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1. INTRODUCTION

One important question about climate change is
whether it results in changes in extreme weather or
climate events. Extreme value analysis often involves
fitting the tail of distributions such as general extreme
value (GEV) and general Pareto (GPD) to empirical
data (Coles 1999, von Storch & Zwiers 1999, Wilks
1995). It has been acknowledged that it is extremely
difficult to detect trends in extreme weather and cli-
mate events because these are rare and because the
observational records usually are short (IPCC 2002,
Frei & Schär 2001). Small data samples often result in
unstable fits and measurement errors can have a
strong effect on the results. Frei & Schär (2001) intro-
duced a framework based on event counts for studying
trends in extreme rainfall in Switzerland, using a bino-
mial distribution as a reference. They argued that
trends in extreme events become increasingly difficult
to determine as the events become more rare (e.g.
more extreme). 

A new approach for studying extreme events in cli-
mate research involves rank statistics where the timing
of record-setting events is focused upon, and this type
of analysis can be considered as a variant of Spearman

rank correlation, Kendall’s tau (Press et al. 1989,
p. 536), or the Kendall t-statistic (Mann test) (Sneyers
1990). This approach compliments the count-analysis
described by Frei & Schär (2001) which has a limitation
regarding the most extreme events (e.g. record-val-
ues). An Internet search suggests that record event sta-
tistics is rarely used in climatological studies (one study
was found in hydrology: Vogel et al. 2001, but there is
no reference to this subject in Anderson 1958, Wilks
1995, von Storch & Zwiers 1999), although some litera-
ture on this subject does exist in other fields (Feller
1971, Glick 1978, Nevzorov 1987, Nagaraja 1988,
Ahsanullah 1989, Ahsanullah 1995, Arnold et al. 1998,
Balakrishnan & Chan 1998, Bairamov & Eryilmaz 2000,
Raqab 2001). Some of the existing theories are much
more complicated than required for studying record
events in observed climatological series and some are
too theoretical. This paper will introduce a simple
probabilistic record event framework for analysing
extreme climate and weather events. A null hypothesis
assumes a homogeneous (no change in observation
practice or instrumentation) and stationary (no long-
term trend) series, i.e. a series consisting of indepen-
dent and identically distributed (iid) random vari-
ables (von Storch & Zwiers 1999, Raqab 2001). One
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advantage of this approach is that it is easy to compare
different series as their respective rank statistics are
not affected by whether the different series are charac-
terised by different probability distribution functions
(p.d.f.). 

2. METHODS AND DATA

The probability, pn(1), that the nth observation of a
series xm= x1, x2, … xn has a higher value than the pre-
vious observations [pn(1) = Pr(xn > xi |i < n)] can be
expressed as: 

(1)

provided the values in series are iid random variables.
The present notation uses pn(0) to denote the probabil-
ity of no new record event at the end of a series of
length n whereas pn(1) refers to the probability of a
new record event. 

For many parallel observations, it can be shown that
the probability of seeing a new record event depends
on the number of simultaneously taken measurements
(the symbol ‘N ’ will be used for the number of inde-
pendent simultaneous observations, whereas ‘n’ repre-
sents the length of each series). If there are N different
independent observations, for instance from different
locations, made over a time interval i = 1,2, ..., n, then
the probability for seeing at least one new record event
at time n can be estimated by considering the proba-
bility that there is not a new record at time n in a sin-
gle series pn(0) = [1 − pn(1)]. The probability that there
are no new records in N series is pn(0)N (this is equiva-
lent to considering a special case of the binomial distri-
bution). Since the inverse of no events in N indepen-
dent realizations, 1 − pn(0)N is the probability of at least
one record event, we can write the expression for
the probability for the values in the nth observation
setting at least one new record in N independent loca-
tions as: 

(2)

Fig. 1 gives a graphical presentation of the solutions
of Eq. (2). According to this expression, the probability
for setting a new record increases with the number of
contemporary independent observations. With more
than 100 parallel time series of annual observations,
there is still a high probability of seeing new records
after 100 years. 

This type of record event analysis can be applied to a
series using chronological order, but it can also be
applied to data using reversed chronological order
starting with the most recent observations. The analy-
sis of series with reversed order is in this paper

referred to as ‘backward’, as opposed to a ‘forward’
analysis. A comparison between the ‘forward’ and
‘backward’ analyses can give useful information about
the incidence of the record events in case of an
extreme record-value in the early part of the series. If
x1 is the maximum value in a series (xm= x1, x2, …, xn,
then the ‘forward’ method yields only one record event
and thus suggests a rejection of the null hypothesis (too
few records). The ‘backward’ method, on the other
hand, may reveal that the record event statistics never-
theless does follow the null hypothesis and that x1

being the maximum is due to chance. Similar results
from the ‘forward’ and ‘backward’ analyses improve
the confidence in the conclusion that the data are con-
sistent with the null hypothesis. 

It is possible to relate the theoretical probability to
the empirical data by utilising the expectation value
En = N pn(1). In this paper, we will distinguish between
the expectation value En for N independent series and
the expected number of record events ε(n) in a single
series with n observations. Furthermore, there is a dis-
tinction between the observed number of simultaneous
record events Ên at time n and the theoretical expecta-
tion value En (similar for the expected number of
records: ε(n) and ε̂(n)). For a number of independent
stationary series with length n, a count of the number
of new parallel record-values at time n, Ên, is taken as
an estimate for the expectation value En. The quantity
Ên/N is henceforth referred to as the record density,
and according to the expression for the expectation
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Fig. 1. Probability as a function of observation time of seeing 
at least one record event in N independent series (Eq. 2)
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value, it can be compared directly with the probability
of seeing new records. 

In this study the monthly series are stratified into the
12 calendar months in order to avoid comparing Janu-
ary anomalies characterised by large magnitudes with
July anomalies that are characterised by smaller devi-
ations from climatology. In other words, each location
is represented by 12 different series. Since the month-
to-month persistence in northern Europe is low, these
can be treated as 12 independent series. 

Because of the 1⁄n dependency in Eq. (1), the proba-
bilities are expected to converge towards zero with
time, and it becomes difficult to compare the numbers
visually for long time-series. However, this conver-
gence follows a linear trend on a logarithmic scale: 

ln[pn(1)]  =  −ln(n) (3)

It is important to keep in mind the distinction
between the probability for a new record event p1(n),

the p.d.f. describing distribution of record
values (e.g. see Bairamov & Eryilmaz
2000), and the p.d.f. for each of the iid ran-
dom variables (e.g. Gaussian or EVD). For
single series with n random values drawn
from the same population, the expected
number of record-values is ε(n) = ∑n

i=1 pi(1)
= ∑n

i=1 1/i. 
Monte-Carlo simulations were used in

this study to estimate confidence limits,
and 2 slightly different approaches were
used for this means to reflect the differ-
ent types of tests. The approach used for
the case of parallel series (henceforth
referred to as ‘MC I’) involved series of
normally distributed random numbers
with no time dependency [i.e. a ‘white
noise’ process (Wilks 1995, Wallace 1996,
von Storch & Zwiers 1999)], unless other-
wise stated. The estimation of confidence
intervals involved Monte-Carlo simula-
tions with 1000 data matrices similar to
the actual data (size N × n, i.e. 1000 × 25
× 12 series), and the results consisted of
1000 surrogate record densities, hence
the results consisted of fractional num-
bers. The derived null-distribution for the
expected number of records was taken
as the sum of record densities: ε̂(n)MC =
∑n

i=1 Êi. 
In order to verify that the expected

number of records ε(n) = ∑n
i=11/i gives a

good estimate of the actual number of
records, a different set of Monte-Carlo
integrations (henceforth referred to as
‘MC II’) was carried out for 1000 stochas-

tic [white noise and AR(1) process (Wilks 1995)] series
with different lengths n. Although this set of simula-
tions only involved 1000 counts for each series x1, x2,
… xn of iid random values, the counting process was
repeated 40 (n = 1,5, ..., 200) times. The number of
record events for each of the 1000 simulation and
each value of n were counted and stored in a matrix
ℜ. Thus MC II results consisted of discrete numbers,
and the smaller sample (1000) is expected to yield a
greater spread than the MC I simulations (300 000). 

A robust and unbiased estimation of the record-
density requires N independent series, each contain-
ing n independent realizations. Hence, to execute the
objective tests, each station series should have zero
serial correlation and the stations should be indepen-
dent of each other. Over northern Europe, the month-
to-month and year-to-year correlations are low, hence
each series can be treated as consisting of independent
realizations. Although the short-term variations exhibit
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Fig. 2. Locations of the absolute monthly maximum, minimum temperature
measurements (f) corresponding to the Nordklim codes 112 and 122. The
temperature data were from: Oslo, Bergen, Bodø, Værnes (Norway);
Copenhagen, Vestervig (Denmark); Turku, Helsinki, Tampere, Jyväskylä,
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where the maximum monthly 24 h precipitation (Nordklim code 602) were
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a low degree of persistence, long-term trends may still
affect the results from these tests. 

A Pearson’s χ2-test (Wilks 1995, p. 133, Eq. 5.18) was
applied to pi(1) and Êi/N; i = 1,2,…, n in order to examine

whether the observed record-densities were significantly
different to expected probabilities of seeing new record
events. The 95% confidence limit for the χ2-test values
was estimated repeating the test 1000 times using iid ran-
dom numbers instead of the actual observations (MC I). 

The data examined here included the monthly
global mean temperature from Jones et al. (1998a,b)
and absolute monthly maximum and minimum tem-
perature as well as 24 h accumulated precipitation
from the high-quality homogenized Nordklim data
set (Tuomenvirta et al. 2001). The global mean tem-
perature spanned 1856–2002 (147 yr), the monthly
maximum/minimum temperature covered 1908–1999,
and the precipitation was taken from the period
1895–1999. The locations of the Nordklim stations
used in this study are shown in Fig. 2. 

3. RESULTS

3.1. Expected number of record events

In order to ensure that the ε(n) = ∑i=11/i gives a
good estimate of the expected number of record
events, 2 sets of MC II Monte-Carlo experiments
were carried out (Fig. 3). The results from these simu-
lations suggest that ε(n) gives a good description for
series with iid random variables, regardless of the
length of the series. The probability distributions of
the Monte-Carlo integration results are skewed with
longer upper tails, and the mean number of records is
expected to be slightly higher than the location of the
maximum probability. The distribution of the Monte-
Carlo results is not significantly affected by the serial
correlation. 

3.2. Inter-station dependencies and temporal
autocorrelation

Dependency between different climate station re-
cords presents a concern, as inter-station dependen-
cies will have similar effects on the test results as so-
called ‘overdispersion’ discussed in Frei & Schär
(2001). To examine the effects of serial and spatial cor-
relation on the estimation of the confidence limits, a set
of MC I Monte-Carlo simulations was used to simulate
both the effect of temporal autocorrelation (assuming
an AR(1) process with ρ = 0.2) as well as inter-station
dependencies. For 300 truly independent series of
length n = 92, cases with Ên = 4 are more frequent than
cases with Ên = [1,2,3]. Fig. 4a shows results from these
simulations for 25 stations where different linear
trends have been added to series of white noise. The
histograms show that the statistics of the number of

6

Fig. 3. Comparison between the expected number ε(n) and the
results from Monte-Carlo (MC II) simulations for a single
series assuming a white-noise process (a) and an AR(1) pro-
cess process with a serial correlation of 0.3 (b). The thick solid
line indicates the expected number of records ∑i(1/i) in a
series of iid random variables. The contours show the number
of times that a series of length n (x-axis) produced m (y-axis)
record events in 1000 Monte-Carlo simulations (i.e. the 

contours show the counts stored in in the matrix ℜ)
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coinciding events Ên are indeed affected by the trends.
Since the purpose of this study is in fact to detect such
trends, the test results shown in Fig. 4a suggest that
the method is able to identify long-term changes in the
record event statistics. 

Inter-station dependencies affects the distribution of
the number of parallel record events Ên (Fig. 4b). Fig. 5

shows a similar analysis for 2 cases where the trend in
the monthly maximum temperature was retained and
subtracted. The histogram showing the record event
statistics for monthly maximum temperature shows a
high frequency of Ên = [1,2,3], both for the original
data as well as for de-trended data. There are some
indications that the trend may account for some of the
Ên = [1,2,3] cases, but the results for the de-trended
series suggests there are also inter-station dependen-
cies. 

One set of Monte-Carlo experiments was carried
out to examine how the χ2-statistics and ε̂(n) are
affected by inter-station dependencies. One test was
for the extreme case that all 25 stations were inter-
dependent, and this set of experiments consisted of
repeating a set of 12 independent series of iid random
values 25 times (Fig. 6). Another less severe case was
also examined, corresponding to 5 stations being
completely independent of each other (Table 1).
Alternatively, the inter-dependency can be accounted
for by imposing non-zero spatial correlations. How-
ever, the advantage of the former approach is that it is
simple and ensures exactly the same timing of record
events in the affected series (here we are only inter-
ested in the timing of record events). Furthermore, an
inter-series correlation does not represent the aggre-

gated series well, since the zero-lag (simultaneous)
observations show much higher crosscorrelations than
the lagged series do (Table 2). Table 1 lists the number
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and n

a

b

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

New records

Time

R
ec

o
rd

 d
en

si
ty

E/N forward
E/N backward
p
Null hyp. 95 conf.

-5 -4 -3 -2 -1 0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

Expected and observed records

log(theoretical record density)

lo
g

(E
/N

)

Chi-squared=61.95/11 (MonteCarlo 95% conf.lev.=26.83)

Fig. 7. Record-value statistics for the Jones et al. (1998a,b)
global mean temperature. Panel (a) shows (Ên/N) plotted with
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(e) Results from the ‘backward’ test; (dO) forward case. The
grey region in panel (a) and dashed lines in (b) show the 95%
confidence region derived from Monte-Carlo (MC I) simula-
tions. A straight dashed line in (b) also marks the diagonal 
y = −x, and the black and grey straight lines show the best
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of records obtained with these simulations as well as
the estimated confidence intervals. The experiments
with the Monte-Carlo simulations suggest that a mod-
est serial correlation does not have any significant
effect on the tests and that the χ2 statistic is affected,
but is not very sensitive to inter-station dependence.
The values for ε̂(n) do not appear to be very sensitive to
inter-station dependence. 

3.3. Global mean temperature

The record event analysis was applied to the global
mean temperature record. Here the global mean tem-
perature has been split (stratified) into 12 parallel series
representing each calendar month. According to the
Monte-Carlo simulations, one would expect to see a new
record being set 4.5 to 6.8 times (Table 1). The number of
record events statistics (here using the record-density:
ε̂(n) = ∑n

i Êi/N ), on the other hand, suggests that new
records have been set 11 times in the ‘forward’ analysis,
but only 3 in the ‘backward’ analysis; both estimates are
well outside the 95% confidence region. Hence, the
global mean temperature development since 1856 is not
consistent with the null hypothesis. This discrepancy can
be explained in terms of the global warming or inter-
decadal variability and an associated shift in the record-
warm global mean temperature statistics. (This analysis
does not answer whether this non-stationarity is anthro-
pogenic or related to natural causes, or if there will be
more records in the future.)

Fig. 7a shows a comparison between the probability
of seeing a new record and the record-density derived
from monthly mean global mean temperature. There is

a long-term upward trend in the global mean temper-
ature which results in more frequent incidents of new
record events than if there were no trend. 

Fig. 7b shows a comparison between ln[pn(1)] and
ln(Ên/N), and a straight diagonal line with unit slope
(shown as a dashed line) through the origin would in-
dicate a good agreement between the values expected
under the null hypothesis and the empirical values.
The best-fit to the data based on Eq. (3) is shown as a
black solid line for the ‘forward’ and a grey line for
‘backward’ analysis. The clear deviation of these fitted
lines from the diagonal and the large scatter in Fig. 7b,
however, indicate that the empirical data do not agree
well with the null hypothesis based on the assumption
of data being iid. 

3.4. Nordic station data

Fig. 8 shows the record-value analysis applied to the
absolute monthly maximum temperature from the
high-quality homogenized Nordklim data set (Tuo-
menvirta et al. 2001). The analysis was applied to the
12 calendar months from 25 locations in the Nordic
countries (Fig. 8), i.e. N = 300 different series. A large
sample of independent series gives a better estimate of
Ên than a single series (central limit theorem), and in
this case, the sample size is limited by non-zero corre-
lation between series from nearby locations (Fig. 2). 

The comparison between pn(1) assuming iid random
values and the empirical record events in Fig. 8a indi-
cates a better agreement than for the global mean tem-
perature. The scatter-plot in Fig. 8b shows that the
points are close to linear, hence a good agreement

9

ε̂(n) = ∑n
i Êi/N 95% CI ∑n

i=1 1/i χ2

Global mean temperature 10.80 4.5–6.8 5.6 62.0 (23.8)
Global mean temp. (backward) 2.6 4.5–6.8 5.6 11.0 (23.8)
Abs monthly max temp 5.3 4.9–5.3 5.1 18.0 (17.5)
Abs monthly max temp (backward) 4.3 4.9–5.3 5.1 14.8 (17.5)
Abs monthly min temp 4.9 4.9–5.3 5.1 16.4 (17.5)
Abs monthly min temp (backward) 5.7 4.9–5.3 5.1 19.1 (17.5)
Max month 24 h precip 5.2 5.0–5.4 5.2 17.9 (18.6)
Max month 24 h precip (backward) 4.8 5.0–5.4 5.2 16.6 (18.6)
MC I all indep. autocor ρ = 0.0 5.1 5.0–5.4 5.1 16.5 (17.4)
MC I all dep. autocor ρ = 0.0 5.5 5.0–5.4 5.1 18.4 (17.4)
MC I all indep. autocor ρ = 0.2 5.1 5.0–5.4 5.1 16.8 (17.7)
MC I all dep. autocor ρ = 0.2 5.5 5.0–5.4 5.1 19.8 (17.7)
MC I 5 indep. autocor ρ = 0.0 5.3 5.0–5.4 5.1 17.8 (17.5)
MC I 5 indep. autocor ρ = 0.2 5.3 5.0–5.4 5.1 17.5 (17.5)

Table 1. Mean observed and expected number of record events. The length of the temperature series is 92 and the precipitation
analysis covers 105 yr. The second column gives the mean observed number of record events, the third the 95% confidence
region derived through Monte-Carlo simulations, the fourth the expected value, and the fifth the results from a Pearson’s χ2-test.
The numbers in the parenthesis indicate the null hypothesis 95% confidence level derived from a Monte-Carlo 

simulations using (N = 1000 × 300) normally distributed random numbers
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between the null hypothesis and the empirical data.
However, there is a slight tendency of more record
events towards the end of the observations in Fig. 8a
and a greater spread towards the lower left corner in
Fig. 8b. The scatter-plot shows the difference between
the ‘forward’ and the ‘backward’ analyses, revealing
that the ‘forward’ analysis gives slightly higher values

of Êi/N for higher values of n, i.e. later times. Although
this difference may not be statistically significant, it is
consistent with a small increase in the frequency of
incidence of record events. Table 1 lists the mean
observed and expected number of record events for
the 92 yr series. According to the table, the observed
number of events is higher than the expected value

10

Min. 1st quartile Median Mean 3rd quartile Max.

Abs monthly max temp
All –0.83 –0.030 0.05 0.07 0.14 0.96 
Lag-0 cross-correlations: 

January –0.09 0.34 0.55 0.51 0.69 0.93
February –0.17 0.45 0.60 0.56 0.71 0.94
March –0.27 0.50 0.59 0.54 0.67 0.88
April –0.04 0.33 0.51 0.47 0.62 0.86
May –0.25 0.29 0.45 0.41 0.59 0.86
June –0.14 0.31 0.49 0.46 0.63 0.86
July –0.08 0.20 0.35 0.36 0.53 0.83
August –0.13 0.27 0.42 0.43 0.63 0.96
September –0.18 0.24 0.44 0.41 0.58 0.86
October –0.17 0.27 0.43 0.40 0.55 0.83
November –0.14 0.22 0.42 0.39 0.55 0.96
December –0.07 0.30 0.47 0.46 0.65 0.93

Serial correlation: 
Oslo –0.20 –0.040 0.03500 0.06 0.18 0.38

Abs monthly min temp
All –0.89 –0.010 0.07 0.10 0.17 0.92 
Lag-0 cross-correlations: 

January –0.30 0.45 0.58 0.53 0.69 0.89
February –0.24 0.46 0.63 0.54 0.72 0.90
March –0.20 0.45 0.60 0.53 0.70 0.88
April –0.09 0.35 0.50 0.46 0.62 0.85
May –0.01 0.34 0.47 0.44 0.56 0.83
June –0.08 0.27 0.39 0.37 0.50 0.74
July –0.25 0.14 0.29 0.28 0.40 0.69
August –0.21 0.20 0.34 0.32 0.46 0.75
September –0.28 0.30 0.41 0.38 0.53 0.84
October –0.02 0.43 0.56 0.53 0.69 0.89
November –0.07 0.44 0.53 0.51 0.64 0.89
December 00. 0.50 0.62 0.58 0.70 0.92

Serial correlation: 
Oslo –0.17 0.01 0.12 0.11 0.2 0.45

Max monthly 24h precip
All –0.39 –0.060 0.01 0.01 0.08 0.59 
Lag-0 cross-correlations: 

January –0.32 0.01 0.11 0.11 0.21 0.58
February –0.30 0.02 0.12 0.12 0.23 0.54
March –0.22 –0.020 0.07 00.079 0.17 0.57
April –0.22 –0.023 0.07 00.073 0.16 0.53
May –0.24 –0.020 0.08 00.077 0.17 0.55
June –0.26 –0.030 0.05 00.052 0.13 0.38
July –0.28 –0.020 0.05 00.053 0.14 0.41
August –0.23 –0.020 0.05 00.058 0.15 0.42
September –0.30 –0.030 0.05 00.062 0.15 0.44
October –0.31 000. 0.12 0.12 0.23 0.57
November –0.30 –0.030 0.06 00.071 0.18 0.57
December –0.24 –0.010 0.08 00.088 0.18 0.59

Serial correlation: 
Oslo –0.24 –0.030 00.025 00.021 0.07 0.26

Table 2. Inter-station and inter-monthly cross-correlations. Columns show the absolute cross-correlation minima, the first 
quartile (25% percentile), the median, mean, the third quantile (75% percentile), and absolute maxima
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derived using the expression ε(n) = ∑n
i=11/i. The confi-

dence interval for the record-density according to the
Monte Carlo simulations is estimated to be 4.9 to 5.3.
The observed sum of record events for temperature is
near the upper confidence level, and the ‘backward’
analysis yields significantly fewer than expected

record events (outside the confidence interval). A χ2-
test between the record-density and pn(1) suggested
that the deviation from the null hypothesis is statisti-
cally significant at the 5% confidence level. 

Fig. 9a shows the results from the record event
analysis applied to the absolute monthly minimum
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temperature. The analysis was identical to the one for
absolute monthly maximum temperature, except that
the absolute monthly minimum temperature was mul-
tiplied by –1 prior to the analysis. The χ2-test indicates
a good agreement with the null hypothesis in the for-
ward analysis, suggesting that the new cold record
events are not taking place more often than expected
from the null hypothesis. The diamonds in Fig. 9a cor-
responding to the ‘backward’ analysis, on the other
hand, are biased to higher empirical values for large
n than the results from the ‘forward’ analysis. The
results from the χ2-test on the ‘backward’ analysis
exceed the 95% confidence level, and the mean
observed number of record events ε̂(n) is either on the
verge of, or outside the 95% confidence interval for the
‘forward’ and ‘backward’ analyses (Table 1). 

The record event analysis was applied to the maxi-
mum 24 h precipitation from each month (Fig. 9b, the
locations of the precipitation stations are shown in
Fig. 2 and the length of the series was 105), and the
results in general indicate that the empirical data are
consistent with the null hypothesis of stationary condi-
tions. The exception is for the ‘backward’ analysis,
which gives slightly too few record events. 

4. DISCUSSION

Vogel et al. (2001) examined 1571 flood records in
the US and concluded that the average number of
record-breaking flood events over 10 to 80 yr inter-
vals behaved as if the flood series were serially inde-
pendent in the whole of the US when spatial correla-
tion was taken into account. On the other hand, they
found that if the spatial correlation was ignored, the
flood records did not appear to be serially indepen-
dent in parts of the US. Hence, their study points to
the importance of accounting for the spatial correla-
tion structure when performing regional hypothesis
tests. The fact that the record events occurrence fol-
lows the theoretical values as closely as they do in
Figs. 8 & 9 suggests that record density is not
strongly influenced by the correlation between the
stations used in this study. The results from the
Monte-Carlo experiments with inter-station depen-
dences in Table 1 also suggest that the tests are only
weakly sensitive to the correlation among the sta-
tions. It appears that the χ2-statistics and the related
confidence limits are biased and unreliable for the
extreme case where all station series are identical
due to inflated and deflated estimates of the record
densities (Fig. 6a). For less extreme cases, such as 5
of 25 stations being truly independent, the χ2-test is
less affected, but still near the confidence limits. The
estimated number of records ε̂(n), on the other hand,

appears to be more reliable for inter-station depen-
dences, since the number of independent series af-
fects the robustness, but does not bias the estimates. 

Too few records in the ‘forward’ analysis suggest a
negative trend, whereas a small ε̂(n) value in a ‘back-
ward’ analysis (Table 1) can be associated with a posi-
tive trend (e.g. a global warming). According to the
estimated number of records in Table 1, the ‘back-
ward’ analysis points to values for ε̂(n) outside the 95%
confidence region for maximum and minimum temper-
atures, whereas the results from the ‘forward’ analysis
verge on being statistical significant at the 5% level.
Hence the temperatures do not appear to be iid. For
the 24 h precipitation, ‘backward’ analysis gives
slightly too few records, whereas the ‘forward’-based
ε̂(n) is well within the confidence interval. This situa-
tion may well be due to chance, as described above,
where the largest values in a series of iid random vari-
ables by coincidence is found among the first entries in
a series, as the ‘forward’ and ‘backward’ analysis are
not consistent with each other. Neither the ‘forward’
nor the ‘backward’ analyses produced χ2-statistics for
the precipitation that were significant at the 5% level.
Hence, the tests for 24 h precipitation do not discrimi-
nate between the precipitation series and the hypo-
thesis of iid random variables. 

5. CONCLUSION

According to simple theoretical considerations, the
likelihood of seeing new record events diminishes with
the length of observational series. However, the prob-
ability increases with the number of independent con-
temporary observations, and it can be shown that it is
not unlikely to see new record events in 100 yr long
series when there are more than 100 different inde-
pendent simultaneous observations. 

The null hypothesis of stationary series is used as a
reference frame for studying the incidence of record
events. A comparison with the global mean tempera-
ture indicates a poor agreement; this is expected, due
to the warming trend in the global temperature series.
Rejection of the null hypothesis means rejection of the
assumption of iid random variables, which in this case
is not equivalent to accepting the notion of an-
thropogenic change. Comparison between absolute
monthly maximum and minimum temperature in the
Nordic countries and the null hypothesis is more
ambiguous. The mean observed and expected number
of record events is near the border of the null hypothe-
sis 95% confidence interval, but the χ2-test results and
ε̂(n) suggest that the difference is statistically signifi-
cant. The results for the maximum monthly 24 h pre-
cipitation suggests that the incidence of new record
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events is not extraordinary, but follows the expected
behaviour of stationary series. Hence, we cannot say
that the 24 h rainfall has become more severe in the
Nordic countries in the period 1895–1999. These con-
clusions hinge on the assumption of adequate data
quality as well as appropriate and sufficient data cov-
erage for representing the true climatic trends in the
Nordic countries. 

Due to the central limit theorem, the results of this
type of analysis become more robust with the number
of truly independent series included. However, there is
a trade-off between this robustness, and spatial or sea-
sonal resolution. For instance, this study has included
all seasons, and may therefore not give a good descrip-
tion of features such as an abnormal incidence of
record events only during one particular season. Fur-
thermore, in cases of very localised changes in record
event statistics (e.g. on the west coast of Norway), such
trends may not be detectable in an analysis based on a
network of stations from a large region. Choosing a
region that is too small, on the other hand, has implica-
tions for inter-station dependences or robustness. This
problem is analogous to field significance testing (von
Storch & Zwiers 1999, p. 121), which is suitable for
detecting a signal in a high-dimensional environment
as long as the signal is not localised in a small part of
the area examined. The record event statistics may, for
instance, have been affected by the presence of a com-
mon temperature trend in the Nordic region, with a
warm period in the 1920 and 1930s, a cold period in the
1960s, and rapid warming since the 1970s (Benestad
2003). A cooling during 1940–1960 in many of the
series may affect the observed number of record
events. 
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