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1.  INTRODUCTION

The effect of projected climate change on precipita-
tion is an issue of current interest (Kharin & Zwiers
2000), especially the prediction of changes in the oc-
currence of extreme rainfall and drought for agricul-
tural and environmental applications. However, cur-
rent climate models do not adequately reproduce the
probability distribution of precipitation (Ebert 2001,
Wilson & Toumi 2005, Perkins et al. 2007). The prob-
lem is intrinsic to the irregular nature of rainfall, and
reflects the limitations of climate models and the con-
straints imposed by computation time required.

The rainfall probability distributions are very asym -
metrical: for most weather stations, the maximum
probability of daily rainfall is zero; thus, the empirical
density function decreases as rainfall increases. Even
if we complete the domain of the function of proba-
bility with evaporation as a mode of nega tive precip-
itation, distribution would still be asymmetric. This is
because the potential evaporation rarely reaches

20 mm in 1 day at most stations worldwide (McGuin-
ness & Leslie 1972, Granger 1989, Jeeva nanda Reddy
1995), although values >50 mm in 1 day are recorded
quite frequently in some countries  (Cerveny et al.
2007). A particular problem of the Mediterranean cli-
mate is that extreme precipitation is frequent. These
factors hinder fitting the prob ability distribution to
daily  precipitation.

Thus, the commonly used models (Generalized
Extreme Value [GEV], Generalized Pareto Distribu-
tion [GPD], Gamma, Gumbel, Weibull) do not fit the
overall variation of daily precipitation (very low and
very high precipitation in the same fit) (Bridges &
Haan 1972, Öztürk 1981, Etoh et al. 1986, Begueria
2005). All of these models use 2 or 3 parameters;
hence, it may be necessary to use probability models
with more parameters (Park & Jung 2002, Hanson
& Vogel 2008).

The objective of this study was to present an alter-
native model for the probability distribution of daily
precipitation (including days without rain and with
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rainfall <0.1 mm). The new model aims to charac -
terize and correct the probability distribution of a
generic set of daily precipitation data. This is an
important requirement for improving the systematic
correction of dynamic and statistical downscaling
(Kysely 2002). This model should also improve the
calibration of operational weather models and other
tools for prediction and analysis of precipitation, such
as weather radars.

2.  DATA AND METHODS

2.1.  Study area

The study area consisted of Spain, including the
Canary and Balearic Islands (Fig. 1). The prevailing
climate in Spain is Mediterranean, although other
climatic conditions can be found regionally, includ-
ing oceanic (in the north of the Iberian Peninsula),
mountain (in the Sierra Nevada and Pyrenees), and
dry subtropical climates (in the Canary Islands). Spain
has a varied climate due to its geographical location
and characteristics of the terrain. The Iberian Penin-
sula is located within the influence of the polar jet
waves, or Rossby waves, and it is also occasionally
affected by the subtropical jet stream (Alves & Ver -
dière 1999, Peliz et al. 2002).

Therefore, climatic conditions are heterogeneous;
e.g. annual rainfall ranges from 150 mm in the south-

east of Andalusia to 2500 mm in the northeast of
the Basque Country, which has an oceanic climate
(Capel-Molina 2000). The latter is characterized by
regular precipitation throughout the year (in some
places, with >50% of days experiencing rainfall). In
contrast, the Mediterranean climate is characterized
by dry summers and heavy rainfall concentrated in
a few days (Lana et al. 2004, Martín-Vide 2004),
especially in autumn and spring. In Spain, the num-
ber of days with precipitation usually ranges be -
tween 10 and 30% over the year, although it can
attain values <10% in July, and in some cases, >50%
in April (Capel-Molina 2000). For these reasons,
Spain is a suitable pilot area for testing the methodo -
logy developed in the present study.

2.2.  Precipitation data

The daily precipitation data used in this study were
obtained from 108 stations with daily resolution from
the State Meteorological Agency of Spain (AEMET)
(Fig. 1). The selected time series have a length of at
least 20 yr and 90% of days with records. Among
these stations, 62 had a time series of >50 yr and 98%
of days with records. The data showed a high fre-
quency of negligible precipitation, between 0.6 and
16% of days with <0.1 mm rainfall. These values
were changed to 0, and hence, the study took into
account that the zeros actually represent the class of

(0, 0.1) mm. In addition, some erroneous
daily values (accumulated for several
days) were found in the series analyzed;
they constituted <0.1% of the series. Out-
liers were not found among these values,
and hence did not affect the statistics. In
these cases, the accumulated totals were
divided by the corresponding number of
days.

2.3.  Models

For this study, the probability for each
station was analyzed separately. If P is any
precipitation and p is precipitation greater
than P, then the cumulative probability
π(p ≥  P) is defined as the probability that
a station or group of stations registers a
daily precipitation greater than the rainfall
threshold P on a day of the year or of a par-
ticular month. The occurrence frequency
for each rainfall threshold, P, can be esti-
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Fig. 1. Location of the meteorological stations used in this study and the
annual precipitation for the period 1950−2000, interpolated with Thin-

Plate spline method
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mated by counting the records of daily rainfall of the
station or a set of stations, and the cumulative proba-
bility π(p ≥  P) is estimated with the normalized sum of
those frequencies. The return period T or expected time
(in days) between 2 precipitation events with p ≥ P
is given by the inverse of the cumulative probability:

(1)

To fit the probability of daily precipitation (of a full
year or a particular month), first we tested the com-
monly used models: GEV, Pareto and GPD, Gamma,
Gumbel, Weibull, Exponential and Log-normal II and
III (Bridges & Haan 1972, Öztürk 1981, Etoh et al.
1986, Begueria 2005). Second, other models were
also tested, such as modified versions of GEV (Eq. 2)
and Gumbel (Eq. 4).

(2)

(3)

where ε, w, and k are parameters to be estimated and
λ is the relative precipitation, which depends on a
parameter P0, ‘the most probable precipitation’, as
well as a normalization parameter, P1:

(4)

Therefore, the cumulative probability of the occur-
rence of precipitation p ≥ P satisfies the same prob -
ability distribution (Eq. 2), i.e. π(p ≥ P) = π(λ0 ≥ λ)
where λ0 = (p – P1)�P1. As an alternative, we propose
another function of accumulated probability π(λ):

(5)

where w is a ‘shape’ parameter, k is the ‘smoothness’,
and w, k > 0 (see Appendix 1), and λ is the relative
pre cipitation (λ > 0, i.e. P0 ≤ 0 and P1 > 0). It must be
noted that we can make a change of variables as r ≡
e−k, although we prefer to use k, because it is a para-
meter that varies more smoothly than r. Hence, 4
parameters for the return period (with Eqs. 1, 4 & 5)
were used:

(6)

where P1 is a ‘scale’ parameter, and P0 is a ‘location’
parameter. P0 represents the minimum value (return
period = 1 d). P1 is defined as an amplitude that
 indicates the difference between the expected pre-
cipitation in 2 d, P2, and the minimum value P0, i.e.
P1 ≡ P2 − P0. The inverse of Eq. (6) can be approxi-

mated to the Pareto distribution for short intervals
(see Appen dix 2).

In addition, from Eq. (6), it is possible to construct a
series of the return period of each value of daily pre-
cipitation. This resulting series is henceforth called
return-period series (RPS). This process is called total
standardization, as opposed to partial standardiza-
tion, which is defined as the process of generating an
RPS with parameters extracted from a portion of the
total length of the time series.

To estimate the parameters for all the functions,
we used maximum likelihood inference, in par -
ticular, the Profile Log-Likelihood (PLL) approach
(Raue et al. 2009). However, the quantity mini-
mized into PLL was not exactly the square of the
difference between the empirical probability (π)
and the probability predicted by the model fit (π’).
These were normalized by the empirical probability
(both π and 1 − π, in  particular with [1 − π]π) to
minimize the error at the tails of the probability
distribution.

To compare the goodness-of-fit of the models, we
used the measure of the Normalized Mean Absolute
Error (NMAE) and the Akaike Infor mation Criterion
(AIC). The NMAE is a better index than the others for
precipitation because it compares the relative errors
for the lowest and highest precipitation. The model
with the lowest AIC is that which best fits to the
dataset (Akaike 1974, Burnham & Anderson 2002).
In addition, to compare the probability distribution
of daily precipitation predicted by the models and
the observed precipitation distribution, 2 tests were
employed: the Bootstrap Kolmogorov-Smirnov test
(Marsaglia et al. 2003, Sekhon 2010) and the Ander-
son-Darling test (Scholz & Stephens 1987). As the
precipitation data showed many ties, we used an
estimation of p-value adjusted for ties in the Ander-
son-Darling test and bootstrap resampling in the Kol-
mogorov-Smirnov test (Sekhon 2010). Statistical ana -
lysis of the data was done by using the R-language
(Muenchen & Hilbe 2010, R Development Core Team
2010).

3.  RESULTS

First, the commonly used models (GEV, Pareto and
GPD, Gamma, Weibull, Gumbel, Exponential Log-
normal II and III) and the 3 proposed models (Modi-
fied GEV, Modified Gumbel, and alternative model)
were fitted to the empirical distributions of the daily
precipitation data for every month of the year and
station. Fig. 2 shows the empirical and theoretical
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Fig. 2. Examples of cumulative probability and return period, according to the empirical values and several models fitted, for 3
stations with different climates: (a,b) Tenerife-Los Rodeos (subtropical climate); (c,d) A Coruña (oceanic climate); (e,f) 

Navacerrada (mountain climate)



Moncho et al.: Precipitation probability distribution

distributions for stations corresponding to the 3
Spanish climate types: A Coruña (Galicia) has an
oceanic climate, Tenerife-Los Rodeos (Canary Islands)
a subtropical climate, and Navacerrada (Madrid) a
mountain climate. In most cases, the modified Gum-
bel and alternative models fit the high and low pre-
cipitation better than the other models. On the other
hand, the Log-normal III and Gen eralized Pareto
 distributions fit low precipitation better than high
precipitation.

The NMAE was obtained by comparing observed
and modelled precipitation for all stations and
months. Application of the Gumbel, GEV,  Log-
normal II, and Pareto distributions produced a total
NMAE of >1 for most of the stations, especially for
the highest and lowest rainfall; therefore, these mod-
els were discarded. However, all the other  models
showed NMAE of <1 for all values of precipitation
and for all stations, except for the Weibull model,
which produced high NMAE for some stations (Fig.
3a). The modified Gumbel and alternative model
produced the best NMAE (<0.10), while the other
models, such as Log-normal III, GPD, and Modified
GEV had an NMAE generally between 0.10 and 0.20
(Fig. 3a). The AIC indicated that the alternative
model is often better (Fig. 3b). Fig. 4 shows the AIC
for 3 stations (Igeldo, Valencia and Prat), which indi-
cates that in most of the months, the alternative
model fits better than the Gumbel model.

Finally, a comparison of the goodness-of-fit of the 2
best models (the modified Gumbel and alternative
models) was undertaken using Kolmogorov-Smirnov
and Anderson-Daring tests (Fig. 5). The comparison
shows that in both models observed and predicted
precipitation do not differ significantly; in some cases,
the alternative model fit better than the modified
Gumbel Model. The fit was worse for the summer
months, partly due to the relatively few days that
experience precipitation.

4.  DISCUSSION

4.1. Advantages and limitations

This study has focused on the examination of the
complete distribution of daily precipitation variation,
instead of investigating the probability of a specific
statistic (e.g. maximum) of daily precipitation in a
month or a year (e.g. Bridges & Haan 1972, Etoh et al.
1986, Durman et al. 2001, Eslamian & Feizi 2007).
Some authors have investigated wider ranges of
probability of daily precipitation above a specified
threshold (Wilson & Toumi 2005). However, the stan-
dard probability functions cannot accurately fit the
entire range of precipitation, from the frequency of
days without precipitation to the frequency of high-
est extremes. This is because usually the probability

27

Fig. 3. Comparison of the Normalized Mean Absolute Error (NMAE) of the predicted precipitation versus the observed empir-
ical distribution function, for the set of 108 stations, applied to (a) annual precipitation: Gamma, Weibull, Exponential, Log-
normal III, Generalized Pareto Distribution (GPD), Modified Generalized Extreme Value (M. GEV), Modified Gumbel and
 alternative models; (b) monthly precipitation: modified Gumbel and alternative models. Horizontal line: median; box: 25th and 

75th percentiles; whiskers: 5th and 95th percentiles
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function uses 2 or 3 parameters, which appears to be
insufficient to fit the observed data (Hanson & Vogel
2008). The alternative model of probability devel-
oped in this work can accurately represent the entire
range of probability of daily precipitation (e.g. Figs. 2
and 6) because it uses 4 parameters.

Fig. 6 is an example of the cumulative probability of
monthly precipitation at the Prat station (Barcelona).
The fitted line corresponds to the alternative model.
The fit was made for all values of precipitation, except
for the 2 highest and the 2 lowest values; thus,
extreme values fit well even if they are ex cluded from
the determination of the parameters (NMAE = 0.15). If
we represent all standardized absolute errors through-
out the year (Fig. 7), the normalized absolute error
is similar for all scales of precipitation, except for the
minimum measurable value (0.1 mm).

28

Fig. 4. Comparison of the monthly AIC of the fits to Modified Gumbel and alternative models of accumulated probability for 3 
stations: (a) Igeldo (Gipuzkoa); (b) Valencia (Valencia); (c) Prat (Barcelona)

Fig. 5. The p-values corresponding to (a) Kolmogorov-Smirnov test with bootstrap resampling and (b) Anderson-Darling test
with adjustment for ties, comparing the observed and predicted precipitation using modified Gumbel and alternative models.
Grey horizontal line: threshold value of p = 0.05. Black horizontal line: median; box: 25th and 75th percentiles; whiskers: 5th 

and 95th percentiles
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However, the use of 4 parameters can lead to diffi-
culties in estimation by computer algorithms, be -
cause it requires the initial values to be very close to
the best estimates of the parameters. If not ade-
quately initiated, the algorithms can produce poor
fits. However, the great flexibility of the alternative
model can cause significant differences in the fits to
similar datasets. Therefore, there may be some inter-
dependence between the parameters, which sub-
tracts robustness from the interpretation or compari-

son between different settings. For example, in this
work, a correlation between P0 and P1 is found, with
R2 = 0.49, and between w and log(P1) with R2 = 0.60,
which indicate interdependence. In some cases, other
models are superior to the proposed alternative model.
This is true especially for dry conditions, for which
the modified Gumbel some times provided better
results (e.g. see Fig. 3b in August and October).

On the other hand, an important advantage of
this methodology is that it can completely transform
a series of daily rainfall into a series of probabil-
ity: RPS. An RPS is a ‘naked’ time series, i.e. infor-
mation about the mean and variability of daily pre -
cipitation is contained in the monthly parameters
extracted. However, there is a percentage of vari-
ability, which is different between 2 RPS of equal
length, because some a priori factors are random.
This means that if 2 RPS are very long, then they
tend to be equal in terms of their probability distri-
bution, especially for similar climates. For example,
an RPS obtained with partial standardization (long
enough) will be similar to that obtained with total
standardization, except for small random events
related to the short length of the series. Another
percentage of RPS variability may be due to cli-
matic features; e.g. 2 sets of precipitation can have
the same probability distribution, although they
may differ in the prevailing duration of dry and
wet periods and alternation between them.

In addition, this model can be used
to characterize and correct the prob-
ability distribution of a generic set of
daily precipitation data. Its use could
introduce improvements in the sta-
tistical downscaling of climate mod-
els (Widmann et al. 2003), and thus
im provements in predicting changes
in the precipitation regimes (Kid-
son & Thompson 1998, Perkins et
al. 2007). The model could also lead
to enhanced forecasting weather
models and improved calibration of
data obtained from weather radars
(Marks et al. 2011). To capture the
rainfall data containing zeros, some
authors have proposed using a mixed
 distribution (Smith et al. 2011). How-
ever, the mixed distribution is not
suitable, because it is not robust for
climatic analysis in other applications,
such as to correct precipitation dis -
tributions obtained from climate
 models.

Fig. 8. Monthly values of 4 estimable parameters of the alternative model (P0,P1,
w, and k ) applied to 108 stations in Spain. Horizontal line: median; box: 25th and 

75th percentiles; whiskers: 5th and 95th percentiles
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4.2.  Climatic relationships

Some of the 4 parameters estimated for the alterna-
tive model exhibit seasonal cycles. Fig. 8 shows this
property, especially for the ‘scale’ (P1) and ‘smooth-
ness’ (k). Logically, the ‘scale’ of the probability dis-
tribution is lower and the ‘smoothness’ is higher for
drier months. This means that the probability of low
rainfall is highest for summer. However, the ‘shape’
parameter (w) is slightly lower in summer, which
implies a higher probability of extreme rainfall. This
is consistent with the characteristics of a Mediter-
ranean climate.

Accordingly, a correlation between the monthly
‘scale’ (P1) and the daily average precipitation (Pday)
was found, with R2 = 0.63 and slope of 0.6 ± 0.1
(Fig. 9a). When this ratio was extracted from the
‘scale’ parameter (P1), we observed a higher correla-
tion with the ‘shape’ (w). In particular, we found that
w is approximately equal to b · (P1/Pday)c, where b =
1.1 ± 0.1 and c = 0.34 ± 0.05, with R2 = 0.90 (Fig. 9b).
This function relates the shape of the probability dis-
tribution and the ratio between the scale and average
precipitation. In other words, the average precipita-
tion can be simulated using the relation Pday ~ P1 ·
(b/w)1/c, which is simpler than the theoretical expres-
sion of the average (see Appendix 1).

A new probability model should be applicable to
various climates, not only to the Mediterranean. In
this sense, the seasons in Spain may represent differ-
ent climates; e.g. the summer of coastal Mediter-
ranean climate is similar to the desert climate, spring
is similar to oceanic climate, and the winter of the
continental-Mediterranean climate could be similar
to cold climates. Therefore, the fit of the alternative
probability model for the different months of the year

suggests a good performance for different climates.
In fact, most of the stations studied in Spain, repre-
senting the ocean, mountain, and subtropical cli-
mates, were adequately modeled (Figs. 2 & 3). The
alternative model works better for wet climates,
because the empirical probability distribution shows
a low random error, and thus, it appears to be a func-
tion with very regular derivatives.

5.  CONCLUSIONS

Most of the widely used distributions for daily pre-
cipitation data (GEV, GPD, Gamma, Gumbel, Wei -
bull, Exponential and Log-normal) were unable to
precisely fit the entire range of daily precipitation,
including the days without rain. It was therefore nec-
essary to use models with 3 or 4 parameters, and we
tested 3 models: a modified Gumbel and the GEV,
and an alternative model. The alternative model
with 4 parameters produced the best results for most
of the stations, with a mean absolute error of <10% in
most of the stations analyzed, and its performance
was similar for all scales of precipitation. The fit was
poor for summer months, due to the few days of pre-
cipitation. Thus, the alternative model might work
best for wet climates. The model can be used to char-
acterize the seasonal cycles of precipitation; hence, it
can also be used to correct the probability distribu-
tion of a generic set of daily precipitation.
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Fig. 9. (a) Relationship between ‘scale’ parameter (P1) of the annual fit and the daily average precipitation (Pday). (b) Relation-
ship between ‘form’ parameter and the ratio P1/Pday
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From Eq. (4), we can deduce that the probability density
function, f(λ; w, k), is given by:

(A1)

where w is the shape parameter and k is a smoothness
parameter, while λ is the relative precipitation defined in
Eq. (3). In Figs. A1 & A2, the parameter k is only related to
the probability of medium and high values of λ, while w is
related to the shape of all curves of the probability density.
Parameters w and k and the variable λ are defined as
always positive.

Some statistical characteristics are described as follows.
For high values of w, the form of probability density func-
tion is similar to the Gaussian curve (see Fig. A1), with mean
μ ≈ 1. This is because, if k >> 1, Eq. (A1) corresponds ap -
proximately to the log-logistic distribution (Ashkar & Mahdi
2006). Therefore, the mean will be similar; in particular:

(A2)

where g (w, k) is a smooth function that tends to 1 for high
values of w and k. The mean of λ is approximately (π/w)g

for low values of w. On the other hand, the derivative of
Eq. (A1) shows that the mode is a nonlinear function of w
and k; however, it is always between 0 and 1, and the
influence of k is very low. For this reason, the mode can be
approximated by the log-logistic mode (McLaughlin 2001):

(A3)

where mod(λ) is the mode of λ.
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Fig. A1. Examples of the probability density curve, with k = 2 and w = 0.5 to 10, and with w = 1 and k = 0.5 to 10
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Eq. (4) has no explicit inverse, and therefore, it is neces-
sary to use programmed algorithms or find an approximate
inverse function:

(A4)

where m(T − 1) is an adjustable function of (T − 1), where
T is the return period. For short intervals of periods,
Eq. (A4) can also be approximated by the Pareto distribu-
tion (Hardy, 2010), according to:

(A5)

where P0 and m0 are the estimable parameters. For a par-
ticular rainfall event, we can consider the duration as an
expected time for a given rainfall accumulation in the
 context of the event. Thus, it is possible to approximate

the temporal distribution of maximum accumulation to
another power distribution:

(A6)

where t is the duration, and P1 and h0 are the estimable
parameters. By adding the expressions (A5) and (A6), an
Intensity-Duration-Frequency (IDF) curve is obtained (Ben-
Zvi 2009):

(A7)

where P(T, t) is the expected rainfall accumulation for a T-
return and t-duration, P0(T0, t0) is the expected rainfall
accumulation for a T0-return and t0-duration, and m0 and
h0 are the estimable parameters.
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