to +36%. These differences can be attributed to differences in the response of \(P_g \) to \([CO_2]\). In FORGRO-PGEN this response enhances when temperature and irradiance increase, whilst in FORGRO this interaction is weaker (Figs. 8 & 9). Consequently, in FORGRO-PGEN the increase in photosynthesis exceeds the increase in respiration, whereas in FORGRO and ITE-FORGRO the break-even point lies at or above a temperature increase of 5°C. The \(CO_2 \times \) temperature interaction is frequently reported in the literature, and is stressed as an important aspect for the study of climate change effects (e.g. Idso & Idso 1994, Kirschbaum 1994). However, the absence of a response or a decline of the relative stimulation of biomass of perennial plants at high \(CO_2 \) as temperature increases has also been reported (Ziska & Bunce 1994, and literature therein).

According to the transport-resistance mechanism of allocation (Thornley 1991) the response of \(P_g \) to the scenarios with doubled \(CO_2 \) is less compared with FORGRO and FORGRO-PGEN: relative to the \(C_{T00}/T_0 \) scenario it is +13% for no temperature rise and -6% for a rise of 7°C. Callaway et al. (1994) presented experimental evidence for a reduced response of growth to enhanced \(CO_2 \) because of an altered allocation pattern. They found that the initial stimulating effect of \(CO_2 \) on the growth of *Pinus ponderosa* seedlings, and its enhancement by increased temperature, disappeared after 2 mo because of an increased allocation of biomass to the roots and other non-photosynthesizing tissues. Furthermore, the differences in the response of \(P_g \) to a \(2\times[CO_2] \) scenario between the phenological types are less than FORGRO and FORGRO-PGEN: 4% if the corresponding temperature rises by 2°C and 13% if it rises by 7°C (Fig. 6). These features of the transport-resistance model make it worthwhile validating this model for a number of tree species.

Figs. 5 to 7 can be used to evaluate the temperature increase predicted by general circulation models (GCMs). Four well-known GCMs are OSU, GISS, GFDL and UKMO, which predict that mean annual temperature will increase by 3.0, 4.0, 5.3 and 6.5°C, respectively (Leemans 1992). However, these models use \(CO_2 \) equivalents to calculate the increase in radiative forcing due to an increase in greenhouse gases. Approximately half of these greenhouse gasses is carbon dioxide, the other half consists of methane, CFCs etc. (Houghton et al. 1990). Furthermore, according to the GCM scenarios the temperature increases more during winter than during summer, rather than uniformly over the year (Leemans 1992). Consequently, the GCM scenarios affect the timing of leaf unfolding more than the timing of leaf fall, and respiration during the growing season is less for the GCM scenarios than for the uniform temperature scenarios. Thus, the equivalent uniform temperature scenario involves a somewhat higher increase in temperature than the annual mean temperature increase of the GCM scenario.

The sensitivity analysis of the parameters of the models affecting photosynthesis showed that for FORGRO and FORGRO-ITE there is generally little interaction between the value of a parameter and the degree of the response of growth to the \(C_{T00}/T_3 \) climate change scenario, although many parameters strongly affect the response in absolute terms (Fig. 10). Typically, this sensitivity over a broad range of parameter values is similar in magnitude to the difference between the phenological types in the \(C_{T00}/T_3 \) scenario (Figs. 5 & 7). For FORGRO-PGEN, however, the degree of the response of \(P_g \) to the \(C_{T00}/T_2 \) scenario depends on the value of a parameter (Fig. 10). This was especially the case for the parameters describing the Michaelis-Menten kinetics of Rubisco, and the effect of temperature on these parameters. Also the effect of nitrogen is such that at low values of the nitrogen parameters the response of \(P_g \) to the \(C_{T00}/T_2 \) scenario is greater than at high values of these parameters (Fig. 10). For these parameters, this sensitivity is greater than the difference between the phenological types in the \(C_{T00}/T_3 \) scenario (Fig. 6). The sensitivity of the response to a variation in the parameter values in FORGRO-PGEN indicates that these parameters must be determined accurately in order to evaluate the effects of \(CO_2 \) and temperature on growth. Currently, they are available for only a few species. Furthermore, some of the parameters of the PGEN formulation vary considerably both between and within species (Wullschleger 1993).

An analysis of uncertainty propagation in FORGRO showed that variation in \(P_{max}, Q_{L0}, \epsilon_0 \) and SLA within 95% of their uncertainty limits yielded uncertainties of 19, 9, 9 and 2%, respectively, of the relative standard deviation of the annual growth rate (Van der Voet & Mohren 1994). In a sensitivity analysis of PGEN it was found that the sensitivity indices (ratio of the relative change in a parameter to the relative change in net photosynthesis) of \(k_c, K_c, N, K_p, f_{n,n}, k_p, f_{N,cell} \) and \(f_{max} \) were 0.7, 0.6, 0.6, 0.4, 0.4, 0.3, 0.2 and 0.2, respectively (Friend 1995). Thus, the uncertainty or sensitivity of these output variables to a small variation in a parameter is not directly applicable for inferring the importance of this parameter on the effects of a climate change scenario on the output variable.

In this study, only the direct effect of temperature on phenology was taken into account. However, nutrients
Kramer: Phenology, tree growth and climate change

and CO₂ are known to interact with temperature. Murray et al. (1994) showed that for some Picea sitchensis clones, an increased CO₂ yields a delayed bud burst and an advanced bud set under low nutrient supply. This could shorten the growing season by 3 wk. Under high nutrient supply this effect was much less. Increasing temperature counteracted the CO₂ effect, resulting in an advanced bud burst, which was less compared to the situation where only temperature was increased. Such complex interacting effects, which are clone specific, greatly complicate the evaluation of the effects of climate change on the growth of trees.

Acknowledgements I thank Prof J. Goudriaan, Dr G. M. J. Mohren and the Ph.D. group of the C. T. de Wit Graduate School of Production Ecology for valuable comments on earlier drafts of the manuscript.

Appendix 1. Symbols of variables and parameters with their dimensions. The value indicates the default value for the parameter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_g</td>
<td>Gross photosynthesis</td>
<td>t CH₂O ha⁻¹ yr⁻¹</td>
<td></td>
</tr>
<tr>
<td>R_{ma}</td>
<td>Maintenance respiration</td>
<td>t CH₂O ha⁻¹ yr⁻¹</td>
<td></td>
</tr>
<tr>
<td>R_d</td>
<td>Growth respiration</td>
<td>t CH₂O ha⁻¹ yr⁻¹</td>
<td></td>
</tr>
<tr>
<td>G_i</td>
<td>Growth: $i=1$, leaves; $i=b$, branches; $i=s$, stem; $i=c$, coarse roots; $i=f$, fine roots</td>
<td>t DM ha⁻¹ yr⁻¹</td>
<td></td>
</tr>
<tr>
<td>SLA</td>
<td>Specific leaf area</td>
<td>m² kg⁻¹</td>
<td>20</td>
</tr>
<tr>
<td>L_{max}</td>
<td>Maximum leaf area index</td>
<td>m² [leaf] m⁻² (ground)</td>
<td>6</td>
</tr>
<tr>
<td>$P_{n,max}$</td>
<td>Maximum rate of net photosynthesis</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td>0.56</td>
</tr>
<tr>
<td>Γ_{20}</td>
<td>CO₂ compensation point at 20°C</td>
<td>µmol mol⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>ε_0</td>
<td>Initial light use efficiency</td>
<td>kg CO₂ J⁻¹</td>
<td>0.45</td>
</tr>
<tr>
<td>C_i/C_e</td>
<td>Ratio internal to external CO₂ concentration</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>k_{can}</td>
<td>Light extinction coefficient of canopy</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>R_{d20}</td>
<td>Dark respiration at 20°C</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td>0.028</td>
</tr>
<tr>
<td>Q_{10}</td>
<td>Increase of R_d given 10°C temperature increase</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{rc}</td>
<td>Allocation of assimilates to the reserve pool, leaves, branches and stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_{ai}</td>
<td>Reserve pool, leaves, branches and stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_a</td>
<td>Ambient CO₂ concentration</td>
<td>µmol mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>$F_{g,max}$</td>
<td>Maxissor photosynthesis</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>F_n</td>
<td>Net rate of photosynthesis</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>$F_{n,c}$</td>
<td>CO₂ limited net photosynthesis</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>$F_{n,max}$</td>
<td>Maximum net photosynthesis at high CO₂ and light levels</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>$F_{n,m}$</td>
<td>Maximum endogenous photosynthetic capacity at high CO₂ and light levels</td>
<td>mg CO₂ m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>H_{abs}</td>
<td>Absorbed PAR</td>
<td>J m⁻² s⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 2. Equations

FORGRO

Leaf photosynthesis

\[F_n = F_{g,max} \left(1 - \frac{\varepsilon}{\varepsilon_0} \right) - R_d + \frac{C_o - \Gamma}{r_m + 1.6r_c + 1.4r_b} \]

Allocation

\[\frac{R - R_{max}}{R_{max}} = a_{rc} \]

\[\frac{L - L_{max}}{L_{max}} = a_i \]

\[\frac{1}{L} = \frac{1}{L} - \left(a_r + a_c \right) \]

(Appendix continued on next page)
\begin{align}
A_{n,c} &= \frac{V_{c,max}(C_i, \Gamma_c)}{C_i + K_c \left(1 + \frac{O_i}{K_o}\right)} - R_d \\
A_{n,s} &= \frac{J(C_i, -\Gamma_s)}{4.5 C_i + 10.5 \Gamma_s} - R_o \\
A_{n,s} &= \frac{C_o - C_i}{C_o - C_i} \frac{ERT}{r_c} \left(\frac{1}{2} \right) \\
\Gamma_s &= 0.5 \frac{V_{c,max} K_c O_i}{V_{c,max} K_o} \\
J &= \frac{J_{\text{max}} H_{\text{abs}}}{2.1 J_{\text{max}} + H_{\text{abs}}} \\
V_{1,max} &= k_i E_i, i: c, o \\
J_{\text{max}} &= \frac{j_{\text{max}} f_{\text{abs}, \text{at}} N}{0.056} \\
E_i &= 0.0999 f_{\text{at}, \text{at}} N \\
r_c &= f_{\text{ca}} + f_{\text{cs}} + f_{\text{ci}} \\
R_d &= R_{\text{AT}} N \\
K_i &= \frac{K_{\text{int}, D}}{S_i}, i: c, o
\end{align}

\begin{align*}
A_{n,c}, A_{n,s} &\text{ Carboxylation-limited, RuBP} \\
A_{n,s} &\text{ regeneration-limited, and stomatal resistance-limited rate of net photosynthesis} \\
C_i, C_o &\text{ [CO_2] in leaf air spaces, and in air outside the leaf boundary layer} \\
D &\text{ Concentration of air in leaf internal air spaces} \\
E &\text{ Transpiration} \\
E_a &\text{ Activation energy} \\
E_d &\text{ Deactivation energy} \\
E_c &\text{ Leaf Rubisco catalytic site content in leaf} \\
I_i, k_i, f_{\text{abs}, \text{at}}, f_{\text{at}, \text{at}} &\text{ Fraction nitrogen in Rubisco, and chlorophyll} \\
H_{\text{abs}} &\text{ Absorbed PAR} \\
J &\text{ Potential electron transport rate} \\
j_{\text{max}} &\text{ PAR-saturated potential electron transport rate} \\
J_{\text{max}} &\text{ PAR-saturated electron transport rate} (\text{temperature dependent}) \\
k_i, k_o &\text{ Rubisco carboxylation, and oxygenation turnover number} \\
K_i, K_o &\text{ M-M constant for carboxylation, and oxygenation of Rubisco} \\
K_{c, chl}, K_{c, chl} &\text{ M-M constant for carboxylation, and oxygenation of Rubisco} \\
N &\text{ Leaf nitrogen content} \\
O_i &\text{ O_2 concentration in leaf air spaces} \\
P, P_o &\text{ Atmospheric pressure, and standard atmospheric pressure} \\
R &\text{ Gas constant} \\
r_c &\text{ Resistance to CO_2 from air outside the leaf boundary layer to the mesophyll surface} \\
r_{c, s} &\text{ Resistance to CO_2 transfer across leaf boundary layer} \\
r_{c, i} &\text{ Resistance to CO_2 from inside leaf surface to mesophyll surface} \\
S_a, S_o &\text{ Solubility of CO_2, and O_2 in water} \\
T_i, T_r &\text{ Average of leaf and air temperature, and leaf temperature} \\
V_{\text{max}}, V_{\text{m}, \text{max}} &\text{ Maximum rate of carboxylation, and oxygenation of Rubisco} \\
\Gamma &\text{ Photosynthesis compensation [CO_2] in leaf air spaces in absence of mitochondrial respiration} \\
\Delta S &\text{ Entropy parameter} \\
\alpha, m, n &\text{ Empirical constants}
\end{align*}
Appendix 2 (continued)

ITE-Edinburgh

Differential equations

\[
\begin{align*}
\frac{dM_{LM}}{dt} &= G_{LM} - L_{LM}M_{LM} \\
\frac{dM_L}{dt} &= G_L - L_{LM}M_L - M_{LM} \\
\frac{dM_X}{dt} &= G_X - L_{LM}M_X - L_{MX}M_{MX} \\
\frac{dM_{CG}}{dt} &= \frac{T_{C(G-1)}}{T_{C(G-1)} - R_{Xm} - U_{CG} + M_{CG}} \\
\frac{dM_{NG}}{dt} &= \frac{T_{N(I) - 1}}{T_{N(I) - 1} - U_{NG} + M_{NG}} \\
\end{align*}
\]

Leaves (L):

\[
\frac{dM_L}{dt} = \frac{T_{C(G-1)} - R_{Xm} - U_{CG} + M_{CG}}{T_{C(G-1) - 1}}
\]

Fine roots (f):

\[
\frac{dM_{NG}}{dt} = U_N - T_{NTE} - U_{NG} + M_{NG}
\]

\(G_{LM}\)	Growth rate of meristem	kg dm \(^{-1}\) d\(^{-1}\)
\(G_L\)	Growth rate of reserves	kg dm \(^{-1}\) d\(^{-1}\)
\(G_X\)	Growth rate of structure	kg dm \(^{-1}\) d\(^{-1}\)
\(L_{LM}M_{LM}\)	Loss in meristems to intrinsic differentiation	kg dm \(^{-1}\) d\(^{-1}\)
\(L_{LM}M_L\)	Loss in reserves to litter	kg dm \(^{-1}\) d\(^{-1}\)
\(L_{LM}M_X\)	Loss in structure to litter	kg dm \(^{-1}\) d\(^{-1}\)
\(M_{CG}\)	Mobilization of carbon from reserves	kg C ha\(^{-1}\) d\(^{-1}\)
\(M_{NG}\)	Mobilization of nitrogen from reserves	kg N ha\(^{-1}\) d\(^{-1}\)
\(P_C\)	Canopy gross photosynthesis rate	kg C ha\(^{-1}\) d\(^{-1}\)
\(R_{Xm}\)	Maintenance respiration	kg dm \(^{-1}\) d\(^{-1}\)
\(T_{CG}\)	Carbon transport flux	kg C ha\(^{-1}\) d\(^{-1}\)
\(T_{NG}\)	Nitrogen transport flux	kg C ha\(^{-1}\) d\(^{-1}\)
\(T_{C(G-1) - 1}\)	Temperature, minimum, maximum and reference temperature	°C
\(U_{CG}\)	Utilization of carbon for growth	kg C ha\(^{-1}\) d\(^{-1}\)
\(U_{NG}\)	Utilization of nitrogen for growth	kg N ha\(^{-1}\) d\(^{-1}\)
\(U_N\)	Uptake of nitrogen from soil	kg N ha\(^{-1}\) d\(^{-1}\)

LITERATURE CITED

Goudriaan J (1992) Simulation of crop growth. Report nr F-300-201, Department of Theoretical Production Ecology, Agricultural University Wageningen

Ziska LH, Bunce JA (1994) Increasing growth temperature reduces the stimulatory effect of elevated CO₂ on photosynthesis or biomass in two perennial species. Physiol Plant 91:183–190

Editor: G. Esser, Gießen, Germany

Manuscript first received: November 2, 1994
Revised version accepted: March 27, 1995