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1. INTRODUCTION

Especially because of the need to deal with future
climate scenarios, much attention has been given to
the problem of downscaling surface climate behavior
from large-scale atmospheric circulation. Due to the
high non-linearity and influence of local factors pre-
sent in the atmospheric system, it is sometimes difficult
to describe the relationship between atmospheric cir-
culation and surface climate using a deterministic
approach. However, from a statistical point of view
there is evidence that the surface climate variables
depend on large-scale atmospheric circulation. For
example, Bürger (1958), Yoshino (1975) and Lamb
(1977) proved that changes in atmospheric circulation
affect precipitation. The quantification of the compli-

cated non-linear relationship can be described with
the help of circulation patterns. 

There are several possibilities for downscaling,
which form 2 main groups: dynamical downscaling
and empirical downscaling. In the case of dynamical
downscaling nested regional climate models (Giorgi &
Mearns 1991) are used to simulate subgrid scale fea-
tures. The advantage of this method is that it delivers
meteorologically consistent variables. However the
uncertainty related to this method, and the non-
uniqueness of the solution, is generally not taken into
account. Empirical downscaling methods are based on
local observations. These methods can generate a
large number of realisations—thus the assessment of
the uncertainty of the prediction is possible. Further
local details which cannot be reflected by the dynami-
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cal models are considered in these methods. Empirical
downscaling can be done by using either regression
techniques or conditional-probability approaches. The
regression method defines the relationship between
the large-scale and local information by means of an
explicit function (Wilks 1989, Kilsby et al. 1998, Pilling
et al. 1998). The form of the function is usually selected
so that the parameters can be estimated without major
numerical difficulties. The explanatory variables are
often selected using a trial-and-error procedure. The
other empirical techniques use an intermediate step.
The large-scale information is first classified using
empirical, statistical or other methods. Then the down-
scaling is done by using stochastic models, with para-
meters dependent on the circulation pattern (CP)
types. In this case the non-linearity of the downscaling
is captured by the CPs, each of them having a specific
relationship with the surface variables. The main moti-
vation of the presented method is to provide an objec-
tive basis (day-by-day classified CPs) for downscaling
models with parameters depending on the CP. The
methodology of these models and their applications
are not discussed in this paper. The model for down-
scaling of precipitation was presented in Bárdossy &
Plate (1992). Bárdossy & Mierlo (2000) described the
temperature downscaling model. However, the advan-
tage of conditioning the downscaling on CPs is that the
CPs characterize the atmospheric circulation on a large
(continental) scale.

In CP classification techniques, 2 main groups of
methods can be distinguished (Yarnal 1984, 1993). The
first type of method is subjective classification. The
advantage of this method is that the knowledge and
experience of meteorologists is fully used in the classi-
fication. Major disadvantages are that the results can-
not be reproduced and that this method can only be
applied for certain geographical regions. Many subjec-
tive classifications have been developed for various
regions with different scales: Baur et al. (1944) and
Hess & Brezowsky (1969) for Central Europe, Lamb
(1972) for the British Isles, Maheras (1988, 1989) for
Greece, Dzerdzeevskii (1968) for the extratropical lati-
tudes of the Northern Hemisphere, and Krick (1943)
and Elliott (1949) for the United States. The second
type of CP-classification method is represented by
objective techniques. They are based on automated
algorithms operating on selected datasets, and they
allow fast classification, which is necessary especially
for climate-change scenarios. The objective-classifica-
tion methods include k-means clustering (Wilson et al.
1992), a method based on physical quantities (Jenkin-
son & Collison 1977); fuzzy classification, based on
subjectively defined rules (Bárdossy et al. 1995);
principal-component clustering (Goodess & Palutikof
1998), principal-component analysis coupled with

k-means clustering (Bogárdi et al. 1994); and neural-
network methods (Cawley & Dorling 1996). A compar-
ison of the Lamb subjective-classification and objec-
tive-classification schemes was performed by Jones et
al. (1993).

The precipitation and temperature characteristics of
CPs from most of the above-mentioned CP classifica-
tion methods are studied ‘ex post’. The mean precipita-
tion behavior conditioned on the CPs is determined
after the classification. The same holds true for temper-
ature. The objective of the classification method pre-
sented in this paper is to define CPs so that they
explain the variability of local surface climate variables
(precipitation, temperature) in a locally specific func-
tional form. Therefore the CPs explain the dependence
between the large-scale atmospheric circulation and
the surface climate.

The presented classification method is automated,
fuzzy rule based and takes surface climate variables
into account. The data used are daily 700 and 500 hPa
elevations, daily precipitation totals, and daily temper-
atures for 9 stations in Germany and 21 stations in
Greece. In the case of Germany, the mean daily tem-
peratures are used, whereas for Greece the daily tem-
perature maxima are taken into account. These repre-
sent the natural variability quite well. This is also the
highest time resolution available for large scales. 

2. METHODOLOGY

2.1. Classification method

The classification method used is the fuzzy-rule-
based classification. It is based on the concept of fuzzy
sets (Zadeh 1965), which enables one to deal with
imprecise statements. The classification consists of 3
steps: (1) data transformation; (2) definition of the fuzzy
rules; and (3) classification of observed data. The clas-
sification is carried out using normalized pressure
anomalies g(i,t) of the daily geopotential height data
(i stands for the gridpoint and t for the day). The pres-
sure data used are obtained from the NMC gridpoint
data set for different windows over Europe with a grid
resolution of 5° × 5°. 

The procedure for fuzzy-rule-based classification is
described in Bárdossy et al. (1995). Here only a brief
description is given. Every CP is described with a fuzzy
rule k represented by a vector v(k) = (v(1)(k) … v(n)(k)),
where n is the number of gridpoints for which the air-
pressure data are available. The v(i)(k) are the indices
of the membership function corresponding to the
selected locations. Five possible classes of membership
functions v of the rule premises appear to be adequate
according to the normalized geopotential height val-
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ues. The membership functions were defined as trian-
gular (subscript T) fuzzy numbers: v = 1, very low: 
(–∞,–1,–0.2)T; v = 2, medium low: (–1.4,–0.6,0)T; v = 3,
medium high: (0,0.6,1.4)T; v = 4, very high: (0.2,1,+∞)T;
and v = 5, the membership function is the constant 1.

The membership function of the triangular fuzzy
number (a,b,c)T is defined as:

(1)

The fifth possibility was introduced to allow any pos-
sible geopotential height anomalies for those locations
that have no influence on the circulation pattern. The
location and number of such gridpoints depend on the
class to be described. Usually most gridpoints belong
to this class, and only characteristic ones are assigned
to other classes. The location of these gridpoints might
vary for different CPs. 

For the data classification, the membership grades of
the normal height anomalies were computed. For a
given time t and location i the membership grade cor-
responding to rule k is defined as

(2)

These membership values are combined to calculate
the degree of fulfilment DOF of the rule: 

(3)

where N is the number of gridpoints classified by class
l, and Pl ≥ 1 is the parameter which allows one to
emphasize the influence of selected classes on the
DOF. The k for which DOF(k,t) is maximal is selected
as CP for day t.

The problem with this classification method is how to
assess the rule vectors. A subjective definition of the
rules requires good knowledge of the local meteoro-
logical conditions. This expertise is often not available.
Another possibility, presented here, is the assessment
of the rules using optimization. 

2.2. Performance measures

In order to find the best possible rules for the de-
scription of local precipitation behavior, the performance
of the classification has to be defined. Three types of
objective functions can be introduced to measure the
performance of the classification with regard to surface
climate variables (precipitation and temperature).

The goal of the optimization for the description of
precipitation is to achieve a set of CPs which explain
the variability of precipitation behavior as much as
possible. It is intended to identify both very wet or very
dry conditions. Two types of objective functions were
defined. The first deals with the probability of precipi-
tation on a given day. By considering the threshold ϑ
for the daily precipitation amount, the general defini-
tion of the first objective function can be given as:

(4)

Here S is number of stations, T is number of days,
p(CP(t))i is the probability of precipitation exceeding
the threshold ϑ on a day with given CP at Stn i, p -i is the
probability of a day with precipitation exceeding ϑ for
all days without classification and within the time
period T.

For the precipitation amounts the following objective
function is defined:

(5)

Here z(CP(t))i is the mean precipitation amount on a
day with a given CP at Stn i and z -i is the mean daily
precipitation without classification at the same station.
Higher values of O1(ϑ) and O2 indicate a better classi-
fication. It is possible to combine more objective func-
tions by taking a weighted sum:

(6)

where a1 … an +1 are weights. The weights are selected
in order to express the importance of the different
objective functions and to correct for the different
ranges of the functions. 

A reasonable choice, used in this research, is to use 2
thresholds for O1: the first threshold being ϑ1 = 0.1 mm
d−1, taking all days with precipitation into account, and
the second (ϑ2) defining the days with high precipita-
tion amounts (>10 mm d−1). The overall objective is
then defined as follows: 

(7)

The objective function of the temperature-oriented
classification procedure is to obtain CPs which
explain deviations from the mean (CPs uncondi-
tioned) annual cycle as much as possible, i.e. to de-
fine some very cold and some very warm CPs within
one classification. The objective function to be maxi-
mized is defined as:

(8)

Here N is number of CPs, D is number of days in the
year, Tijk is average daily CP-conditioned temperature
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at Stn i, for CP j and on Day k, and Tik is average daily
unconditioned temperature at Stn i and on Day k.

Two optimization constraints were introduced. The
first defines the maximal number of pixels belonging to
specific classes (e.g. very low or medium high pres-
sure) within one CP, whereas the second constraint
disables the existence of extreme pressure gradients.
These constraints ensure not only physically realistic
CP definitions, but also faster convergence of the opti-
mization procedure. 

2.3. Optimization algorithm

The objective of the optimization procedure is to find
such fuzzy rules for which the optimisation criterion is
maximal. This means that the problem can be defined
as combinatorial. Due to a given number of fuzzy rules
(CPs), it is necessary to consider that each rule has a
given number of terms (gridpoints), depending on the
size of the pressure window, and that for each grid-
point 1 from 5 states (fuzzy numbers) can be defined.
Because of a large number of possible combinations, it
is unfortunately not possible to compute the objective
function for each combination systematically. The
number of all combinations depends on the size of the
pressure window and number of CPs to be optimized.
In the case studies presented in this paper it is approx-
imately 101000. Therefore, consideration of all the possi-
bilities to find the best is impossible. A simulated
annealing algorithm (Aarts & Korst 1989) is used as an
optimization procedure. For the fixed number of rules
the algorithm can be briefly described as follows:
(0) Initialize the rules randomly and evaluate the

performance O
(1) Set the initial ‘annealing temperature’ to q0

(2) Select a rule k randomly
(3) Select a location i randomly
(4) Select a class v* randomly
(5) If v(i)(k) = v*, return to step 2 
(6) Set v(i)(k) = v* and perform the classification
(7) Calculate performance O* for the new rules
(8) If O* > O, then accept the change 
(9) If O* ≤ O, then with probability 

accept the change
(10) If the change is accepted, replace O by O*
(11) Repeat steps 2 to 10 M times
(12) Decrease the ‘annealing temperature’ by setting

qs +1 < qs

(13) Repeat steps 2 to 12 until the portion of accepted
changes becomes smaller then a predefined
threshold

The initial annealing temperature q0 is selected so
that 50 to 80% of the attempted changes are accepted.
During the first iterations the program adjusts it so that

the above condition is fulfilled. The reason for this
choice is to allow strong departures from the initial
rules. The number of attempted changes at a given
annealing temperature M should be at least as many
as the number of arguments multiplied by the number
of rules. The algorithm makes it possible to accept
negative changes. The willingness to accept these
changes depends on the ‘annealing temperature’,
which is decreased during the optimization procedure.
It is worth mentioning that the initial classification does
not influence the appearance of the resulting opti-
mized CPs at all. The optimization process adjusts any
initial classification to an optimum solution.

2.4. Validation of CP classifications

A split sampling approach was used for the process
of CP optimization and validation. The formulae used
as optimization criteria can also be applied as mea-
sures of the classification quality. However, despite the
optimization already carried out, it is still necessary to
evaluate the overall quality of the optimized classifica-
tion, e.g. in comparison to completely different classifi-
cation techniques. Assessment of a new classification
can either be a comparison to another, for example,
subjective classification, or an internal classification,
with respect to the quality of hydrological conclusions
that can be drawn from the membership of 1 CP within
the classification. Parameters to evaluate the perfor-
mance of precipitation-oriented classifications are
based on the following quantities: HH (in %)—relative
occurrence frequency of a CP for a given time period;
p(CP(t)) (in %)—probability of precipitation on a day
with a given CP; A/HH —wetness index, the ratio of
the percentage of annual precipitation total and the
precipitation total for a given CP and its appearance
rate (high values indicate ‘wet’ CPs); m (in mm)—
mean precipitation total on a wet day for a given CP;
and s (in mm)—standard deviation of precipitation
total on a wet day for a given CP.

Any classification that defines probability p(CP(t))
and mean z(CP(t)) of precipitation on a selected station
for a single day t referring to the classification of the
same day can be measured by the indices identical to
the objective functions O1 and O2.

Both indices increase with quality. To allow a sea-
sonal difference of behavior for the classes (e.g. dry in
summer and wet in winter), the indices are usually cal-
culated for all seasons separately. Defining threshold
values for precipitation guarantees that the optimized
classification is good, especially for extreme rainfall
events. 

The quality of the classification based on tempera-
ture data is determined by using the index:
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(9)

Here IT is the average daily absolute difference in °C
for all CPs between CP-conditioned temperature
cycles and the unconditioned cycle for all CPs and 1
station, Tjk is the average daily CP-conditioned tem-
perature for CP j and Day k, and Tk is the average daily
unconditioned temperature on Day k. Higher values of
IT indicate a better classification.

3. APPLICATION

The above described methodology was applied in 2
different regions from the climate point of view: Cen-
tral Europe (Germany) and Eastern Mediterranean
(Greece). For the CP optimization the calibration
period 1980–89 and validation period 1970–79 were
selected. For each case study, 18 CP optimizations,
subsequent classifications and validations were per-
formed. The goal was to assess the influence of geopo-
tential surfaces (700 hPa, 500 hPa and sea-level pres-
sure) as well as the window size from which to take the
pressure values. Another question was how many CPs
should be generated to best describe rainfall or tem-
perature characteristics in an area. Using too few CPs
leads to a loss of information, since their behavior only
represents averaged weather conditions. Too many
CPs result in very low occurrence frequencies, which
make statistical investigation impossible. Also, it was
of interest to see in what extent the form of the objec-
tive functions influenced the validation results. 

3.1. Results for Central Europe (Germany)

For CP classification, which explains the precipita-
tion and temperature variability, it was found that the
500 hPa data in the window 35–65° N, 15° W–40° E
provided the best results. The optimal number of CPs
was found to be 12, both for precipitation- and temper-
ature-based optimizations. Daily precipitation totals or
daily mean temperatures from 9 Germany-wide dis-
tributed stations were used for both calibration and the
validation procedure.

3.1.1. Precipitation-based classification

For the precipitation-based optimization, a threshold
of ϑ1 = 0.1 mm and ϑ2 = 10 mm in the objective function
(Eq. 7) was used. Table 1 presents CPs and precipita-
tion characteristics for the precipitation station in
Stuttgart. The average occurrence frequency of most

CPs is approximately the same in each season. An
exception is CP 3, for example, with 4.6% of occur-
rence in summer and 11.3% in winter. Generally it
holds that in every season the wettest (considering the
annual average) CPs are wet and the driest CPs are
dry. If the annual wetness index is close to 1, the
wet/dry character of the CP may vary from season to
season. For example CP 2 is wet in summer (wetness
index 1.71), yet it contributes relatively little to precip-
itation in winter (wetness index 0.63).

Fig. 1 shows the distributions of the mean (1970–79)
normalized 500 hPa geopotential height anomalies for
the wettest and driest CPs. CP 1 is the most frequent
CP and dominates throughout the year, having an
average annual frequency of about 40%. At the same
time it is the driest CP, with the lowest precipitation
probability (25.6%), the lowest mean wet-day amount
(1.1 mm), and the lowest wetness index (0.63). The
map shows that CP 1 is characterized by a pronounced
high-pressure anomaly east of the British Isles, which
causes a weak air movement and transport of dry air
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Fig. 1. Mean normalized distributions of 500 hPa geopotential
height of 1 wet (above) and 1 dry (bottom) circulation pattern
(CP), averaged over 1970–79. (CPs are precipitation-
optimized over 1980–89 with 500 hPa data and 9 stations in 

Germany)
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masses from northeastern Europe to central Europe.
CP 3 is a typical wet CP which has the second highest
precipitation probability (66.9%), highest mean wet-
day amount (2.9 mm), and highest wetness index
(1.65). Fig. 1 shows that CP 3 is characterized by a typ-
ical negative pressure anomaly north of the British
Isles and a positive anomaly over the eastern Atlantic.
This distribution of pressure anomalies causes the typ-
ical west cyclonic transport of wet, ocean air mass from
the North Atlantic to Central Europe. The maps of
pressure anomalies show that the presented auto-
mated classification method produces physically real-
istic results. 

Wetness indices (precipitation contribution/occur-
rence frequency) for every CP, every season (and an-
nual cycle) and all 9 stations used for calibration were
computed. As in case of Stn Stuttgart, the wettest CP is
CP 3 and the driest CP is CP 1. Fig. 2 shows that both
the above-described CPs have the same (wet or dry)
character at all stations. Also in the case of other CPs, it
holds that wet CPs are wet and dry CPs are dry for
almost all stations simultaneously. The spatially homo-

geneous character of wetness index patterns is re-
flected in the relatively low values of the coefficient of
variation (CV) calculated from all stations and for a
selected CP (ranging to 0.08 for CP 9 and 0.29 for CP
2). The negative correlation (–0.47) between the aver-
age wetness index and the CV indicates that the spa-
tial variability of the wetness index is greater for dry
CPs. This is caused by the fact that the wet CPs have a
west or north cyclonic character, which causes precip-
itation events covering large areas. However, for dry
CPs, local precipitation events (especially convective
rainfalls in summer) are typical. 

3.1.2. Temperature-based classification

For the temperature-based optimization, the objec-
tive function (Eq. 8) was used. Twelve temperature-
optimized CPs were classified; they were in general
different from the 12 precipitation-optimized CPs. The
mean normalized 500 hPa geopotential height anom-
alies for the warmest and the coldest CP with the cor-

16

CP: 1 2 3 4 5 6 7 8 9 10 11 12

Precipitation probability (%)
Spring 26.9 46.2 67.1 60.9 36.4 33.3 71.4 68.0 63.5 43.4 57.8 48.0
Summer 30.5 56.0 64.3 38.5 39.3 14.9 75.0 67.7 65.5 29.2 71.1 56.7
Fall 18.4 42.2 74.0 53.6 48.4 26.1 56.3 76.2 68.4 34.7 66.7 73.3
Winter 26.3 30.3 62.7 54.2 41.3 33.3 46.2 82.4 70.6 69.2 32.0 73.3

Year 25.6 41.5 66.9 51.5 41.3 26.2 61.5 73.2 66.5 41.7 58.5 62.0

Mean wet-day amount (mm)
Spring 1.0 2.5 2.6 2.0 1.5 2.4 0.8 2.1 2.6 0.9 2.2 1.5
Summer 2.1 4.3 3.9 0.7 2.0 1.3 3.0 3.3 3.6 1.7 3.1 3.2
Fall 0.7 1.5 3.4 2.2 1.4 1.1 0.9 3.4 2.1 1.8 2.8 2.0
Winter 0.5 0.7 2.3 1.3 1.3 1.1 1.3 1.8 2.8 1.8 0.4 1.3

Year 1.1 2.0 2.9 1.5 1.5 1.5 1.6 2.8 2.8 1.5 2.2 2.2

Standard deviation of wet-day amount (mm)
Spring 3.3 10.3 4.0 3.2 3.1 6.2 0.8 3.1 5.6 1.6 3.3 2.8
Summer 7.2 9.3 4.5 1.5 3.8 4.5 4.8 5.1 6.7 4.4 5.2 5.3
Fall 2.3 4.5 5.4 3.3 3.0 3.1 1.2 4.8 3.2 3.7 3.9 3.5
Winter 1.4 2.2 3.4 2.3 2.9 2.8 2.1 2.1 4.7 2.8 0.8 2.0

Year 4.4 7.3 4.3 2.7 3.2 4.5 3.0 4.1 5.4 3.4 3.9 3.9

CP occurrence frequency (%)
Spring 35.2 11.3 7.9 2.5 3.6 4.9 0.8 10.9 8.0 5.8 4.9 2.7
Summer 45.2 5.4 4.6 2.8 3.0 5.1 1.7 10.4 6.0 7.1 4.1 3.3
Fall 40.5 7.0 8.0 3.1 3.4 5.1 1.8 13.4 4.2 5.4 3.0 3.3
Winter 39.7 12.1 11.3 2.7 5.1 3.3 1.4 8.2 5.7 4.3 2.8 1.7

Year 40.2 9.0 7.9 2.8 3.8 4.6 1.4 10.7 6.0 5.6 3.7 2.7

CP wetness index (precipitation contribution/occurrence frequency)
Spring 0.56 1.42 1.52 1.15 0.89 1.36 0.45 1.21 1.51 0.54 1.25 0.88
Summer 0.84 1.71 1.56 0.26 0.81 0.51 1.22 1.34 1.46 0.67 1.24 1.30
Fall 0.41 0.93 2.07 1.31 0.83 0.67 0.53 2.07 1.28 1.10 1.70 1.23
Winter 0.42 0.63 2.04 1.20 1.14 0.97 1.16 1.63 2.50 1.64 0.34 1.13

Year 0.63 1.12 1.65 0.88 0.86 0.85 0.93 1.58 1.61 0.88 1.27 1.23

Table 1. CP and precipitation characteristics at Stn Stuttgart for precipitation. Values are averaged over the validation period 
1970–79. (CP optimization: 500 hPa data, 12 CPs, precipitation-optimized, 1980–89, 9 stations in Germany)
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responding mean annual temperature cycle are pre-
sented in Figs. 3 & 4. CP 5 is the warmest CP, having an
average absolute daily difference from the uncondi-
tioned temperature cycle of 3.12°C. Its average annual
frequency of occurrence is about 9.5%. Central Europe
lies between a pronounced high-pressure anomaly
over Italy and a low-pressure anomaly positioned
northwest of the British Isles. This distribution of pres-
sure anomalies causes an intensive transport of warm
air masses from the south and southwest directions. A
typical cold CP is CP 11 (I T = 3.24°C) with average
occurrence frequency 12.7%. It is characterized by a
positive pressure anomaly southwest of Iceland and a
negative anomaly over northern Italy, which causes a
transport of cold air masses from the Baltic Sea and
Scandinavia to central Europe. Figs. 3 & 4 show that
the described CPs have either a warm or a cold char-
acter during the whole year.

3.2. Results for the Eastern Mediterranean (Greece)

For the Greek climate the extreme difference in pre-
cipitation between summer and winter is typical. Also
great differences of precipitation amounts occur at dif-
ferent stations on the same day. While one station
might measure high rainfall amounts, another might
measure no rain at all. A great advantage of the auto-
mated classification optimization is that it takes each
individual station’s behavior into account.

Precipitation and temperature data from 21 climate
stations evenly spread over Greece were taken into
account for calibration and validation purposes. For CP
classification, which explains the precipitation and
temperature variability, the 700 hPa pressure data in
the window 20–65° N, 20° W–50° E yielded the best
results. It was found that 12 is the optimal number of
CPs. 

The result of the validation of many different opti-
mizations with different weightings is that the precipi-
tation-based optimization with emphasis on extreme
precipitation (5 times higher weight for 5 mm threshold
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Fig. 2. Spatial variability of yearly wetness index for 1 wet
(above) and 1 dry (bottom) CP for 9 stations in Germany,
1970–79. (CPs are precipitation-optimized over 1980–89 with 

500 hPa data and 9 stations in Germany)

CP5CP5

Fig. 3. Mean (1970–79) normalized distributions of 500 hPa
geopotential height anomalies (above) of 1 warm CP with the
corresponding temperature cycle (bottom). (CPs are tempera-
ture-optimized over 1980–89 with 500 hPa data and 9 stations 

in Germany)
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than for 0 mm) yielded very good results both for pre-
cipitation and temperature validation. Therefore the
CP classification both for precipitation and tempera-
ture interpretations was based on the CP definitions
obtained from the optimization mentioned above. Sim-
ilar results for precipitation and temperature valida-
tions reveal the strong coupling of precipitation and
temperature under the Greek climate conditions,
where a decrease in temperature is mostly accompa-
nied by precipitation. It has to be considered that this
coupling is also probably caused by the fact that the
temperature data used for this investigation are daily
maxima. 

3.2.1. Relationship between CPs and precipitation

CP and precipitation statistics for the precipitation
station Athens, which is located approximately in the
middle of the investigated area and has a typical
annual cycle of precipitation with very little precipita-
tion in summer and higher precipitation in winter, are

shown in Table 2. The table shows that CPs 6 and 7 do
not contribute to summer precipitation at all, because
the precipitation probability is zero. As in the case of
the German study, the occurrence frequency of most
CPs remains approximately the same in each season.
Whereas other CPs have a frequency of between 2 and
10%, CP 9 is exceptionally frequent, occurring in
approximately 30% of the days in each season. For
Athens, very wet and very dry CPs have a wet or dry
character in every season. CPs which are not pro-
nounced from the annual wetness index point of view
vary their wet and dry character seasonally, e.g. CP 7 is
wet in winter (wetness index 1.63) and absolutely dry
in summer.

The distributions of mean (1970–79) normalized
700 hPa pressure anomalies for the wettest and the
driest CP are presented in Fig. 5. The wettest CP is
CP 1 (wetness index 3.62). It is characterized by the
center of the low-pressure anomalies positioned near
Greece. In the case of the driest CP (CP 9 with wet-

18

CP11

-10

-5

0

5

10

15

20

[°
C

]

unconditioned

CP 11 conditioned

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Fig. 4. Mean (1970–79) normalized distributions of 500 hPa
geopotential height anomalies (above) of 1 cold CP with the
corresponding temperature cycle (bottom). (CPs are tempera-
ture-optimized over 1980–89 with 500 hPa data and 9 stations 

in Germany)
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Fig. 5. Mean normalized distributions of 700 hPa geopotential
height anomalies of 1 wet (above) and 1 dry (bottom) CP,
averaged over 1970–79. (CPs are extreme precipitation opti-
mized over 1980–89 with 700 hPa data and 21 stations in 

Greece)
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ness index 0.22), the pronounced high-pressure
anomaly has its center directly over Greece. The
Greek pressure anomalies maps can also be inter-
preted.

Fig. 6 shows that both of the above-described wet
and dry CPs have a wet and dry character over the
whole region. However, generally the CPs are not as
spatially homogeneous as they were for Germany. The
wetness index for one CP may differ considerably for
different stations. Examples are CPs 2 and 3 (Fig. 7).
Whereas CP 2 is dry for the northwest part of Greece,
it is at the same time wet for the southeast. In the case
of CP 3, the situation is reversed. 

The spatially inhomogeneous character of the wet-
ness index patterns for one CP is reflected in high val-
ues of CV for all stations. It ranges from 0.20 for CP 1 to
0.66 for CP 3, whereas in Germany CV ranged from
0.08 to 0.29. Similar to Germany, the negative correla-
tion coefficient (–0.37) between the average wetness
index and CV indicates that the spatial variability of
the wetness index is greater for dry CPs and lower for
wet CPs. Again the reason could be that local convec-

tive rainfalls are probably more often coupled with dry
CPs (high-pressure anomalies over or near Greece)
than with wet ones.

3.2.2. Relationship between CPs and temperature

The mean (1970–79) normalized 700 hPa geopoten-
tial height anomalies for the warmest and the coldest
CP with the corresponding mean annual cycle of
daily temperature maxima are shown in Figs. 8 & 9.
The warmest CP is CP 11 (occurrence frequency
7.89%) with average I T = 2.28. It is especially warm
in winter (I T = 2.81). It is characterized by the move-
ment of warm air from the southwest direction over
Greece, which is caused by a positive pressure anom-
aly over the Eastern Mediterranean and a negative
anomaly over Central Europe. CP 11 is at the same
time the second driest CP. The position of pressure
anomalies is reversed in the case of CP 2, which is
the coldest CP, with a frequency of 8.43% and I T =
2.41.
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CP: 1 2 3 4 5 6 7 8 9 10 11 12

Precipitation probability (%)
Spring 47.73 40.79 21.57 18.31 27.91 10.00 14.00 23.53 6.60 32.93 9.59 24.14
Summer 17.50 12.31 3.23 4.00 7.27 0.00 0.00 3.13 1.08 11.90 2.63 5.00
Fall 48.53 21.62 22.45 23.61 25.58 9.09 26.09 15.15 2.72 52.63 7.27 29.03
Winter 61.54 44.09 24.32 33.33 32.50 50.00 35.29 27.50 14.34 55.36 19.05 48.15

Year 44.34 31.17 18.60 19.00 22.10 18.75 17.32 17.99 6.08 35.13 10.07 24.41

Mean wet-day amount (mm)
Spring 2.96 1.01 1.22 0.43 1.13 0.63 0.30 0.64 0.13 1.68 0.15 0.70
Summer 0.69 0.36 0.04 0.02 0.58 0.00 0.00 0.05 0.02 0.43 0.12 0.35
Fall 5.30 1.59 0.62 1.46 3.85 0.45 0.82 0.69 0.26 3.65 0.55 0.73
Winter 6.38 2.29 1.25 1.43 0.68 2.39 3.04 0.81 0.55 3.97 0.64 2.56

Year 3.84 1.40 0.77 0.80 1.51 0.95 0.87 0.57 0.24 2.16 0.36 0.99

Standard deviation of wet-day amount (mm)
Spring 6.92 2.82 6.65 1.68 2.57 2.15 1.03 2.11 0.84 4.45 0.76 1.72
Summer 2.64 1.37 0.28 0.10 3.27 0.00 0.00 0.28 0.27 2.03 0.78 2.06
Fall 10.19 7.91 1.69 4.22 11.92 1.51 2.66 2.90 3.86 6.72 2.91 2.02
Winter 12.19 6.13 4.50 4.23 2.13 4.82 7.63 3.04 2.35 6.16 2.17 5.85

Year 9.04 5.38 3.77 3.07 6.38 2.98 3.75 2.39 2.33 5.07 1.82 3.27

CP occurrence frequency (%)
Spring 9.57 8.26 5.54 7.72 4.67 2.17 5.43 3.70 31.30 8.91 7.93 3.15
Summer 8.70 7.07 6.74 8.15 5.98 1.63 5.33 3.48 30.33 9.13 8.26 4.35
Fall 7.47 8.13 10.77 7.91 4.73 1.21 5.05 3.63 32.31 6.26 6.04 3.41
Winter 10.11 10.33 8.22 6.67 4.44 2.00 3.78 4.44 30.22 6.22 9.33 3.00

Year 8.95 8.43 7.80 7.64 4.96 1.75 4.90 3.81 31.05 7.64 7.89 3.48

CP wetness index (precipitation contribution/ occurrence frequency)
Spring 3.71 1.26 1.53 0.54 1.42 0.80 0.38 0.80 0.16 2.10 0.18 0.87
Summer 3.50 1.84 0.22 0.09 2.93 0.00 0.00 0.25 0.12 2.16 0.61 1.76
Fall 3.77 1.13 0.44 1.04 2.73 0.32 0.58 0.49 0.18 2.59 0.39 0.52
Winter 3.42 1.23 0.67 0.76 0.36 1.28 1.63 0.43 0.29 2.12 0.34 1.37

Year 3.62 1.32 0.72 0.75 1.42 0.89 0.82 0.53 0.22 2.04 0.34 0.93

Table 2. CP characteristics at Stn Athens for precipitation. Values averaged over the validation period 1970–79. (CP optimization: 
700 hPa data, 12 CPs, extreme precipitation-optimized, 1980–89, 21 stations in Greece)
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4. DISCUSSION AND CONCLUSIONS

An automated and objective method of CP classifica-
tion is presented in the paper. It is based on a fuzzy
rules approach, which enables one to deal with verbal
descriptions of geopotential heights and pressure data
anomalies in a mathematical way. The goal of the clas-
sification aimed at explanation of precipitation vari-
ability is to define CPs which bring wet or dry weather
into the specified region. Temperature-oriented classi-
fication defines warm and cold CPs. In order to find the
best set of CPs, a simulated annealing algorithm was
used which makes it possible to solve a complicated
optimization problem connected with the definitions of
CPs. Two applications of the method (for Germany and
Greece) show that the method produces physically

realistic CP definitions. This is evident from the pre-
sented maps of geopotential heights anomalies. 

In the next research step, the method will be used
for downscaling of precipitation and temperature by
means of models with parameters depending on the
CPs. The advantage of the CPs’ conditioning is that the
CPs reflect the atmospheric circulation on large scales.
It would be also of interest to use more variables (such
as precipitation and temperature) at the same time for
the CP classification. Also, more pressure fields (e.g.
500 hPa, 700 hPa, sea-level pressure or thickness of the
500–700 hPa layer) could be taken into account.

The CP definitions will also be used to classify out-
puts from global circulation models (GCMs). The
changes in frequencies and transition probabilities
among CPs will be compared to historical data. It
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Fig. 6. Spatial variability of yearly wetness index for 1 wet
(above) and 1 dry (bottom) CP for 21 stations in Greece,
1970–79. (CP are extreme-precipitation-optimized over 

1980–89 with 700 hPa data and 21 stations in Greece)

Fig. 7. Spatial variability of yearly wetness index for 2 hetero-
geneous CPs for 21 stations in Greece, 1970–79. (CPs are
extreme-precipitation-optimized over 1980–89 with 700 hPa 

data and 21 stations in Greece)
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would be valuable to compare the series of observed
CPs with those from GCM control runs (1 × CO2). This
is one way in which the reliability of GCM outputs
could be tested. Downscaling the precipitation and
temperature from GCM climate-change scenarios (2 ×
CO2) will be performed in order to assess the changes
in local climate due to the changes in atmospheric cir-
culation.
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