INTRODUCTION

As the human population and its resource requirements increase dramatically, major environmental changes are occurring at increasingly faster rates. Climate change is part of a suite of environmental changes characterizing the last hundred years, as human expansion translated into land use change, habitat degradation and habitat fragmentation (Reynolds & Stafford Smith 2002, Millennium Ecosystem Assessment 2005, World Meteorological Organization 2005, IPCC 2007). Our ability to anticipate the effects of such changes is fundamental to designing appropriate adaptation and mitigation strategies (Millennium Ecosystem Assessment 2005). In order to assess and anticipate environmental change effects on biodiversity and ecosystem services, we require, among other things, a good understanding of how trophic levels and trophic interactions are impacted by such changes (Durant et al. 2005, Yang & Rudolf 2010).

Over the last decade, numerous studies have highlighted the potential key role of satellite data in ecology (Kerr & Ostrovsky 2003, Turner et al. 2003), and in particular the Normalized Difference Vegetation Index
(NDVI; Pettorelli et al. 2005a). The NDVI, computed as (NIR-Red)/(NIR + Red) where NIR and Red are the amount of near-infrared and red light, respectively, reflected by a surface and measured by satellite sensors, was first reported by Rouse et al. (1974). The latter study primarily dealt with the transformed vegetation index (TVI) and contained no references to previous work using ratios of NIR/Red, such as Birth & McVey (1968), Jordan (1969), and Pearson & Miller (1972). Subsequently, Tucker (1977, 1979) and Deering (1978) employed the NDVI to estimate herbaceous biomass and Tucker et al. (1981) showed how frequent NDVI measurements were highly correlated to herbaceous total dry matter accumulation over the period of observation.

Green leaves absorb incoming solar radiation in the photosynthetically active radiation spectral region, which provides energy needed to power photosynthesis (Jensen 2007). More specifically, green leaves absorb incident solar radiation very strongly in the blue and red spectral regions and not as strongly in the green spectral region. In the near infrared spectral region, green leaves are highly reflective and no absorption occurs (Knipping 1970, Jensen 2007). Thus, green leaves have high visible light absorption together with high near-infrared reflectance, resulting in positive NDVI values. Bare soil, cloud, snow, and concrete have NDVI values close to zero, while water has negative NDVI values (Neigh et al. 2008). The NDVI has been shown to be highly correlated with photosynthetically active radiation absorbed by the plant canopy, photosynthetic capacity, net primary production, leaf area index (LAI), fraction of absorbed photosynthetically active radiation, carbon assimilation and evapotranspiration (Myneni et al. 1995, Buermann et al. 2002, Hicke et al. 2002, Wang et al. 2005).

NDVI thus allows monitoring of vegetation photosynthesis through time and enables easy temporal and spatial comparisons (Myneni et al. 1997). It can be used to map, assess or predict the occurrence and impact of disturbances such as drought, fire, flood and frost (Pettorelli et al. 2005a), as well as helping to map and predict the extent of land degradation (Prince et al. 2009).

In 2005, Pettorelli et al. (2005a) provided an overview of the use of NDVI in wildlife management, highlighting how NDVI-based indices could be linked to animal distribution and abundance. The applications of the NDVI in ecology have continued to increase and expand, with new uses and advances arising every year (Table 1). This is illustrated by the number of ecological articles published over the last 5 years which refer to NDVI (282 articles published in 2005 or later with the topic NDVI and subject area ecology counted; ISI Web of Science search, 23rd of August 2010). This popularity can be partially explained by NDVI being a widely available index with pre-processed NDVI data readily available from as early as 1981, and at various spatial scales. In comparison, access to pre-existing processed data for other vegetation indices at such temporal and spatial scales is reduced, and therefore presents a threshold for ecological studies in general (Pettorelli et al. 2005a). With this review we aim to update the overview provided in 2005 to acknowledge the great spectrum of possibilities associated with NDVI.

2. SUCCESS OF THE NDVI IN WILDLIFE MANAGEMENT

Much knowledge has been gained from coupling primary productivity distribution (as assessed by the NDVI) with species distribution and abundance (for recent examples, see Bro-Jørgensen et al. 2008, Evans et al. 2008, Pettorelli et al. 2009, St-Louis et al. 2009), but the greatest benefit of the NDVI comes from the access to large-scale primary production dynamics over time. Since NDVI also provides information on phenology (Fig. 1), it can be used to assess temporal aspects of vegetation development and quality (Pettorelli et al. 2007, Hamel et al. 2009). Such information has been shown to correlate with behaviour and life history traits of several species: in Norway, NDVI at vegetation onset was shown to be a strong predictor of red deer Cervus elaphus altitudinal migration date (Pettorelli et al. 2005b), while NDVI-based estimates of vegetation growth also proved to be helpful in understanding wildebeest Connochaetes taurinus migration in the Serengeti (Boone et al. 2006). In southern Africa, wet-season home-range sizes in elephants Loxodonta africana was shown to correlate with seasonal vegetation productivity as estimated by NDVI, while dry-season home-range sizes were best explained by heterogeneity in the distribution of vegetation productivity (Young et al. 2009). NDVI variation was also shown to correlate with elephant diet in Kenya (Wittermyer et al. 2009), while in Norway and France, NDVI in spring was shown to be a strong predictor of body mass in reindeer Rangifer tarandus and roe deer Capreolus capreolus (Pettorelli et al. 2005c, Pettorelli et al. 2006; see also Table 2).

A demonstration of using the phenological signal in NDVI to understand the dynamics of an animal population is provided by Ryan (2006) and Ryan et al. (2007). In their 2007 study, the authors explored the relationship between seasonal NDVI patterns and birthing occurrence and synchrony for African buffalo Syncerus caffer living in a savanna environment. As the driver of this system appeared to be not simply the quantity of vegetation biomass, but rather the
quality, a second study (S. Ryan et al. unpubl. data) was undertaken to examine the nutrient value of the vegetation, for which NDVI proved a useful proxy. Analyzing fecal samples and vegetation samples at feeding patches for buffalo, to measure the content of nitrogen (protein surrogate) and phosphorus (a limiting mineral in savanna landscapes, important in the metabolism of protein), they established correlative relationships between NDVI and nitrogen content, by season and landscape. No clear patterns were seen for phosphorus, likely obscured by metabolic interactions with nitrogen. However, the body condition of females was correlated, at a monthly lag—presumably the time it would take for sufficient quantities of high quality vegetation to demonstrate an effect—to NDVI, and NDVI to nitrogen at a similar time lag. This suggests that, in this savanna system, NDVI is a good proxy for the timing of high quality vegetation, which is the high-protein initial growth, rather than the formerly used simple measures of biomass.

In grassland habitats without trees, NDVI can sometimes be used as a direct proxy for resource availability: most grasses decline considerably in nutritional quality as they grow (Van Soest 1994). As grasses mature, they accumulate structural tissues and their fibre content increases, reducing their digestibility (McNaughton 1984, McNaughton 1985). Thus, mature grasslands may provide high vegetation productivity (i.e. high NDVI values), yet few resources to ungulates (Wilmshurst et al. 2000, Bergman et al. 2001, Payero et al. 2004, Hebblewhite et al. 2008). As a consequence of these trade-off relationships in grass quantity and quality, Mueller et al. (2008) showed that for Mongolian gazelles *Procapra gutturosa* in the Eastern Steppes of Mongolia, no monotonic relationship between NDVI and resource availability existed. Instead, an intermediate range of NDVI, allowing for sufficient forage quantity as well as quality, was associated with the highest resource availability to gazelles, and was a useful tool to delineate habitat dynamics for gazelles.

Table 1. Examples of issues studied and sub-disciplines that benefitted from the availability of NDVI

<table>
<thead>
<tr>
<th>Issue</th>
<th>Group/species</th>
<th>Sub-discipline</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beetles</td>
<td></td>
<td>Lassau & Hochuli (2008)</td>
</tr>
<tr>
<td>Energy–species richness relationship</td>
<td>Birds</td>
<td>Macroecology</td>
<td>Ding et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Beetles</td>
<td></td>
<td>Koh et al. (2006)</td>
</tr>
<tr>
<td>Resource distribution, resource dynamics and space use</td>
<td>Brown bears</td>
<td>Habitat selection</td>
<td>Wiegand et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Vervet monkeys</td>
<td></td>
<td>Willems et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Elk</td>
<td></td>
<td>Hebblewhite et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Mongolian gazelles</td>
<td></td>
<td>Olson et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Elephants</td>
<td></td>
<td>Young et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Ptarmigans</td>
<td></td>
<td>Pedersen et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>African buffalo</td>
<td></td>
<td>Winnie et al. (2008)</td>
</tr>
<tr>
<td>Resource quality vs. resource quantity in determining space use</td>
<td>Mongolian gazelles</td>
<td>Habitat selection</td>
<td>Mueller et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>African buffalo</td>
<td></td>
<td>Ryan et al. (2006)</td>
</tr>
<tr>
<td>Resource quality vs. resource quantity in determining demographic parameters</td>
<td>Alpine ungulates</td>
<td>Population dynamics</td>
<td>Pettorelli et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>African buffalo</td>
<td></td>
<td>Hamel et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ryan (2006)</td>
</tr>
<tr>
<td>Resource dynamics and population dynamics</td>
<td>Rodents</td>
<td>Population dynamics</td>
<td>Andreo et al. (2009a,b)</td>
</tr>
<tr>
<td></td>
<td>Elephants</td>
<td></td>
<td>Kausrud et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimble et al. (2009)</td>
</tr>
<tr>
<td>Direct vs. indirect effect of climate on demographic parameters</td>
<td>Red deer</td>
<td>Population dynamics</td>
<td>Mysterud et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Reindeer</td>
<td></td>
<td>Pettorelli et al. (2005c)</td>
</tr>
<tr>
<td></td>
<td>Moose</td>
<td></td>
<td>Herrindal et al. (2006a,b)</td>
</tr>
<tr>
<td></td>
<td>Elephants</td>
<td></td>
<td>Rasmussen et al. (2006)</td>
</tr>
<tr>
<td>Resource dynamics and migration patterns</td>
<td>Wildebeest</td>
<td>Movement ecology</td>
<td>Boone et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Marsh harriers</td>
<td></td>
<td>Klaassen et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Saiga antelope</td>
<td></td>
<td>Singh et al. (2010b)</td>
</tr>
<tr>
<td>Climatic variability and diet shifts</td>
<td>Elephants</td>
<td>Feeding ecology</td>
<td>Wittemyer et al. (2009)</td>
</tr>
<tr>
<td>Factors shaping sexual segregation</td>
<td>Eurasian wild sheep</td>
<td>Behavioural ecology</td>
<td>Singh et al. (2010c)</td>
</tr>
<tr>
<td>Climate, vegetation dynamics and past ecological processes</td>
<td>Plague outbreaks</td>
<td>Paleocology</td>
<td>Kausrud et al. 2007</td>
</tr>
</tbody>
</table>
Table 2. Examples where NDVI was not reported to significantly shape animal parameters

<table>
<thead>
<tr>
<th>Link</th>
<th>Result</th>
<th>Taxa/Species</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant phenology variables and amount of fat deposited</td>
<td>Climatic variables describing spring conditions performed better than plant phenology variables</td>
<td>Raccoon</td>
<td>Melis et al. (2010)</td>
</tr>
<tr>
<td>Body mass and primary production</td>
<td>Not all populations examined displayed a correlation between body mass and NDVI</td>
<td>Red deer</td>
<td>Martinez-Jauregui et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>No correlation between NDVI and body mass</td>
<td>Roe deer, Wild boar</td>
<td>Mysterud et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(in Trois Fontaines)</td>
</tr>
<tr>
<td>Animal density and primary production</td>
<td>The correlation between animal density and primary production was a function of the NDVI spatial resolution</td>
<td>Topi</td>
<td>Bro-Jørgensen et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Presence not significantly related to NDVI</td>
<td>Gemsbok, eland, wildebeest and springbok</td>
<td>Verlinden & Masogo (1997)</td>
</tr>
<tr>
<td>NDVI and animal movement</td>
<td>NDVI not predictor of range size or chosen patch</td>
<td>African buffalo</td>
<td>Ryan et al. (2006)</td>
</tr>
</tbody>
</table>

Fig. 1. Simplified schematic representing the advantages and pitfalls of NDVI. The effects of weather (e.g. precipitation or temperature), herbivory (including pests and pathogens) and site conditions (including interactions within the plant community and between plants and soil nutrients or water) interact to shape primary productivity. The resulting reflectance of the above-ground plant matter is then registered (with errors) by the satellite, and through post-processing one trades errors with spatiotemporal resolutions to determine the NDVI data available to users, which are interpreted and combined with data on the study organism to build an ecological model. NDVI data can give direct information on vegetation phenology and on primary productivity and its spatial distribution. However, multiple mechanisms can shape the observed population processes of the study organism, both directly through weather, productivity or site changes, and indirectly through e.g. effects mediated by interacting species. Moreover, several of these mechanisms are likely to induce a lagged response (with possible spatiotemporal lags) relative to NDVI variability. Thus, while the NDVI can give invaluable information on population processes that are hard to observe by ground-based methods, the validity of inference is reliant on correct assumptions and knowledge of the study system.
3. NDVI: NOT JUST FOR LARGE HERBIVORES

As NDVI provides information on vegetation distribution and dynamics, it is commonly thought that its applicability is limited to enhancing our understanding of large herbivore ecology. Yet a considerable number of studies have demonstrated that NDVI is a useful tool for investigating the ecology of other, sometimes non-herbivore species. In the case of non-herbivore species, the rationale behind the use of satellite-based indices of primary productivity is based on the assumption that primary productivity of an area influences its entire food web (McNaughton et al. 1989). NDVI can for example, help predict species richness, distribution, abundance, migration patterns or life history traits of birds (Saïno et al. 2004a,b, Gordo 2007, Evans et al. 2008, St-Louis et al. 2009). Links between NDVI and bird populations can be found both through (1) higher primary productivity being linked to increased food abundance for birds (Gordo 2007), and (2) higher NDVI variance across pixels being linked to higher habitat variability (which is expected to influence species richness; St-Louis et al. 2009). In insectivorous barn swallow Hirundo rustica and insectivorous-carnivorous white stork Ciconia ciconia, temporal variation in ecological conditions (as reflected by NDVI in their winter quarters), for example, appeared to be a very important factor shaping breeding success and/or survival of birds in their European breeding ranges (Saïno et al. 2004b, Schaub et al. 2005). In Svalbard, NDVI was shown to be a good predictor of the presence of territorial rock ptarmigan Lagopus muta hyperborea cocks (Pederesen et al. 2007). In East Asia (Oriental Region, Wallacea Subregion, and part of Palearctic Region), average NDVI was the most important factor determining the variation in bird species richness, with a linear positive correlation between NDVI and bird species richness (Ding et al. 2006). Similarly, NDVI was the most powerful predictor of bird species richness at a markedly smaller spatial scale of northern Taiwan (the study again reported a linear positive correlation between NDVI and bird species richness; Koh et al. 2006).

For mammals, the relationship between NDVI and animal distribution has been recently explored for carnivorous and omnivorous animals (see also Table 2), with e.g. Wiegand et al. (2008) reporting that brown bears Ursus arctos selected areas with specific NDVI characteristics, or Basille et al. (2009) demonstrating that the preferred habitat of the lynx Lynx lynx includes areas of high plant productivity (as indexed by NDVI). Likewise, recent work on vervet monkey Chlorocebus pygerythrus home range location suggested that these monkeys prefer areas with elevated productivity and reduced seasonality—as indexed by NDVI—with monthly NDVI values being shown to correlate with field measurements of leaf cover and food availability for vervet monkeys (Willems et al. 2009). NDVI has, so far, been little used in studies on small mammals. Yet, this direction of research seems to have a great conceptual and methodological potential, especially when it comes to the question of spatiotemporal dynamics of cyclic (or otherwise fluctuating) populations. Attempts to find the causal relationships between primary productivity and population density and/or fluctuations of rodents date go back to the years of the International Biological Programme. However, the studies conducted in the 1960s–1980s were performed at very small spatial scales (study sites usually encompassed one to a few hectares) as the methods of estimating habitat productivity relied on laborious direct sampling of vegetation (e.g. Grodziński 1971, Pelikan 1982). Since the 1980s, it has become more and more evident that patterns in small rodent abundance are better explained in macroecological scale, and several geographical gradients in vole population dynamics have been described (Hansson & Henttonen 1985, Mackin-Rogalska & Nagab 1990, Tkadlec & Stenseth 2001). So far, successful attempts have been undertaken to relate those large-scale patterns in small mammal populations to habitat productivity, using such indices derived from ground sampling as standing crop and productivity of ground vegetation (Jędrejewski & Jędrejewksa 1996) and crop yield index (Tkadlec et al. 2006), or ranks of forest productivity (Niedzialkowska et al. 2010). Examples of the great potential for using NDVI to study small rodents are provided by Andreo et al. (2009a,b), who investigated the relationships between small rodent population dynamics, climate and NDVI in an agricultural ecosystem in Central Argentina. For Akodon azarae, the authors highlighted that large changes in land use were quite well captured by NDVI, which was the sole variable able to explain the sudden collapse exhibited by this rodent population.

Vertebrates are not the only segment of biodiversity which can be successfully related to NDVI, as demonstrated by several studies carried out on insects. Lassau & Hochuli (2008) recently discovered positive relationships between NDVI and site-based beetle species richness and abundance, and NDVI was also useful for predicting differences in beetle composition in open canopy forests. Ground measures of moth larval density were found to correlate with a NDVI-based defoliation score in Fennoscandia (Jepsen et al. 2009), while de Beurs & Townsend (2008) concluded that NDVI data can be used to monitor insect defoliation on an annual time scale. NDVI was used to generate risk and distribution maps for diseases with arthropod vectors (Kalluri et al. 2007), as well as for temporal models of
disease outbreaks (Chretien et al. 2007). Malaria and other mosquito-borne diseases such as West Nile virus seem to receive the most frequent attention and be particularly amenable to modeling efforts involving spatiotemporal data such as NDVI, due to the close causal link between rainfall and both mosquito abundance and NDVI (Brooker et al. 2006, Gempferli et al. 2006, Ceccato et al. 2007, Britch et al. 2008, Brown et al. 2008). But other zoonoses like Hantaa virus (Yan et al. 2007), schistosomiasis (Clements et al. 2008, Wang et al. 2008), Ebola (Pinzon et al. 2004a), bubonic plague (Kaurud et al. 2007), leishmaniasis (Wernick et al. 2007), Rift Valley fever (Anyamba et al. 2009) and others have been found to have spatial and/or temporal components associated with NDVI variability.

4. SCALES OF ENVIRONMENTAL CHANGE AND ANIMAL MOVEMENT

The availability of data and methods to analyze animal movement has increased exponentially with the help of GPS-based technology, allowing the tracking of animals that cover large distances or are difficult to observe and follow. However, analyses of coupled data of animal movement and environmental variables in a unified framework are still lacking. Movement analyses of different taxa and species, such as mammals, birds, insects and amphibians, has largely been developed independently (Fryxell & Sinclair 1988, Alerstam et al. 2003, Grayson & Wilbur 2009). Also, movements at different spatial scales are often explained by different mechanisms such as migration versus feeding (Dingle 1996, 2006). The high temporal resolution of NDVI is particularly helpful in studying animal movements, since data on vegetation productivity can be linked to location data of individuals at the same time. Instead of traditional habitat selection analyses that use static habitat maps, dynamic landscape models based on NDVI allow the examination of movement decisions of individuals or populations as resource availability changes in time. For example, at broader scales, shifts in relative NDVI distribution can explain movement to and from seasonal ranges (e.g. Ito et al. 2006). On finer scales NDVI may be used to trace habitat choices of single individuals at a particular movement step (Hebbelwhite et al. 2008). Thus, NDVI can be used to study movement patterns at different spatial scales in a unified framework (Nathan et al. 2008, Ryan et al. 2006) found that African buffalo had a reduced length of short-term ranging distances with increased values of NDVI, while it had no impact on estimated range size. The use of NDVI thus uncovered a behavior at a fine temporal scale that had not previously been explored. Wittemyer et al. (2009) found that for African elephants, the peak in primary productivity matched the change from random movements to more directional movements. This study showed directional movement in relation to resources (food and water) during the dry season and more random movements during the wet season. By monitoring radio-collared Svalbard reindeer females, Hansen et al. (2009) were able to demonstrate that changes in forage abundance (as indexed by NDVI) can strongly influence winter habitat–space use interactions in predator-free systems, with females exhibiting more quality-based selection at the expense of quantity when forage abundance increased. NDVI was also useful in explaining an unusual mass aggregation of Mongolian gazelle: Olson et al. (2009) observed more than 200,000 gazelle that had all moved to the same region, and subsequently found that NDVI showed a temporary ‘green up’ of that particular location that perfectly aligned with the mass aggregation of gazelle. Importantly, dynamic landscape models based on NDVI can be used to gain a more mechanistic understanding of long distance animal movements: landscape models based on NDVI were key in explaining the wildebeest migration in the Serengeti. Boone et al. (2006) demonstrated in individual based models that NDVI was critical to ‘evolutionarily train’ model-organisms to reproduce patterns of wildebeest migration.

5. SPARSELY VEGETATED AREAS

It has been previously acknowledged that the relationship between NDVI and vegetation can be biased in low vegetated areas, unless the soil background is taken into account (Huete 1988). Asrar et al. (1984), for example, demonstrated that for a LAI below 3, NDVI was mainly influenced by soil reflectance. Such results led to a common belief that NDVI could not be used in semi-arid, arid and desert areas, as well as polar environments—where vegetation is sparse and growing season short. Yet several recent studies have shown that NDVI could provide useful information even in sparsely vegetated areas: in the Kerguelen archipelago, Santin-Janin et al. (2009) demonstrated how NDVI correlates with ground-based measurements of plant biomass; in north-central Chile, De la Maza et al. (2009) demonstrated that NDVI could be related to ground-truthed measures of vegetation productivity, allowing exploration of the relationship between rainfall patterns and vegetation cover and productivity related to El Niño phenomenon. Using NDVI data, it was possible to determine that rainfall not only influences plant productivity, but also has a strong effect on plant phenology, determining the length of the growing season, which in turn contributed to increased bio-
mass formation in semi-arid Chile (De la Maza et al. 2009). During high rainfall years (El Niño), there is an earlier start of plant growth, and this earlier greening season—and delayed timing of plant productivity peaks— influences the timing of greater food availability for herbivores, and thus, their breeding dates and the length of their reproductive period (De la Maza et al. 2009). NDVI was also successfully used to monitor the vegetation response to rainfall in both Egypt and Israel (Dall’Olmo & Karnieli 2002). This again scales up to the level of consumers: desert mule deer Odocoileus hemionus eremicus distribution in the Sonoran Desert was shown to correlate with high NDVI values in 3 out of 4 seasons (Marshal et al. 2006); likewise the dynamics of great gerbils Rhombomys opimus in the arid Kazakhstan steppe was shown to be influenced by annual variability captured by spring NDVI (Kausrud et al. 2007).

6. IMPORTANCE OF TIME LAGS IN POPULATION DYNAMICS

Climate impacts on population dynamics will often be visible with a time lag mediated through the endogenous dynamics of the system. However, the relative importance of different time lags is often not known when the data are gathered, creating a need for continuous data coverage when analyzing the data in retrospect (Norris & Taylor 2006). Moreover, in species that range over wide areas, such as migratory birds, large predators and some ungulates, the relevant climate impact may not take place where the population is sampled. In these cases, the global and continuous nature of the NDVI data are extremely valuable as it allows ecologists to assess climate variability at a different time and place than where the population was sampled. A good example of this is provided by Couturier et al. (2009), who demonstrated that reindeer birth mass—which was positively affected by NDVI in June—positively correlated with population productivity (in terms of number of calves produced per 100 females) 3 and 4 yr later (which corresponds to the beginning of reproduction for females).

7. PAST PROCESSES

A major obstacle to using the NDVI to explore the link between climatic variation and ecological processes is the lack of data for any significant period prior to mid-1981. Not only do many interesting ecological data sets extend much further back in time, but to draw robust conclusions about effects of climate variation on some system, longer time series and/or other time periods than provided by the NDVI are often needed. However, the large-scale spatial variability in NDVI values depend to a large extent on interactions between local variation in soil types, terrain morphology, and macro-gradients such as latitude, elevation, elevational rain shadows, or continental vs. oceanic influences (Zhang et al. 2009). These factors change slowly on ecological time scales, making it possible to use non-spatial measurements or reconstructions of climate to extend NDVI data or related aspects as proxies back in time (Jicheng & Xuemei 2006, Rutishauser et al. 2007, Leavitt et al. 2008, Neerinckx et al. 2008). Surprisingly, this has rarely been done in ecology, but in cases where spatiotemporal ecological data exist before and after 1980, it offers a means of testing whether predictions from ecological models built using NDVI data are consistent with earlier climate variability (Kausrud et al. 2007).

Although such approaches represent significant opportunities to ecologists, a few caveats should be pointed out. Firstly, human impact is the main challenge for ecosystem persistence and consequently, knowing how NDVI and vegetation have changed in the past without incorporating changes in human impact could be of reduced interest. Secondly, one needs to keep in mind that these extrapolations (and their associated reliability) are linked to the quality and the spatio-temporal resolution of the climatic data entered in the model.

8. ROLE IN CONSERVATION AND ENVIRONMENTAL MANAGEMENT

As well as being highly valuable for detecting and mapping large-scale impacts of global climate change (Breshears et al. 2005, Soja et al. 2007), NDVI can help assess population and biodiversity consequences of future change in vegetation phenology and primary productivity. As NDVI provides a measurable index of primary productivity, links between climate, vegetation and animals can be explored and quantified at various spatial and temporal scales. For example, climatic models predict a decrease of rainfall in semiarid Chile by between 15 and 40% of present conditions. Despite this dramatic reduction in annual rainfall, De la Maza et al. (2009) predicted that primary production in protected semiarid areas of Chile will decrease only between 2 and 9%. In systems where NDVI reflects important resource variation, it can be used to create spatially explicit and realistic models simulating key processes of the system, incorporating adaptive behavior and spatial autocorrelation. Such links enable development of a framework wherein potential consequences of environmental change can be assessed.
(Kausrud et al. 2007). For example, by demonstrating that the timing of vegetation onset is key to red deer and reindeer performance in Norway (Pettorelli et al. 2005b,c) and incorporating the knowledge that climate change projections for Norway suggest earlier and later vegetation onsets than at present at low and high altitudes, respectively, one can predict a beneficial effect of climate change on red deer and a detrimental effect on mountain reindeer populations. A positive effect of early onset of spring on one population during a limited number of years does not, however, necessarily tell the complete story of how climate change will affect the species as a whole. For example, Herfindal et al. (2006a,b) showed similar positive effects of early onset of spring on moose Alces alces performance when looking at year to year-variation in body mass. However, when looking at geographical differences in population performance, populations in areas with an overall early onset of spring had lower body masses than populations in areas with a late onset of spring.

Several climatic models aimed at predicting spatio-temporal changes in NDVI have been developed (see e.g. Anyamba et al. 2006, Funk & Brown 2006). These may be useful in conjunction with current studies of habitat selection and distribution to help understand future range requirements and restrictions for many species. This is particularly important to protected area planning and reserve design (Alcaraz-Segura et al. 2009). For species currently in protected areas at the edges of their ranges, range shift predictions are fundamental to assessing whether they will be able to migrate and adapt. In a study on the critically endangered saiga antelope Saiga tatarica, Singh et al. (2010a,b) showed that in the past, the seasonal migration and distribution as well as the selection of calving sites could be explained by NDVI. However, the saiga population has collapsed by >90% in the last decade, and the current distribution is largely influenced by human disturbance and development restricting the range and movement of saigas. NDVI can be helpful to predict suitable habitat for future spatiotemporal patterns of saiga antelope distribution under scenarios of population recovery, anti-poaching efforts and climate change. These scenarios in turn can be informative for the development of saiga antelope protected areas, whether in terms of size or spatial extent.

NDVI is potentially a cheap, systematic, repeatable, and verifiable monitoring method for environmental management. In particular, it has recently been proposed that the monitoring of remotely assessed ecosystem functional attributes through NDVI provides an excellent opportunity to assess the effectiveness of management practices as well as the effects of global environmental change (Alcaraz-Segura et al. 2009).

9. CONCLUSIONS

Over the last few decades, ecology has increasingly relied on the wealth of opportunities and information provided by new technological developments as exemplified by animal tracking devices such as GPS, camera traps or increased computational speed for sophisticated analyses such as Bayesian analyses. Remote sensing data and NDVI in particular are among those technological advances useful for ecology: mostly freely available, with global coverage across several decades, and high temporal resolution, NDVI opens the possibility of addressing questions on scales inaccessible to ground-based methods alone.

In 2005, Pettorelli et al. (2005a) highlighted how NDVI might represent a key tool to assess the consequences of environmental change on wildlife, allowing ecologists to couple climate, vegetation and animal distribution and performance at both large spatial and temporal scales. Five years later, we highlight how NDVI provides significant opportunities in behavioural ecology, habitat selection studies, movement ecology, environmental conservation and paleo-ecology—areas that were not envisaged in 2005 (Table 1). Across sub-disciplines, ranging from macroecology and species niche modelling to evolution, NDVI can provide critical information about vegetation dynamics that allow the investigation of relationships between animal populations and environmental variability. Large-scale and long-term data sets are increasingly available in many disciplines, such as macroecology, population dynamics and biodiversity. These data sets are often spatially explicit and, coupled with NDVI, are ideally suited to the study of climate change impacts and the development of more reliable future scenarios.

NDVI has been established as a crucial tool for assessing past and future population and biodiversity consequences of change in climate, vegetation phenology and primary productivity. The possibilities and limitations of satellite-based ecological data such as the NDVI (Fig. 1, Box 1) are however suggested to be of crucial interest when assessing and understanding the effects of multiple, large-scale environmental changes. As Pinzon et al. (2004b) noted, ‘users […] are strongly encouraged to validate their results using independent data’ (p. 18). This is rarely seen in NDVI-based studies of animal ecology, and may point to a lack of collaboration between those who generate satellite-based indices such as NDVI and those who use it. We recommend increased multidisciplinary links between ecology, geophysics and remote sensing as crucial to promoting a better use of satellite data in ecological research (Skidmore & Ferwerda 2008). We also believe that increased emphasis must be placed on methodology when teaching ecology.
Box 1. Caveats and limits of NDVI usefulness in animal ecology

NDVI is a crude estimate of vegetation health and a means of monitoring changes in vegetation over time (Pettorelli et al. 2005a). NDVI integrates the composition of species within the plant community, vegetation form, vigour, and structure, the vegetation density in vertical and horizontal directions, reflection, absorption, and transmission within and on the surface of the vegetation or ground, and the reflection, absorption, and transmission by the atmosphere, clouds, and atmospheric contaminants (Markon et al. 1995). The ability of NDVI to monitor variations in primary productivity can, however, be negatively affected (Markon & Peterson 2002). In tropical ecosystems, for example, the radiation data reaching the satellite sensor may be contaminated by atmospheric variations such as cloud cover and smoke, and NDVI values may therefore provide inexact representations of the vegetation status on the ground in such cases (Tanre et al. 1992, Achar & Estreguil 1995). Saleska et al. (2007) demonstrated that reduced rainfall resulted in satellite-based primary productivity estimates that are higher than observed values during the wet season in a South American wet tropical region. Garonna et al. (2009) highlighted the same pattern: with clouds being more likely to bias NDVI estimates in wet months than in dry months, and with more light reaching the canopy during the dry season, higher NDVI values were reported during the dry season in the Solomon Islands.

To eliminate the noise in the data, different types of processing have been applied to the raw data (Markon & Peterson 2002, Tucker et al. 2005). However, eliminating the noise means inevitably removing variation from the raw data that could be due to environmental variation that is of particular interest in the detection of environmental change. Alcaraz-Segura et al. (2010) compare different processing schemes of the same raw data (Advanced Very High Resolution Radiometer, AVHRR sensor) and show that spatial and temporal inconsistencies exist between processing schemes. Baldi et al. (2008) evaluated the detection probability of land cover change and found differences between processing methods. More research into the effect of different image processing on detection of environmental change is needed to optimize removal of noise from the data, while retaining valuable variation stemming from actual environmental variability in the image.

The quality of the information regarding primary productivity variation and food availability for herbivores encompassed in NDVI values is therefore a function of several factors (see Fig. 1) such as the type of processing applied to the raw data; the spatial location of the study (e.g. the linear correlation between NDVI and the leaf area index, does not hold in very arid and in very densely vegetated areas; Huerne 1988); the behaviour and dietary preferences of the study animals (e.g. high rainfall areas tend to be less nutritious and therefore available only to certain large herbivores which can tolerate lower plant nutrient content; Olff et al. 2002); and the scale of the study (e.g. some large herbivore species may seek high productivity ‘patches’ at very large spatial scales, but select low productivity patches within this landscape matrix at the local scale).

The most commonly used data (e.g. data derived from the satellite pour l’Observation de la Terre, SPOT, from the Moderate Resolution Imaging Spectroradiometer, MODIS, and from the AVHRR) are then generally aggregated at a temporal resolution of 10–15 d, which means that it is not possible to precisely date phenological phenomena. Moreover, these datasets generally cover spatial resolutions spanning from 250 m to 8 km, which may be too coarse, depending on the biological system considered. Although higher spatial resolution data exist, these data have a low temporal resolution (e.g. Landsat TM; see Pettorelli et al. 2005a). In areas with vegetational inactive periods such as deserts, a substantial part of the year is not informed by NDVI. Yet such periods may be important for animals, and other variables, such as average temperature, may represent key variables for animal movement, space use, performance or abundance. Finally, other vegetation indexes might be more appropriate than NDVI, especially for particular situations. In sparsely vegetated areas the soil-adjusted vegetation index (SAVI; Huerne 1988) may perform better than NDVI (see Despland et al. 2004 for an example that uses SAVI). The Enhanced Vegetation Index (EVI; Huerne et al. 2002) is meant to take full advantage of MODIS’ new, state-of-the-art measurement capabilities (see Wallace & Thomas 2008 for an example of application of the EVI in the Mojave Desert). Importantly, this index does not become saturated as easily as the NDVI when viewing rainforests and other areas of the Earth with large amounts of green material, meaning that EVI may perform better than NDVI in densely vegetated areas.

Acknowledgements: This work is the result of a symposium entitled ‘The use of satellite-based data in assessing ecological responses to environmental change’ organized by N.P. during the 10th International Mammal Conference in Mendosa, Argentina. N.P. was supported by the Royal Society to attend the conference. S.R. worked on this study as a postdoctoral associate at the National Center for Ecological Analysis and Synthesis, a Center funded by the National Science Foundation (Grant #EF-0553768), the University of California, Santa Barbara, and the State of California. The authors are grateful to Jim Tucker and 2 other anonymous referees for their valuable inputs.

Singh NJ, Grachev IA, Bekenov AB, Milner-Gulland EJ (2010a) Saiga antelope calving site selection is increasingly driven by human disturbance. Biol Conserv 143:1770–1779

Singh NJ, Grachev IA, Bekenov AB, Milner-Gulland EJ (2010b) Tracking greenery across a latitudinal gradient in central Asia—the migration of the saiga antelope. Disribut 16:663–675
