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1.  INTRODUCTION

Extreme hot weather and climate phenomena are
areas of great research interest, since increases in
their frequency and severity can cause considerable
damage to ecosystems and human society. The focus
of the present study is on stochastic characterization
of hot weather spells in southern Quebec, where most
of the population of the province is concentrated and
where high daily maximum temperatures, reaching
>30°C over various durations, during the summer
season have occasionally been experienced (Khaliq et

al. 2005). Extended episodes of such high tempera-
tures and increases in their rate of occurrence under
the anticipated climate change scenarios could con-
siderably impact public health and socio-economic
sectors.

Episodes of hot weather persisting over a certain
number of days are termed hot weather events
(HWEs) in the present study. Thus, in general, an
HWE in volves the occurrence of consecutive days of
high temperatures, along with high levels of relative
humidity. The high temperatures could be in the form
of either daily maximum temperature (henceforth,
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denoted Tmax) or daily minimum temperature (hence-
forth, denoted Tmin) or the 2 together. There is no uni-
fied definition of an HWE, and its choice depends
upon a number of factors, e.g. the type and length of
the available data, the chosen sector impacted by
HWEs (i.e. public health, agriculture, wildlife, socio-
economics, etc.), the time of year, local exacerbating
forcing factors, etc. We define an HWE as an extreme
climate event when—over a specific period—both
Tmin and Tmax values are above relatively high chosen
thresholds (see Section 3). These types of hot weather
spells are supposedly more severe, in relation to their
impact on public health and socio-economic sectors,
than spells defined on the basis of Tmin or Tmax alone,
such as in Katsoulis & Hatzianastassiou (2005), Khaliq
et al. (2005) and Furrer et al. (2010). As in Khaliq et al.
(2006a, 2007), homogenized Tmin and Tmax observa-
tions for the June–August hot summer season are
employed to derive HWEs. The effect of relative
humidity, for which homogenized observations are
not yet available, is not taken into account. However,
inclusion of a relative humidity factor in the definition
of an HWE would certainly be useful, since HWEs are
likely more detrimental to humans under conditions of
increased atmospheric moisture.

Following the above definition of an HWE, simulta-
neous observations of Tmin and Tmax would result in
alternate sequences of ‘hot weather’ and ‘non-hot
weather’ spells. In a very general manner, these
sequences can be stochastically modeled using point
process approaches (Cox & Isham 1980, Guttorp
1995). In these approaches, the primary mechanism of
event occurrences is usually assumed to follow a Pois-
son process, which is compounded with other sec-
ondary processes to formulate compound Poisson pro-
cesses. Various forms of the compound Poisson
process have been successfully used for modeling
hydro-climatological data (e.g. rainfall, Rodriguez-
Iturbe et al. 1987; drought, Zelenhasić  & Salvai 1987,
Abaurrea & Cebrián 2002; wind storms, Rootzén &
Tajvidi 1997; hurricanes, Elsner & Bossak 2001, Katz
2002; very cold days, Prieto et al. 2004; hot spells, Fur-
rer et al. 2010). However, in practice, one could
encounter situations where the assumptions of the
Poisson process (e.g. equality of mean and variance
property) may not be satisfied or they may hold
merely in a weak manner. In such situations, the orig-
inal  Poisson process needs to be modified, particularly
to account for over-dispersion in the event occurrence
process; this is also the case in the present study. The
present study has 2 main objectives. (1) To de velop a
stochastic characterization of hot weather climate
using the compound Poisson process gamma (CPPG)
model — a generalization of the Poisson process that
reduces to the original form as a limiting case; gamma

is the distribution of the rate parameter of the Poisson
process. (2) To develop a plausible  non-stationary
probabilistic framework for hot weather activity in
southern Quebec using data from 3 selected locations
(Montreal, Les Cedres and La Tuque) with quite con-
trasting features of HWE occurrences and their char-
acteristics.

2.  MODEL COMPONENTS

In the present study, hot weather spells are charac-
terized in terms of 4 components: (1) HWE occur-
rences, (2) HWE durations, (3) the number of hot days
and (4) the longest duration of HWEs. The first 2 com-
ponents (termed basic components) are explicitly mod-
eled, while the distributions of the latter 2 are derived
from those of the first 2. Other characteristics, like the
intensity of HWEs (for example, represented in terms
of the maximum temperature associated with a HWE)
is not addressed explicitly in this study, but could be
attempted in the future following the approaches
described in Katsoulis & Hatzianastassiou (2005) and
Furrer et al. (2010) or their suitable variants in a multi-
variate framework. The 4 components, described be -
low one at a time, correspond to the characteristics of
HWEs for the June–August summer season.

2.1.  HWE occurrences

It is assumed that the occurrence of HWEs follows a
Poisson process {N }, denoting the number of events
occurring within the time interval (0, t), i.e. within the
June–August (JJA) summer season of each year. The
number of events in any interval of time is indepen-
dent of the number of events in any other non-
 overlapping interval of time. The random variable N
has a Poisson distribution with a mean rate λ. That is,
the probability P of n events occurring within the inter-
val (0, t) can be expressed as:

(1)

The mean μN and variance σ2
N of N are equal and are

given by μN = σ2
N = λ. In particular, for the case of rare

events (i.e. the HWEs corresponding to relatively high
values of Tmin and Tmax thresholds; see Section 3.2), the
requirement of the equality of the mean and variance
property of the Poisson distribution is not satisfied and
the event occurrence process results in over-disper-
sion, i.e. σ2

N is significantly greater than μN. To account
for over-dispersion, generally the para meter of the
Poisson distribution is assumed to follow a gamma dis-
tribution (Cameron & Trivedi 1998, Medhi 2002), with
the density function given by:

P N n n nn( ) e 0,1, 2, ...= = =−λ λ( ) / !,
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(2)

where α > 0 and 1/β > 0 are, respectively, the shape
and scale parameters and Γ(.) is the gamma function.
With this assumption, the distribution of N becomes:

(3)

which is an extended negative binomial distribution
with parameter p = β/(1 + β) and r = α in the form of
commonly used notation. This formulation is known
as a Poisson-gamma or Poisson mixture model in the
statistical literature (e.g. Skinner 1992, Cameron &
Tri vedi 1998). For the Poisson-gamma model, μN =
r (1 – p)/ p and σ2

N = r (1 – p)/ p2. Thus, over-dispersed
cases can be easily modeled by estimating the para-
meters p and r using either the method of maximum
likelihood or the method of moments for which the
relationships for both the mean and variance need to
be employed. An intuitively appealing explanation
for the use of the Poisson-gamma model for HWE
occurrences could be that: (1) it accommodates any
random effect or heterogeneity (e.g. due to a season-
ality effect on the rate of occurrence of HWEs), and
(2) it reduces to the original Poisson process model as
a limiting case, i.e. when the parameter p approaches
unity.

2.2.  Durations of HWEs

Let Xi > 0 denote the duration of HWE associated
with the i th occurrence, i = 1, 2, 3, …, within the JJA
summer season of each year and assume that the Xis
are independent and identically distributed. Let the
common cumulative distribution function be denoted
by Fx(x) = P(X ≤ x), with mean μX and variance σ2

N,
and further, assume that the duration process {X } is
statistically independent of the occurrence process
{N }. The joint process, consisting of {X } in combina-
tion with {N }, is referred to as the compound Poisson
process or a ‘marked’ Poisson process, i.e. the dura-
tion associated with an event occurrence is viewed as
a mark; for additional explanations, see Cox & Isham
(1980) and Guttorp (1995). The randomized com-
pound Poisson process could be viewed as an exten-
sion or a variant of the basic compound Poisson pro-
cess. In practice FX(x) would be some positively
skewed dis tribution function, such as the exponential,
gamma, or lognormal from continuous distribution
families and the truncated geometric, negative bino-
mial, or logarithmic from discrete distribution families.

During a preliminary analysis, 3 single-parameter dis-
tributions (exponential, logarithmic and truncated
geometric) were considered to identify strong candi-
date distributions for modeling HWE durations. The
exponential is a continuous distribution, while the
other 2 are discrete. The exponential distribution is
considered be cause of its extensive use in climatology
and hydro logy. Based on the Kolmogorov-Smirnov
and chi-squared goodness-of-fit tests (Sne decor &
Cochran 1980), the logarithmic and truncated geo-
metric distributions were found to be adequate for
modeling HWE durations, compared to the exponen-
tial distribution. Though the latter is the continuous
counterpart of the geometric distribution, it was not
able to estimate frequencies of 1 d duration satisfacto-
ryly. Based on the results of this preliminary in -
vestigation, the logarithmic distribution was selected
in the present study for further theoretical develop-
ment. The distribution function of the logarithmic dis-
tribution, with the mean μX = –b/(a log a) and vari-
ance (μXa–1 – μ2

X), is given below (Kendall & Stuart
1977):

(4)

where a is the parameter of the distribution. The expo-
nential distribution is also studied to compare its
results with those of the logarithmic distribution; how-
ever, only selected results are presented for this distri-
bution.

2.3.  Longest duration of HWEs

Under the assumption of the compound Poisson pro-
cess, the distribution function of the longest duration of
HWEs (X*) can be derived from the following relation-
ship:

(5)

where the expression P(N t
k) represents the probability

of k occurrences of HWEs in the interval (0,t ) (i.e. JJA
period) and FX(.) is the distribution function of all
durations of HWEs. In general, FX*(x*) has to be
approximated by numerical means. In the case of the
exponential distribution for HWE durations and a
Poisson distribution for P(N t

k), FX*(x*) results in a
closed form relationship, which is equivalent to the
Gumbel distribution of the maximum of a sample of
observations (for additional details, see Zelenhasić &
Salvai 1987). In the case of the Poisson distribution
for P(N t

k), FX*(x*) can also be derived in terms of the
survival function for the spell length following Reiss &
Thomas (2007, p. 29).
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2.4.  Number of hot days

The number of hot days refers to the number of days
with Tmin and Tmax simultaneously above specified
thresholds (which are discussed later in Sections 3 & 4)
observed during the JJA summer season of each year.
Under the assumption of the CPPG model for occur-
rence of HWEs and their durations, the number of hot
days (M) can be expressed as the sum:

(6)

(conditional on N ≥ 1; otherwise, M = 0). This represen-
tation is termed a random sum, because the number of
terms N is not fixed a priori. The mean and variance of
the random sum M can be expressed in terms of the
parameters of the 2 component processes through con-
ditioning on the number of events N. Making use of
the relationship between the unconditional mean and
the conditional mean, the mean of M (denoted μM) is
given by:

(7)

(see Chapter 12 in Feller 1968) where E is the expecta-
tion operator. Similarly, making use of the relationship
between the unconditional variance and the condi-
tional means and conditional variances, as well as of
the expressions for the mean and variance of the Pois-
son-gamma model, the variance of M (denoted σ2

M) is
given by:

(8)

Other approaches for the derivations of μM and σ2
M are

given in Parzen (1964, p. 130–131) and Medhi (2002,
p. 1–3, 176–177) using the moment and probability
generating functions.

If X is assumed to follow the discrete logarithmic dis-
tribution, as explained earlier (Section 2.2), then the
probability distribution of M, P (M = m) in the case of
the basic compound Poisson process (i.e. when Eq. (1)
is applicable), can be written as:

(9)

It should be noted that Eq. (9) is an alternate form of
the extended negative binomial distribution. In the
case of the CPPG model, this relationship becomes:

(10)

Detailed derivations of the 2 above relationships are
provided in the Appendix.

3.  A VALIDATION FOR OBSERVATIONS OF HOT
WEATHER SPELLS

In this section, detailed results and a discussion of
an application of the CPPG model to observations of
HWEs for Montreal, which is one of the 3 locations
studied from southern Quebec, are presented. A de -
scription of the Tmin and Tmax data along with their
thresholds and basic statistics of some characteristics
of HWE observations are presented first, followed by
the results of the application.

3.1.  Tmin and Tmax data, their thresholds and statistics
of hot weather spells

HWEs are derived from homogenized Tmin and Tmax

observations recorded at McTavish station, located in
the centre of Montreal, over the period 1941–2000. The
homogenized observations have been developed by
Vincent et al. (2000, 2002) for climate change studies in
Canada. Since the focus of the study is on HWEs, only
observations of the hot summer season (JJA) are con-
sidered for the analysis. For the 5 yr, 1992– 1996, sum-
mer season Tmin and Tmax observations at McTavish
station are either not available or sparsely observed,
and therefore these years are excluded from the analy-
sis. In the case of very few missing temperature values
for the remaining years of the period of study, termina-
tion of an HWE or non-HWE is considered whenever a
day with missing temperature value is encountered.

Four thresholds for the Tmin (i.e. u = 18, 19, 20 and
21°C) and 6 thresholds for the Tmax (i.e. v = 27, 28, 29,
30, 31 and 32°C) are selected initially to derive HWEs
for Montreal. These thresholds are selected from the
upper quartile of the distributions of Tmin and Tmax after
pooling the seasonal observations for the period of
study. Clearly, the choice of these thresholds is arbi-
trary but reasonable in that it allows study of a wide
range of hot weather spells of various characteristics
and at the same time helps maintain their extreme
character and severity through the threshold exceed -
ance mechanism. For the convenience of presentation,
each combination of u and v thresholds is referred to
as u:v in the current paper.

The next step is to test the autocorrelation and tem-
poral structure of time series of various characteristics
of HWEs (i.e. the number of occurrences N, duration X,
number of hot days M and longest duration X*),
because the results of the analyses may be affected by
these factors. None of the time series, for any of the
characteristics of HWEs, is found to be autocorrelated
at the 5% level following the testing procedure for the
first autocorrelation coefficient described in Anderson
(1942), by using asymptotic confidence intervals (Box
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& Jenkins 1970), or by using Spearman rank order cor-
relation coefficients (Walpole & Myers 1989). As for the
temporal structures where various time series of HWE
characteristics are concerned, none of them is found
to be non-stationary (i.e. there is insufficient evidence
in favor of temporal trends) using the Mann-Kendall
(Kendall 1975) and Spearman rank correlation testing
procedures. The independence assumption of the ob -
servations of inter-event waiting time (i.e. the time
interval between the start of a HWE and the start of the
following HWE) and the duration of HWEs is checked
using the test for the first autocorrelation coefficient.
All observed samples of inter-event waiting times and
HWE durations are found independent at 5% signifi-
cance level, except the sample of HWE durations cor-
responding to the u:v = 20:30 case, which is found to
be independent at about the 7% level. In the present
study, this sample of HWE durations is also assumed to
be independent.

The basic statistics of N (i.e. μ̂N and σ̂2
N), X (i.e. μ̂X

and σ̂2
X) and M (i.e. μ̂M and σ̂2

M) are plotted in Fig. 1 for
various u :v cases. Such plots help one to visually iden-
tify the inter-relationships among moments of various
characteristics. For example, it is clear from Fig. 1 that
for a particular value of the threshold u, the mean is a
decreasing function of the threshold v (i.e. μ̂N, μ̂X and
μ̂M decrease systematically, in general, as v increases),
but not necessarily the variance. Whether the observed
data support the equality of the mean and variance
property of the Poisson distribution can be examined

from the respective plots given in Fig. 1. In the
case of the exponential distribution for durations of
HWEs, σ2

X = μ2
X, which does not seem to hold for

the majority of the u :v combinations. From the plots of
μ̂2

M and σ̂2
M, it is obvious that a definite relationship

exists between these moments, i.e. σ̂2
M is some (say h)

multiple of μ̂2
M.

3.2.  Distribution of number of HWEs

As explained earlier in Section 2, where applicable,
it is assumed that the occurrence of HWEs follows a
Poisson process or a generalization of the Poisson pro-
cess (i.e. the Poisson-gamma model). The Poisson-
gamma model is suitable in situations where notice-
able departures from the assumption of the simple
Poisson process are realizable. Therefore, it is neces-
sary to check the suitability of the Poisson process first
before using the Poisson-gamma model. This can be
achieved by using the fundamental property of equal-
ity of the mean and variance of the Poisson distribu-
tion and testing it by calculating the chi-squared test
statistic given in Johnson et al. (1992), i.e.:

(11)

where μ̂N and σ̂2
N, respectively, denote the sample

mean and variance of the seasonal counts of HWEs, i.e.
the number of HWEs that occurred during the JJA
summer season, and j being the number of years. The

χ σ μ χ2 21= −( ) ˆ / ˆj N N j~ –1
2
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calculated values of χ2 and corresponding 95% confi-
dence intervals are shown in Fig. 2 for various combi-
nations of u and v thresholds. It is obvious from this
 figure that HWE occurrences could be assumed to fol-
low the Poisson process only for a certain number of
combinations of u and v thresholds, because many cal-
culated chi-squared values lie well outside the 95%
confidence interval. Thus, there is inadequate statisti-
cal evidence to assume that HWEs corresponding to
selected higher thresholds follow a Poisson process of
event occurrences. To further confirm this result, 5000
bootstrap samples for each u :v case, were generated
and the 95% upper and lower confidence limits were
noted for the χ2 test statistic given in Eq. (11). Almost
the same results were found as those presented in
Fig. 2 and discussed above (this section).

Also, the Kolmogorov-Smirnov and chi-squared
goodness-of-fit tests resulted in the same conclusion
as discussed in the previous paragraph. The Kolmo -
gorov-Smirnov test re quires the underlying distribu-
tion to be continuous, with no estimated parameters.
However, it can be used for discrete distributions and
when the parameters are estimated from observations,
but it will provide only approximate results. In the lat-
ter case, the test is more conservative, i.e. if the critical
value is exceeded by the test, then the hypothesis can
be rejected with considerable confidence (Crutcher
1975, Von Storch & Zwiers 1999). Based on the results
presented above, it is logical to use the generalized
form of the Poisson process (i.e. the Poisson-gamma
model) to model occurrences of HWEs corresponding
to higher thresholds.

In the remainder of the present paper, HWEs cor -
responding to only 6 combinations of relatively high
values of u and v thresholds (i.e. u = 20 and 21°C and
v = 30, 31 and 32°C) are considered for additional
analyses. It is necessary to point out that the u :v =
20:30 combination marginally satisfies the equality
of mean and variance property of the Poisson dis -
tribution. Observed and modeled distribution func-
tions of the number of HWEs for only 3 selected combi-

nations of u and v thresholds are shown in Fig. 3. This
figure suggests that the Poisson-gamma model fits
observed frequencies much better than the simple
Poisson model, perhaps due to the reasons discussed in
Section 2.1.

3.3.  Distribution of HWE durations

Observed frequencies of HWE durations and the
 fitted exponential and logarithmic distributions, using
the method of maximum likelihood, are shown in
Fig. 4. The goodness-of-fit of the exponential and log-
arithmic distributions is assessed on the basis of the
Kolmogorov-Smirnov and chi-squared goodness-of-fit
tests. The Kolmogorov-Smirnov test rejects the fitting
by the exponential distribution, but does not reject that
by the logarithmic distribution at the 5% significance
level for all 6 u :v cases. The chi-squared goodness-of-
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fit test is conducted by considering 5, 10 and 15 num-
ber of classes (each at an interval of 1 d, with the first
one representing 1 d duration); for this test, the num-
bers of rejected tests (at the 5% significance level) are
8 for the exponential distribution and just 1 for the log-
arithmic distribution, out of a total of 18 tests. Thus, the
combined results of the 2 goodness-of-fit tests suggest
that the logarithmic distribution de scribes the ob -
served distributions of HWE durations better than the
exponential distribution, which does not describe the
observed frequencies of HWEs of 1 d duration well.

3.4.  Distribution of the longest duration of HWEs

Observed and estimated distributions of the longest
duration of HWEs, X*, are shown in Fig. 5. It should be
noted that the statistics of the observed distributions of
X* are not used to estimate the theoretical distribu-
tions of X*, because the latter are directly expressible
in terms of the distributions of the 2 basic component
processes of the CPPG model, i.e. the one relating
to the occurrences of HWEs and the other to their
 durations. The fitting of the theoretical distributions to
observations of X* is assessed on the basis of the
 Kolmogorov-Smirnov and chi-squared goodness-of-fit
tests. The Kolmogorov-Smirnov test fails to reject fit-
ting (at the 5% significance level) by the CPPG model
with the logarithmic distribution for HWE durations for
all the u :v cases, but rejects fitting by the CPPG model
with the exponential distribution for HWE durations
for 3 (out of 6) u :v cases. The chi-squared test is carried

out by dividing the empirical distributions into 5, 8 and
10 class intervals, and the numbers of rejected tests, at
the 5% level, are found to be 2 in the case of the expo-
nential distribution and 0 in the case of the logarithmic
distribution. Also, visual inspection of Fig. 5 indicates
that the CPPG model with the logarithmic distribu -
tion for HWE durations estimates distributions of
the longest duration of HWEs much better than the
CPPG model with the exponential distribution for
HWE durations.

The results presented and discussed so far suggest
that the CPPG model with the logarithmic distribution
for HWE durations describes occurrences of HWEs and
their durations—as well as distributions of the longest
duration of HWEs—better than the CPPG model with
the exponential distribution for HWE durations. There-
fore, only the former construction is considered for the
additional analyses presented in the current paper.

3.5.  Distribution of number of hot days

Observed and estimated distributions of number of
hot days (M) are shown in Fig. 6 for 6 u :v cases. It
should be noted that none of the parameters of the the-
oretical distributions of M are estimated from empirical
observations of M, because parameters of these theo-
retical distributions are directly expressible in terms of
the parameters of the 2 component processes of the
CPPG model (i.e. {N } and {X }—see Section 2). The fit-
ting of the theo retical distributions is assessed on the
basis of the Kolmogorov-Smirnov and chi-squared
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goodness-of-fit tests. Neither the Kolmogorov-Smirnov
nor the chi-squared (applied with 10, 15 and 20 class
intervals) test rejects the fitting at the 5% significance
level for all the u :v cases. Although the mean of M (μM)
is exactly preserved by the CPPG model through its
structure (see Fig. 7), an alternate method of goodness-
of-fit is to check how well the variance of M (σ2

M) is
estimated. For this purpose, both the observed and
estimated standard deviations of M along with the
95% confidence intervals are plotted in Fig. 7 for all
u :v cases. It is interesting to note that the CPPG model
does a good job in estimating σ2

M.

4.  A NON-STATIONARY FRAMEWORK FOR
CHARACTERISTICS OF HOT WEATHER SPELLS

The temperature regimes are likely to change as a re-
sult of anticipated climate change, as are the frequency
and severity of extreme events such as hot weather spells
(IPCC 2002). Therefore, a non-stationary framework is
needed to characterize HWEs and to develop probabilis-
tic climate change information about hot weather cli-
mate. It is shown in Section 2 that dis tributions of the
number of hot days are explicitly determined by the pa-
rameters of the 2 component  processes, i.e. the HWE oc-
currence and duration processes. In other words, the mo-
ments of the distribution of the number of hot days are
expressible in terms of the moments of the 2 component
processes. Thus, any linear or non-linear temporal
change in the moments of the distributions of the num-
ber of HWEs and durations of HWEs will be directly re-
flected in the moments of the distribution of the number

of hot days. That is, either the frequency of occurrence or
the duration of HWEs or the 2 together could change in
response to changes in the temperature regime. Consid-
ering a time-dependant change, both μN and σ2

N can
be represented as a function of time, i.e. μN(t) and
σ2

N(t). Similar time-dependencies can also be introduced
in μX and σ2

X as μX(t) and σX(t). Folowing these time-
 dependencies, the parameters of the distributions of N
(and X) can be expressed in terms of μN(t) and σ2

N(t)
(μX(t) and σ2

X(t)), which, in turn, along with the para -
meters of the assumed forms of the time-dependencies,
can be estimated by maximum-likelihood techniques us-
ing observed samples. The advantage of the maximum-
likelihood technique is its asymptotic efficiency as com -
pared with the method of moments, which is sensitive to
extremely large observations (so-called outliers). A sim-
ilar approach has been adopted for developing non-
 stationary flood-frequency relationships; see, for exam-
ple, Strup czewski et al. (2001), Katz et al. (2002) and
Khaliq et al. (2006b).

It is shown in Section 3 that there is inadequate sta-
tistical evidence in favor of non-stationarity for the hot
weather climate in Montreal; therefore, the applica-
tion of the non-stationary framework is demonstrated
using hot weather observations from La Tuque and Les
Cedres (southern Quebec). La Tuque is located north
of Montreal at 47.40° N latitude and 72.78°W longi-
tude, while Les Cedres is located west of Montreal at
45.30°N latitude and 74.05°W longitude. The proposed
modeling approach was also found suitable for charac-
terizing HWEs at these 2 locations; however, detailed
evaluation results are omitted due to space constraints.
Compared to Montreal, for which a range of plausibly
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selected subjective thresholds is employed, percentile-
based thresholds are used to derive HWEs for these 2
locations. Two typical time series of seasonal counts of
HWEs, which exhibit contrasting non-stationarity, are
selected and shown in Fig. 8. Both the Mann-Kendall
and Spearman rank correlation tests detect significant
time trends at the 4% level for counts of HWEs for both
locations. For the time series of the number of hot days,
the Mann-Kendall test detects a significant time trend

at the 3% level for Les Cedres and at the 9% level for
La Tuque, and the Spearman rank correlation test
detects a significant trend at the 4% level for Les
Cedres and at the 13% level for La Tuque. It is impor-
tant to mention here that the existence of non-station-
arity is also dependent on the choice of the thresholds
used to derive HWEs for these 2 locations. None of the
time series of HWE characteristics at either location is
found to be autocorrelated.

To model HWE occurrences at La Tuque
and Les Cedres, 5 trend models are consid-
ered, i.e. (1) a linear trend in μN of the form
μN (t) = aμN + bμNt, (2) a linear trend in σ2

N of
the form σ2

N (t) = aσN + bσN
t, (3) a joint  linear

trend in both μN and σ2
N, (4) a non-linear trend

in μN of the form μN(t) = aμN + bμNt + cσNt2 and
(5) a  non-linear trend in σ2

N similar to the form
for μN, where a, b and c are parameters of the
trend model and t is the time index. It is also
necessary to mention here that the simple
Poisson process is adequate to model HWE
occurrences for La Tuque on the basis of the
chi-squared test given in Eq. (11). Therefore,
HWE occurrences are modeled with the Pois-
son-gamma model for Les Cedres and with
the original Poisson process for La Tuque. The
parameters of Eqs. (1) and (3) were replaced
with the trend model parameters, which, in
turn, were estimated by maximizing the like-
lihood function using the non-linear optimiza-
tion algorithm from the R sta tistical comput-
ing software  (www.r-project.org/). In order to
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choose from among the stationary and non-stationary
models, the Akaike information criterion (AIC; Akaike
1974) is used, which is defined as AIC = –2ln(ML) + 2k,
where ML is the maximum likelihood and k is the
number of estimated parameters. From the set of vari-
ous competing models, the one with the smallest value
of the AIC is the preferred model. Based on the AIC,
the preferred  non-stationary model is the one with the
linear trend in the mean for both locations. A similar
ex ercise did not result in any form of the non-
 stationary model for HWE durations; hence, this char-
acteristic can be assumed stationary. Following the
selected non-stationary model, temporal evolution of
exceedance probabilities of the longest HWE durations
and those of the number of hot days were developed,
and results for a few selected cases are shown in Fig. 9
for the former characteristic and in Fig. 10 for the latter
characteristic.

Both Figs. 9 & 10 show that the compound Poisson
process, in its basic and generalized form, with the
assumed trend model, captures well the non-stationar-
ity present in occurrences of HWEs and its effect on the
longest duration of HWEs and the number of hot days.
Thus, it can be concluded that the proposed  non-
stationary modeling framework can be a useful tool for
developing probabilistic information about hot weather
climate in southern Quebec.

5.  SUMMARY AND CONCLUSIONS

In the present paper, a stochastic point process
approach is proposed for modeling the occurrence of
HWEs and their characteristics. A generalized com-
pound Poisson process (i.e. CPPG model) is formulated
to model various characteristics of HWEs (i.e. fre-
quency of occurrence and duration of HWEs, including
distributions of the longest duration and number of
hot days) observed during the June–August summer
period at 3 different locations in southern Quebec that
exhibit quite contrasting features. The choice of the
stochastic point process approach rests completely on
its ability to adequately describe various component
processes, with little physical justification. The gener-
alization of the compound Poisson process is achieved
by randomizing the mean rate of occurrence parame-
ter using a gamma distribution to model over-disper-
sion in the occurrence process. The use of the gamma
distribution is natural in that the resulting generalized
model reduces to the original model as a limiting case.
The single-parameter exponential and logarithmic dis-
tributions are analyzed to model HWE durations
because of their simplicity. Other distributions with >1
parameter are not investigated in the present study,
and could be considered in future studies. HWEs are
defined using the notion of threshold exceedances on
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the basis of various combinations of Tmin and Tmax

thresholds. The usefulness of both arbitrarily chosen
thresholds and those based on higher percentiles of
the period of recorded Tmin and Tmax observations is
demonstrated. Although thresholds that are arbitrarily
chosen but reasonably high are useful for a single loca-
tion, percentile-based thresholds may be a preferred
option for regional analysis. From the various analyses
presented in this study, the following conclusions and
 recommendations can be made: 
• The CPPG model with the logarithmic distribution for

durations of HWEs describes the HWE occurrence
and duration processes and the number of hot days
better than the CPPG model with the exponential dis-
tribution for duration of HWEs when assessed on the
basis of the Kolmogorov-Smirnov and chi-squared
goodness-of-fit tests. Just 3 estimated parameters, 2
for the occurrence of HWEs and 1 for their durations,
not only describe adequately the 2 basic component
processes, but also the distributions of the number of
hot days and of the longest durations of HWEs. The

CPPG modeling framework is clearly advantageous
according to the principle of parsimony.

• Various components of the hot weather climate in
Montreal, on which a complete validation of the
CPPG model is presented, are found to be stationary
on the basis of the non-parametric Mann-Kendall
and Spearman rank correlation tests. Therefore, the
non-stationary framework introduced in the present
study is demonstrated using HWE characteristics
derived from homogenized observations of Tmin and
Tmax recorded at 2 other locations in southern Que-
bec: Les Cedres and La Tuque. From a set of 5 non-
stationary candidate models, the one with a linear
time trend in the mean rate of occurrence of HWEs is
found to be the most suitable model on the basis of
AIC model selection criteria for both Les Cedres and
La Tuque.

• It is anticipated that as a result of changing tempera-
ture regimes, the frequency of occurrence or severity
of hot weather spells or both could change. The struc-
ture of the developed CPPG model is quite flexible, to

197

Les Cedres

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1940 1950 1960 1970 1980 1990 2000

0

2

4

6

8

5 d (S)
7 d (S)
3 d (NS)
5 d (NS)
7 d (NS)

La Tuque

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1940 1950 1960 1970 1980 1990 2000

0

2

4

6

8

Les Cedres

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1940 1950 1960 1970 1980 1990 2000

0

2

4

6

8
3 d (S) La Tuque

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1940 1950 1960 1970 1980 1990 2000

0

2

4

6

8
E

xc
ee

da
nc

e 
pr

ob
ab

ili
ty

O
bs

er
ve

d 
lo

ng
es

t d
ur

at
io

n 
(d

)

Fig. 9. Time evolution of exceedance probabilities for the 3 longest durations (3, 5 and 7 d) of hot weather events, obtained with
stationary (S) and non-stationary (NS) models for Les Cedres and La Tuque. Observed values for the longest durations are shown 

with open circles (right axis)

Les Cedres

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1940 1950 1960 1970 1980 1990 2000
0

2

4

6

8

10

12

14
5 d (S)
7 d (S)
10 d (S)

5 d (NS)
7 d (NS)
10 d (NS)

La Tuque

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1940 1950 1960 1970 1980 1990 2000
0

2

4

6

8

10

12

14

16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1940 1950 1960 1970 1980 1990 2000
0

2

4

6

8

10

12

14

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1940 1950 1960 1970 1980 1990 2000
0

2

4

6

8

10

12

14

16

E
xc

ee
da

nc
e 

pr
ob

ab
il

it
y

O
bs

er
ve

d 
nu

m
be

r 
of

 h
ot

 d
ay

s

Fig. 10. Time evolution of exceedance probabilities for the 3 selected values for the number of hot days (5, 7 and 10) in
the June–August summer period, obtained with stationary (S) and non-stationary (NS) models for Les Cedres and La Tuque. 

Observed values for the number of hot days are shown with open circles (right axis)



Clim Res 47: 187–199, 2011

accommodate both of these aspects in terms of time-
dependent model parameters; hence, it could be a
useful tool for developing probabilistic information
about the behavior of hot weather spells for a smaller
or larger spatial domain.

• Occurrence of HWEs is a regional mechanism. There -
fore, small homogeneous regions based on some
phys ical factors or purely based on statistical
approaches (see, for example, Hosking & Wallis
1997) could be defined, and regional averaged time
series of the 2 component processes of the CPPG
model could be derived for a regional analysis.
Future studies could consider this extension of the
model. Furthermore, the non-stationary framework
proposed is quite  general. It could be extended fur-
ther by including indices of large-scale atmospheric
circulations in the parameters of the distributions of
the number of HWEs or durations of HWEs as co -
variates. This will help develop non-stationary and/or
non-identical frequency analysis procedures in a
similar manner as for other hydrometeorological vari-
ables (see, for example, Katz et al. 2002, Khaliq et
al. 2006b).

• The intensity aspect of HWEs is taken into con -
sideration by using various thresholds with increas-
ing magnitudes. However, if the interest lies in
 modeling magnitudes of exceedances, then that can
be achieved by extending the univariate approach
(described in Katsoulis & Hatzianastassiou 2005 and
Furrer et al. 2010) to a multivariate setting, in order
to model exceedances of both daily minimum and
maximum temperature thresholds. Compared to the
intensity aspect, modeling seasonality of hot weather
spells over the summer season is a challenging task.
One possible solution would be to concentrate sepa-
rately on small seasonal time windows.
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Appendix 1. Distribution function of the number of hot days for the compound Poisson process model

If X is assumed to follow the discrete logarithmic distribu-
tion then the conditional probability P (M = m |N = n) can be
derived from the probability generating function (pgf) of X,
which is given by Kendall & Stuart (1977, p. 139) as:

(A1)

Given N = n, the conditional distribution of M is the sum of
n independent random variables. The pgf of M is the n-fold
convolution of G(s), i.e.:

(A2)

Using the standard theorems of combinatorial mathematics
(Abramowitz & Stegun 1965, p. 824), the second term on
the right-hand side of Eq. (A2) can be transformed in terms
of Stirling’s numbers of first kind, i.e. the pgf of M can be

written as:

(A3)

where SNF n
j is the Stirling’s number of the first kind. In the

expansion of the pgf, Eq. (A3), as a power series in s, the
P (M = m |N = n) is given by the coefficient of s j (see Medhi
2002, p. 7). Thus:

(A4)

After some algebraic manipulations, the unconditional
probability, P (M = n), in the case of the basic compound
Poisson process, i.e. when Eq. (1) is applicable, and in the
case of the CPPG model can be derived from Eq. (A4). Cor-
responding expressions are provided in Eqs. (9) and (10),
respectively, in the main article.
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