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1. GEOPHYSICAL PROBLEMS

The climatic variations of air temperature, precipita-
tion and runoff have been studied extensively over the
past 3 decades using the wavelet method as well as
other statistical methods (e.g. Murphy & Katz 1985,
Hansen 1987). However, there has been little study on
the long-term variation of energy budget components
(Hsu & Liu 2003) using observed data. One of the diffi-
culties is that few direct measurements of these com-
ponents over long periods of time are available; there-
fore, they must be derived from other quantities
(prognostic variables). For example, the wind kinetic
energy per unit mass (KE) can be derived from wind
speed s using the equation KE = s2/2; the black body
radiation of air R is determined from air temperature T
in Kelvin using the equation R = σT 4, where σ is the

Stephan-Boltzmann constant; the advected moisture
flux direction is determined using the equation ujq,
where uj is the wind vector and q is the mixing ratio.
Notably, all of these equations (s2/2 , σT 4 and ujq) are
nonlinear. In this study a data archive strategy is pro-
posed for the prognostic variables commonly used in
the conservation equations of mass, momentum and
energy for computing various nonlinear geophysical
properties. The prognostic variables considered here
include wind vector (uj), temperature (T) and mixing
ratio (q). Note that wind speed s ≡ √uj

2.
An accurate determination of the mean value of a

nonlinear function over the time domain must take into
account the time variation of its variables. For exam-
ple, to accurately determine the mean of the kinetic
energy (KE ), over a period, theoretically we would
have to use continuous wind speed data s from that
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period for substitution into the equation. However, in
actuality, the prognostic data are sampled with certain
frequencies and then averaged over and stored at cer-
tain intervals. The bulk of the data is available only in
hourly, daily or monthly intervals and not continuously.
In particular, most climatological data are only avail-
able as monthly averages so as to be more manageable
for storage or data distribution (e.g. Xie & Arkin 1997,
New et al. 2000, Kistler et al. 2001). Hence, there is a
discrepancy between a true value and that calculated
using ‘discretized’ hourly, daily or monthly mean prog-
nostic data. For example, we usually calculateKE by  

the equation , where si is the discretized  

data of a certain interval of wind speed, and n is the 
number of data over the averaging period. This dis-
crepancy needs to be quantified.

Instead of calculating the mean of a nonlinear func-
tion using a continuous data set of each variable, this
study revisits the delta method (e.g. Bishop et al. 1975,
Kotz et al. 1988) for the calculation. Furthermore, for
the convenience of data processing, a pyramidal algo-
rithm is derived, by which we can determine the statis-
tical moments of a monthly interval of a variable from
those of its shorter daily intervals. However, the error
can, though not always, be significant for a highly non-
linear function of which the statistical moments are
only available up to a finite order. An error analysis is
conducted to quantify the truncational errors. A case
study using 41 yr of data taken on a subtropical island
is illustrated.

2. DELTA METHOD

The delta method (also called the statistical differen-
tials method) is used in this study. This is a method of
approximating the mean of a function of random vari-
ables. It consists essentially of expanding the function
as a Taylor series about the means of the random vari-
ables and then taking expected values, term by term,
using only a few terms in the expansion.

Consider a nonlinear function p(x1,…,xm). Using the
Taylor series expansion on the means (x1, …,xm) of the
variables, the nonlinear function can be determined
(Bishop et al. 1975, Kotz et al. 1988) as:

(1)

where is to be expanded as an oper-

ator, so that the third term on the right-hand side of
Eq. (1) is:

(2)

Taking expected values and truncating the high
order terms shown in Eq. (1), we obtain:

(3)

where µ2(xr) is the variance of xr and cov(xr, xs) is the
covariance between xr and xs. Note that the second
term of Eq. (1) vanishes because .
Of course, higher-order terms can be included as
desired, though the expressions rapidly become more
complex. It should be noted that the approach is purely
formal. For some values of the x’s the series may not
even converge. The smaller the deviations the
better the approximation to be expected, broadly
speaking. A more detailed error analysis will be pre-
sented later in this paper.

In the special case of a single variable x with
expected value and central moments {µk} (with

):

(4)

Eqs. (3) & (4) show that the mean of a nonlinear func-
tion can be determined by the means, the covariances
and the higher statistical moments of its variables.
Hence, storing these statistical moments of variables is
suggested.

3. DATA STORAGE

In actual settings, we have little control over the fre-
quency of data storage. We do not know prior to com-
piling data whether we will be computing daily mean
value, monthly mean value or annual mean value of
some nonlinear functions of observational data. Fortu-
nately, the statistical moments (e.g.x, µ2, µn) of a longer
interval (monthly) can be determined from those (xj,
µ2j, µnj) of its shorter subintervals j’s (daily) of variable
x as:
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(6)

where xji is a data point at the subinterval (day) j time
(hour) i; ; l is the length of the subinter-
val j; m × l is the total length of the longer interval.

; and µ(n–k)j is the (n–k)th order statistical 

moment of a subinterval j (= ). The explicit 
forms of the relationship for various statistical moments
are listed in Table 1.

Similarly, the covariance cov(xr,xs) between vari-
ables xr and xs of a longer interval can be determined
from those (xrj,xsj, covj (xr,xs)) of its shorter subinter-
vals j’s as:

(7)

Hence, using Eqs (6) & (7), the statistical moments at
different time scales can be determined hierarchically.
That is, if we only store the daily means .xj and the daily
variances µ2j of the variable each month, then they can
be used for determining their monthly statistical
moments. These monthly statistical moments can be
further used for determining their annual statistical
moments. Fig. 1 shows such a procedure. We call this
a pyramidal algorithm, borrowing a term from wavelet
analysis (Mallat 1989).
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4. RESULTS AND TIME SCALE DECOMPOSITION

Based on Eq. (4), the mean values of wind kinetic
energyKE and black body radiationR can be deter-
mined as follows:

(8)

and

(9)

Based on Eq. (3), the mean value of the advected
moisture flux in the x direction can be determined as
follows (Boer 2000):

(10)

Eqs. (8) to (10) show that if using only the mean wind
speeds to calculate the mean ofKE by 0.5s 2, the
truncational error is 0.5µ2(s). If using only the mean
temperatureT to calculate the mean ofR by σT 4, the
truncational error is 6σT 2µ2(T ) + 4σT µ3(T ) + σµ4(T ). 
If using only the mean wind component in the x direc-
tion (u) and mean mixing ratio (q ) to calculate the
mean of the moisture flux in the x directionuq, the
truncational error is cov(u,q). Note that 0.5µ2(s) is also
known as the turbulent kinetic energy when the aver-
aging period is around 1 h. These errors shows that
using only the mean of the variable to calculate the
mean of a nonlinear function, the error has the first
order of accuracy because the truncational error is of
order O (x'2).

Furthermore, the long-term mean of a nonlinear
function can be decomposed into various time compo-
nents, such as annual component, daily component

and hourly component. The annual component is a
function of the annual means of the involved variables
only, the daily component is a function of the daily
means of the involved variables, and the hourly com-
ponent is a function of the hourly means of the
involved variables. For example, the annual mean
value of the moisture flux can be decomposed accord-
ing to Eqs. (7) & (10) as:

(11)

where are advected moisture flux
components of mean component, daily variation com-
ponent and hourly variation component in the x direc-
tion. They are defined as:

(12)

(13)

(14)

where subscript j indicates the data date.

5. CASE STUDY

In this section, we examine the applicability of the
derived equation using hourly data measured at
Taichung Meteorological Station (24°09’N, 120°41’E),
operated by the Central Weather Bureau of Taiwan.
Data include wind vector (uj) and mixing ratio (q) for the
period between 1961 and 2001. Note that as only hourly
data are available, components of data with a frequency
higher than 1 h–1 cannot be obtained. First, daily statis-
tical moments are computed according to their defini-
tions form the hourly data. Then, monthly, annual and
41 yr statistical moments are computed hierarchically
according to the above pyramidal algorithm (Fig. 1). The
monthly means of uj and q, the monthly covariances
between (uj,q), and the monthly mean of daily covari-
ances between (uj,q) are stored for further analysis.

Fig. 2 shows the calculations of the annual and the
monthly composite values of advected moisture flux in
the x directionuq from 1961 to 2001, as determined
according to Eq. (11). The monthly 41 yr composite
means show that the mean component had a peak in
the summer, the daily component had a peak in the
spring, and the hourly component had a peak in the
summer. The annual means show that the annual flux
decreased by 48.7% (0.002 m kg s–1 kg–1) during 
these 41 yr, whereas the mean component decreased
by 0.00201 m kg s–1 kg–1. The ratios of the 41 yr 
means among the mean component, daily variation
component and hourly variation component were
82%:15%:3%, i.e. using only the annual mean u and q
to calculate the annual flux, the bias is 18%. In addi-
tion, it shows that more flux resided in the daily varia-

uq u qh j≡ ( )cov ,

uq u qd j j≡ ( )cov ,

uq u q0 ≡ ⋅

uq uq uqd h0, and

uq uq uq uqd h= + +0

uq u q u q= ⋅ + ( )cov ,

R T

T T T T T T

=

= + ⋅ ( ) + ⋅ ( ) + ⋅ ( )

σ

σ σ µ σ µ σ µ

4

4 2

2 3 46 4

KE s s s= = + ( )( )1
2

1
2

2 2
2µ

228

xj kj, ,, ,1 1… µ xj kj, ,, ,2 2… µ xj i kj i, ,, ,µ xj m kj m, ,, ,…… µ… …

x1,…,µk1 xj ,…,µk j

x ,…,µk

xn,…,µkn

daily

continuous x(t)

Eq. (6) monthly: Eq. (6)

annual: Eq. (6)

Eq. (4)

Eq. (6)

p (x)

………… …………

Fig. 1. Pyramidal algorithm of sampling, storage and process-
ing data to determine the annual mean of a nonlinear process 

of the k th order of accuracy



Tsuang: Data archive for nonlinear functions

tion component than in the hourly variation compo-
nent, and the covariance terms (uqd,uqh) are positive,
i.e. the fluxes of daily variation component and hourly
variation component were eastward.

In addition to data-archiving, the technique de-
scribed herein could also be useful for the evaluation
and interpretation of changes in climate parameters.
However, an implicit assumption for Fourier analysis is
that the data be stationary. The techniques discussed
here could be used in this context if the data are
detrended prior to application of the delta method.

6. EXTREMES AND ERROR ANALYSIS

From the above examples, we have found that the
delta method is superior to methods using solely the
means of variables for determining their nonlinear
functions. There is no bias for determining the mean of
a polynomial function if the required statistical

moments of the variables are available
such as for black body radiation, wind
kinetic energy and advected moisture
flux functions. However, for a non-poly-
nomial nonlinear function such as the sat-
urated vapor pressure function (Richards
1971) or function , or for a
highly nonlinear polynomial function,
high order terms have to be truncated
according to the Taylor series expansion
if the statistical moments are only avail-
able up to a finite order. If the statistical
moments are only available up to k th
order, the truncational error ε of a single
variable function can be determined by
observing Eq. (4) as:

(15)

For simplicity let us inspect a nonlinear
function with a form of p(x) = axn. If the
statistical moments of x are only available
up to n–1 order, then the dimensionless
error ε*, which is defined as the ratio

between the truncational error and p(x ), can be deter-
mined according to Eq. (15) as:

(16)

where , and . is the
magnitude of the n th order dimensionless statistical
moment. Note that is the conventional choice to
calculate if only the mean of x is available. This
equation shows that the error increases with .
Therefore, for a highly nonlinear function, for which n
is huge, the error can be significant if . Table 2
lists the dimensionless statistical moments of u, v, T
and q of the study site. It shows that the magnitudes of

of u, v and q increase with n, but that of T de-
creases with n. This is because data points 
exist for variables u, v, and q, but not for T. This implies
that for a highly nonlinear function, the truncation
error is significant for variables of u, v and q, but the
error is insignificant for variable T.
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Fig. 2. (a) Composite monthly and (b) annual advected moisture flux uq from
1961 to 2001 in Taichung, Taiwan, where uq0, uqd and uqh are the fluxes of
mean component, daily variation component and hourly variation compo-
nent, respectively, and obs is the flux calculated directly from hourly data

n No. of x µ2* µ3* µ4* µ5* µ10* µ20* µ50* µ100*

u 359400 207152 (58%) 0.27 m s–1 1.1E+01 5.2E+01 1.3E+03 4.5E+04 3.9E+14 5.4E+34 1.5E+95 7.6E+195
v 359400 252418 (70%) –0.78 m s–1 5.2E+00 7.8E+00 1.8E+02 4.3E+03 3.3E+12 3.2E+30 3.8E+84 5.1E+174
T 359400 0 (0%) 296 K 3.8E-04 –2.8E-06– 3.5E-07 –6.8E-09– 3.8E-15 2.2E-25 4.7E-54 8.1E-102
q 359397 1 (0%) 12.8 g kg–1 1.0E-01 –1.7E-03– 2.2E-02 –1.7E-04– 4.2E-01 6.3E+04 2.2E+20 1.7E+46

x x∈( )0 2,

Table 2. Statistical moments for hourly data in the period of 1961 to 2001 observed in Taichung, Taiwan. The dimensionless 
statistical moments are defined as µi
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7. CONCLUSION

This study recalls a method for finding the mean of a
nonlinear function using the means, the higher order
statistical moments, and the covariances of the func-
tion’s variables. This method is more accurate than the
method using only the means of the variables, which
has only the first order of accuracy. As illustrated for an
urbanizing site, Taichung City, Taiwan, it shows that
using only the mean u and mean q for computing
annual moisture flux in the x direction has an error of
18%. However, this error can be corrected by includ-
ing a higher order of statistical moments for the calcu-
lation. Using the analogy, it shows that at the study site
in the past 41 yr the magnitudes of the advected mois-
ture flux has declined by 49%. This change is statisti-
cally significant and most likely due to the site being
affected by global warming and urbanization effects
(Tsuang et al. 1996). In contrast to the Fourier trans-
form (Kreyszig 1993), the proposed method does not
require the applicable data to be assumed stationary,
i.e. the method has a benefit for data compression
under climatic change.

For the purpose of climatic studies, storing not only
the monthly means of the prognostic variables (uj, T
and q), but also the following statistical moments are
suggested, where the monthly means of various daily
statistical moments can be used to study their diurnal
properties. (See Boer [2000] for a similar list of vari-
ables in various budget equations.)

• Monthly variances of uj, T and q
• Monthly covariances among uj and (ui, T and q)
• Monthly means of the daily variances of uj, T and q
• Monthly means of daily covariances among uj and

(ui, T and q).
• Monthly skewness of T
• Monthly mean of the daily skewness of T
• Monthly kurtosis of T
• Monthly mean of the daily kurtosis of T

Following this suggestion, many of the important
nonlinear functions in geophysical problems, such as
the continuity equation, the momentum conservation
equation, the advection-diffusion equation, the wind
kinetic energy function and the black body radiation
function, can be calculated accurately; and the
changes of the diurnal cycle, the annual cycle and the
interannual cycle of a nonlinear process can be ana-
lyzed without the need for hourly data. Currently
many climatic data sets, such as the ERA-15 (Gibson et
al. 1999) reanalysis and CRU data (New et al. 2000),
only provide the monthly means of the prognostic vari-

ables uj, T and q without offering their higher statisti-
cal moments. As a result, nonlinear properties being
functions of the prognostic variables cannot be quanti-
fied precisely. This deficiency can be corrected by pro-
viding additional higher statistical moments, and this
work can serve as a reminder for the purpose.
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