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1.  INTRODUCTION

Weather generators are commonly used in environ-
mental or financial studies as a way to simulate key
properties of observed meteorological records and
then produce long series of daily weather parameters.
Two main approaches can be found in those develop-
ments: weather generators are either based on ran-
domly pooling out analog days in a database of past
observations, or on statistically generating the desired
variables with a stochastic model whose parameters
are estimated on a database of past ob servations. The
advantage of the first approach is a better reproduc-
tion of the observed distribution, but the main draw-

back is that it cannot reproduce non-observed values.
Although the second approach is based on parametric
or semi-parametric definitions of the distributions, its
main advantage is its ability to produce physically
 realistic unobserved situations. This second approach
is preferred here, as the focus is on extreme events. 

Most efforts in weather generator developments
have been devoted to precipitation (see Wilks &
Wilby 1999 for a review). Precipitation is a crucial
para meter in many environmental studies and its
representation is complicated by its intermittent
nature. Here again, different approaches can be
found. Cowpertwait et al. (2007) proposed a model of
storm cells whose occurrence follows a Poisson pro-
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cess, during which rain cells occur as a secondary
Poisson process. Other generators are based on dif-
ferent daily states, from the simple dry and wet days
to more sophisticated weather type definitions, possi-
bly introduced as a hidden state variable using hid-
den Markov models (Ailliot et al. 2009, Sansom &
Thompson 2010). Furthermore, following Richardson
(1981), weather generators are developed to simulta-
neously represent precipitation and other variables
like temperature (daily minimum and maximum),
solar radiation, or wind, for use in agricultural stud-
ies. Such models are increasingly used to downscale
global climate model results in impact studies (Wilks
1992, Semenov & Barrow 1997, Wilks & Wilby 1999,
Hansen 2002, Kyselý & Dubrov ský 2005, Semenov
2008) because they allow changes in variability to be
taken into account. The interest in extremes further
motivates the use of such models; however, they gen-
erally must be improved to adequately reproduce
extreme events (Furrer & Katz 2008). Semenov (2008)
showed that if precipitation extremes are reasonably
well represented by a Richardson type generator
(called LARS-WG), temperature extremes are gener-
ally not, because the normality assumption used for
the residuals is not universally true. Even with the
use of weather types and skewed normal distri -
butions (WACS-Gen), Flecher et al. (2010) reported
 difficulties in reproducing extreme events.

Stochastic temperature models are also used in the
framework of weather derivatives. Weather deriva-
tive products provide protections against ‘weather
risk,’ that is against the unpredictable component of
weather fluctuations, called ‘weather surprises’ or
‘weather noise.’ This thus necessitates some knowl-
edge of this ‘weather noise’ over space and time,
which motivated the development of stochastic mod-
els (Campbell & Diebold 2005, Mraoua & Bari 2007,
Benth & Saltyte-Benth 2011).

Extreme events are important for industrial adap-
tation, e.g. for the design and operation of installa-
tions, such as dams designed to withstand extreme
flood events, or overhead lines designed to withstand
storms. Our goal is then to propose a temperature
 generator able to correctly reproduce temperature
ex tremes. The general principle of such stochastic
models, whatever their usage, consists of modeling
the temperature (daily maximum, minimum, or
mean) as the summation of a deterministic part and a
stochastic process, designed to represent the random
fluctuations around the mean:

X(t) = Λ(t) + Φ(t)Z(t) (1)

where Λ(t) and Φ(t) are deterministic and Z(t) is sto-

chastic. Λ(t) contains at least a seasonal component,
and usually also a trend component. Φ(t) is most often
1. The stochastic part generally presents an autore-
gressive structure, more or less sophisticated: from a
first-order auto-regressive (AR1) to a general auto-
regressive conditional heteroscedastic (GARCH).
For the proposed model, our basic idea comes from
a preliminary analysis of the correlations and espe-
cially from the shape of the conditional variance of
Z(t) when Z(t − 1) is fixed. In particular, this con -
ditional variance drastically decreases outside of a
bounded interval. This leads to the use of a functional
auto-regressive conditional heteroscedastic (FARCH)
mo del, the simplest one able to take this behavior
into account. FARCH processes are the first-order
Euler scheme approximation of the discrete Markov
chain given by the sequence of discrete observations
of a diffusion. Furthermore, the coefficients (drift and
diffusion) of the diffusion are those of the FARCH
process. Thus we are led to consider temperature as
a continuous time process with continuous trajecto-
ries. If X(t) can be assumed as Markovian, then the
continuous time process is a diffusion. The Markov-
ian property can be tested. This mathematical justifi-
cation is coherent with the physical interpretation of
the heat equation as a diffusion of the thermal energy
but also with more general considerations on nonlin-
earity and stochasticity which can be found in Sura
(2012). The building of the model is based on discrete
temperature observations at a given time interval, for
instance every day, and the diffusive property has
to be translated in this restrictive framework. The
obtained seasonal functional heteroscedastic auto-
 regressive (SFHAR) model, with careful treatment of
the ex treme upper and lower bounds, is de scribed
in detail by Dacunha-Castelle et al. (2013) and briefly
reviewed in Appendix 1. Here we focus on the vali-
dation of the model for different climates in Eurasia
and the USA and propose a possible application in
the climate change context. The model is calibrated
on temperature time series starting in 1950 for the
USA and Eurasia. It simulates the residuals after
accounting for seasonalities and trends in mean and
 variance.

After a brief description of the model and the pres-
entation of the temperature time series in Section 2,
Section 3 is devoted to the validation of the model for
different climates. In Section 4, the model is cali-
brated on the first part of the observed time series,
and then different strategies are tested and validated
to simulate the second part, warmer on average than
the first one. Discussion and perspectives are pro-
posed in Section 5.



Parey et al.: Temperature generator, extremes, and climate change 63

2.  MODEL AND OBSERVATIONS

In the following, X(t) is the observed temperature
time series (either daily minimum or daily maximum
temperature), m(t) its mean trend, Sm(t) the seasonal-
ity of the mean, s2(t) its variance trend, Sv(t) the sea-
sonality of the variance, and Z(t) the modeled resid-
ual time series.

2.1.  Brief description of the model

2.1.1.  Pre-processing

As stated before, the model is designed to simulate
the residuals Z(t) from a temperature time series X(t)
after accounting for seasonalities — (Sm(t) and Sv(t)) —
and trends — (m(t) and s(t)) — in mean and standard
deviation. The first step is then to identify and re -
move these deterministic parts from X(t) to obtain
Z(t). This is done through the following succession of
steps:

(1) Estimation of the seasonality of X(t): 

(2) Estimation of the trend from the time series

(3) Estimation of the seasonality of the variance

from 

(4) Estimation of the trend from the time series

(5) Finally, the residuals are estimated as

(2)

Quantities with a hat (^) correspond to estimations.
The identification of seasonality is based on the fit-
ting of a trigonometric function of the form: 

, 

where θ is the parameter of the function to be esti-
mated and the number p of trigonometric terms is
chosen through an Akaike criterion. This parametric
identification has been compared to the nonpara -
metric seasonal trends decomposition method (Cleve-
land et al. 1990), and both approaches have been
found very similar.

The trend identification is conducted in a non para-
metric way by using the LOESS technique (local re -
gression, Stone 1977). The LOESS estimator is ob -
tained by locally fitting a dth degree polynomial to
the data via weighted least squares. Throughout this
work, the local linear fit is used, which means d = 1.

This method implies the choice of a smoothing para -
meter, which controls the balance between good ness
of fit to the data and smoothness of the regression
function. The smoothing parameter is ob tained
through an automated selection. This selection is dif-
ficult here as the data are correlated, non-stationary,
and heteroscedastic. The modified partitioned cross-
validation technique proposed by Hoang (2010) is
used. It is based on the classical partitioned cross-val-
idation technique of Marron (1987): the observations
are partitioned into g subgroups by taking every gth
observation, for example the first subgroup consists
of the observations 1, 1 + g, 1 + 2g,…, the second sub-
group consists of the observations 2, 2 + g, 2 + 2g, ….
The observations in each subgroup are then inde-
pendent for high g. Chu & Marron (1991) de fined the
optimal asymptotic bandwidth for partitioned cross
validation in the case of constant va riance as

, with h0 estimated as the minimizer of

(3)

where CV0,k is the ordinary cross-validation score for
the kth group. This approach has been modified to
take hetero scedasticity into account. The optimal g
then corresponds to the minimum of a more compli-
cated ex pression (Hoang 2010), and in practice, it is
preferred to estimate hMPCV (the optimal bandwidth of
the modified partitioned cross validation) for different
values of g and to retain the values of g for which hM-

PCV is not too bad (i.e. not too close to 0 and not higher
than 0.7). For each g, the trends m and s are estimated
by LOESS with bandwidth to obtain an estima-
tor of the expression to minimize. The value of g cor-
responding to the minimum value is retained, giving
the corresponding optimal bandwidth hMPCV.

The order of estimation of seasonality and trend is
not important, as estimating trends first and then sea-
sonality leads to similar results for Z(t). The proce-
dure is illustrated in Fig. 1.

Careful studies of Z(t) have shown that although
seasonality has been removed from the mean and
variance, some seasonality remains in the higher-
order moments, such as skewness and kurtosis of Z(t)
and in its autocorrelations. However, no significant
re maining trends could have been found in high-
order moments, autocorrelations, or extremes of Z(t).

2.1.2.  Model for Z(t)

The proposed model is described in detail by
Dacunha-Castelle et al. (2013) and summarized in
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Appendix 1. The first step is to estimate the extremes
of Z(t). The upper and lower bounds r1 and r2, to -
gether with the corresponding shape parameters ξ1

and ξ2, are estimated by fitting a generalized ex -
treme value (GEV) distribution to the minima and the
maxima of Z(t), respectively. The extremes of Z(t) do
not show any clear seasonality, and the fitting is done
with 73 d blocks (5 blocks yr−1). Sensitivity tests on
the choice of block length showed that the results do
not significantly differ. The shape parameter is nega-
tive, thus the distributions are bounded. However, if
it is too close to 0, the simulation may be problematic.
If this happens, it is advised to slightly change the
block length in order to get a better estimate of this
parameter.

The proposed model is then justified. It consists of a
modification of a SFHARl of the form:

, εt (4)

being a normal distribution with 0 mean and unit
variance, and:

(5)

p1 being chosen by an Akaike criterion, because sea-
sonality re mains in the autocorrelation, and a is esti-
mated as a degree 5 trigonometric polynomial:

(6)
under constraints

; (7)

and , with p2 chosen by an Akaike crite-
rion, r1 and r2 being respectively the lower and upper
bound of the extreme value distributions of Z(t), and
ξ1 and ξ2 the corresponding shape parameters. The( ) ( 1) ( , ( 1))Z t bZ t a t Z t t= − + − ε
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Fig. 1. Illustration of the derivation of the residuals from an observed daily temperature time series (Biarritz-Anglet, France,
1956−2009). (a) Original time series (X, top), its seasonality (SX, middle), and trend (m, bottom), (b) time series of variance (top), 

its seasonality (middle), and trend (bottom), and (c) obtained time series of residuals (Z)
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form of a and the constraints are given by the ex -
treme value theory of the continuous time process
(Davis 1982). In practice, the autoregressive part of
Z(t) is first estimated, then a is estimated from

by maximum likelihood with con-
straints.

Once the parameters have been estimated, as
many sequences of Z(t) as desired can be simulated
with the model. A sequence consists of a certain
number of years and each day t, Z(t) is computed
from Z(t − 1). The initial value is randomly selected
from the observed residuals. A condition is added to
insure that each Z(t) remains inside the limit bounds
r1 and r2: if the simulated value at time t exceeds the
upper bound or is lower than the lower bound, it is
disregarded and another value for Z(t) is computed
from Z(t − 1). This is equivalent to a modified model
where the distribution of εt is a truncated normal dis-
tribution whose truncation depends on the value of
Z(t − 1) (its values are and

). Thus the ob tained simulated
residuals are bounded.

Then a simulation of the initial temperature time se-
ries is obtained by re-introducing the estimated deter-
ministic parts . As an indica-
tion, 100 simulations of a 60 yr daily time series need
around 7 min of computing time on a standard laptop.

Compared to most generators found in the litera-
ture, our model differs in its bounded property and in
the careful retrieval of the smoothing parameter to
compute the nonparametric trends in both mean and
variance to obtain the simulated residuals. The main
consequence is thus that the length of the simulated
time series is at most that of the observed one used to
determine the trends. As many equivalent time series
as desired can be computed, giving a similarly rich
sample. The optimal smoothing parameter is linked
to interannual variability, which allows an indirect

consideration of this property of temperature time
series besides daily variance. Furthermore, the auto-
correlations are fully seasonal and the behavior of
the extremes is carefully introduced in the volatility
(or lag 0 auto-correlation) coefficients a(t). This is ex -
pected to substantially improve the ability of the
model to reproduce extremes, which will be exam-
ined in this paper.

2.2.  Observed time series

Model validation is conducted for different climates
in Eurasia and the US. For Eurasia, weather station
time series of daily minimum temperature (TN) and
daily maximum temperature (TX) are obtained from
the ECA&D project database. The project gives indi-
cations of homogeneity through the results of different
break identification techniques (Klein Tank et al.
2002). First, the series which could be considered as
homogeneous (stated as ‘useful’ in the database) over
the period 1950−2009 have been selected for both TN
and TX. Then, only the time series with less than 5%
missing data are kept, leading to 106 series for TX and
120 for TN (many TX series, mostly in Russia, have
missing values from 2007 onward, whereas the corre-
sponding TN ones have missing values only in 2009).

For the US, weather station TX and TN time series
are obtained from the Global Historical Climatology
Network − Daily Database (GHCN daily; Menne et
al. 2012). A similar selection procedure left us with 86
series for TX and 85 for TN.

Among these time series, 4 weather stations corre-
sponding to different climates, in terms of mean
annual temperature, have been chosen for each con-
tinent, as listed in Table 1. As stated before, the
weather station of Olekminsk in Russia cannot be
considered for TX as it exhibits too many missing val-

ues. No other station with a similar climate
to that of Olekminsk is available for TX.

3.  VALIDATION

For each of the 7 (for TX) or 8 (for TN)
temperature time series, the parameters of
the model are fitted over the whole period.
We then compute 100 simulations of the
model for each location, and the results
are compared to the observed time series
both for the representation of the bulk of
the distribution and of its warm and cold
extremes.

( ( ) ˆ ( 1))2Z t bZ t− −

r bZ t a Z t− − −( 1) ( ( 1))1

ˆ ( ), ˆ ( ), ˆ ( ) and ˆ( )S t m t S t s tm v

r bZ t a Z t− − −( 1) ( ( 1))2

65

Weather station TN                 TX
                               Period     Mean annual        Period    Mean annual 
                                                  mean (°C)                             mean (°C)

Biarritz                1956−2009        10.1           1956−2009        17.7
Berlin                  1950−2009        5.1           1950−2009        13.4
Petropavlovsk    1950−2009        −3.3           1950−2009        6.9
Olekminsk          1950−2009        −11.3                   −                   −
Death Valley      1962−2009        17.0           1962−2009        32.8
Charleston          1950−2009        15.4           1950−2009        23.0
Jacksonville        1950−2009        5.2           1950−2009        17.5
Glasgow             1950−2009        −0.7           1950−2009        12.5

Table 1. Temperature time series considered in this study, showing pe-
riod lengths and mean observed temperatures. TN (TX) daily minimum 

(maximum) temperature
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3.1.  Bulk of the distribution

Tables 2 & 3 summarize the comparison of the
mean, variance, skewness, and kurtosis of the distri-
butions of each temperature time series obtained
from the observations and from the 100 model simu-
lations (mean value and 95% confidence interval).
The results show that these different moments of the
observed distribution of daily maximum or minimum
temperature are correctly reproduced by the stochas-
tic simulations, although the higher moments are
sometimes less accurately reproduced. This good re-
sult may be linked to the domination of the annual cy-

cle, thus the seasonal distributions are also compared.
Fig. 2 shows the Q-Q plots of observed and simulated
winter and summer distributions of TN in Olekminsk
and TX in Death Valley. Similar results for the other
stations confirm that the model reasonably repro-
duces the seasonal temperature distributions.

Fig. 3 shows that the mean annual cycle, as well as
that of the standard deviation, is faithfully repre-
sented. Fig. 3 is for TN in Berlin and TX in Jack-
sonville, but similar results are found for each indi-
vidual time series. Kolmogorov-Smirnov tests were
applied to compare the distributions obtained for
each day of the year between observations on the

                   Mean           Variance      Skewness      Kurtosis
                               Obs            Sim                     Obs            Sim                     Obs            Sim                     Obs            Sim

Berlin                       13.4            13.4                   84.1          83.2                  −0.03          −0.02                  −0.78          −0.79
                                             (13.3; 13.5)                            (80.1; 85.9)                           (−0.06; 0.02)                         (−0.85; −0.72)

Biarritz                    17.7            17.7                    37.1          37.2                   0.07           0.05                   −0.06          −0.23
                                             (17.6; 17.8)                            (35.9; 38.7)                           (−0.01; 0.10)                         (−0.33; −0.10)

Petropavlovsk         6.9            6.9                    237.8          238.2                  −0.18          −0.16                  −1.03          −1.08
                                               (6.7; 7.1)                            (233.6; 243.9)                        (−0.18; −0.13)                        (−1.11; −1.05)

Olekminsk                 −                 −                         −                 −                         −                 −                         −                 −

Death Valley           32.8            32.8                    112.2          112.2                  −0.08          −0.07                  −1.19          −1.17
                                             (32.6; 32.9)                          (109.5; 114.8)                        (−0.10; −0.04)                        (−1.21; −1.11)

Jacksonville            17.5            17.4                    137.1          136.3                  −0.43          −0.39                  −0.82          −0.87
                                             (17.3; 17.6)                          (133.2; 139.7)                        (−0.41; −0.36)                        (−0.91; −0.82)

Glasgow                  12.5            12.5                    204.3          202.8                  −0.38          −0.33                  −0.59          −0.63
                                             (12.2; 12.7)                          (196.6; 208.7)                        (−0.37; −0.30)                        (−0.69; −0.58)

Charleston              23.0            23.0                    50.9          50.7                  −0.46          −0.41                  −0.48          −0.57
                                             (22.9; 23.1)                            (49.6; 52.0)                          (−0.44; −0.39)                        (−0.63; −0.51)

Table 2. Mean, variance, skewness, and kurtosis estimated from observed (Obs) and simulated (Sim) daily maximum temper-
ature (TX) time series. Simulations: values are mean with 95% confidence interval in brackets

                   Mean           Variance      Skewness      Kurtosis
                               Obs            Sim                     Obs            Sim                     Obs            Sim                     Obs            Sim

Berlin                      5.1          5.1                   49.1           48.5                   −0.36          −0.33                  −0.21          −0.28
                                               (5.0; 5.2)                              (46.4; 50.9)                          (−0.39; −0.26)                        (−0.48; −0.06)

Biarritz                   10.1          10.1                   30.2           30.1                   −0.35          −0.35                  −0.30          −0.31
                                             (10.0; 10.2)                            (29.1; 31.1)                          (−0.40; −0.31)                        (−0.41; −0.21)

Petropavlovsk        −3.3          −3.3                  196.6          196.7                  −0.41          −0.39                  −0.85          −0.87
                                             (−3.4; −3.1)                          (191.4; 202.9)                        (−0.42; −0.37)                        (−0.91; −0.81)

Olekminsk             −11.4          −11.3                  335.4          334.9                  −0.30          −0.29                  −1.14          −1.13
                                           (−11.5; −11.1)                        (325.6; 344.7)                        (−0.31; −0.27)                        (−1.17; −1.09)

Death Valley          16.9          16.9                   102.9          102.7                   0.02           0.03                   −1.13          −1.11
                                             (16.8; 17.0)                          (101.3; 104.3)                          (0.00; 0.05)                          (−1.14;−1.09)

Jacksonville           5.2          5.2                   110.0          109.7                  −0.33          −0.31                  −0.58          −0.62
                                               (5.0; 5.3)                            (106.3; 113.9)                        (−0.35; −0.27)                        (−0.71; −0.53)

Glasgow                 −0.7          −0.7                  147.1          146.9                  −0.58          −0.54                  −0.25           −0.3
                                             (−0.9; −0.5)                          (141.1; 152.0)                        (−0.58; −0.50)                        (−0.40; −0.19)

Charleston              15.4           15.4                   60.0          60.0                 −0.40         −0.37                  −0.86           −0.9
                                             (15.3; 15.5)                            (58.6; 61.6)                          (−0.40; −0.34)                        (−0.94; −0.85)

Table 3. As in Table 2, but for daily minimum temperature (TN)
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one hand and simulations on the other, and they
show that the distributions can be considered similar
with a 95% confidence level. The proposed stochas-
tic model is thus able to correctly reproduce the bulk
of the daily minimum or maximum temperature dis-
tributions for different climates.

3.2.  Extremes

The model is constructed for a bounded variable
and the simulations are made in such a way that each
simulated value remains inside the estimated bounds
of the residuals. Thus first, the GEV distribution para -
meters for the simulated residuals, are compared to
those of the observed ones, both for the lowest and the
highest extremes. Fig. 4 shows the distributions for
each parameter (location μ, scale σ, and shape ξ) ob-
tained from the 100 simulations for the highest (warm)
extremes and the lowest (cold) extremes together
with the same parameters obtained from the observed
residuals (grey line) for TN in Berlin and TX in Death
Valley. The results show that the shape parameter is

generally better reproduced in the
simulations than the location and
scale parameters; this is also true for
the other temperatures and locations.
It can be mathematically proven that
the proposed stochastic model is able
to produce the correct shape parame-
ter when a truncated normal distribu-
tion is used for εt.

Table 4 compares the 50 yr return
levels (RLs) of the maxima of TX and
the minima of TN for the different lo-
cations over the whole observation
period. The estimation is made by fit-
ting a GEV to the block maxima of
summer TX or winter TN (Coles 2001)
with the maximum likelihood method
and considering the choice of 2 blocks
season−1 as a reasonable bias/  variance
compromise. The estimation is con-
ducted as if the extremes would not
present trends over the entire period,
which is of course wrong, but it simpli-
fies the computations and is sufficient
to give a first view of the representa-
tion of the extremes by the proposed
model. For each of the 100 simulations,
the 50 yr RLs are computed. The given
confidence interval is obtained as the
2.5th and 97.5th percentiles of the dis-
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tribution of the 100 RLs, whereas for the observations
the confidence interval is the 95% one given by the
delta-method (that is based on the asymptotic normal-
ity of the maximum likelihood estimators). Generally,
the simulations give higher warm RLs and lower cold
RLs than observed, but the confidence intervals ob-
tained from the observations generally show some
overlapping with the 2.5th and 97.5th percentiles of
the distribution obtained from the simulations (except
for TX in Glasgow and TN in Petropavslosk). The fact
that the model produces higher (or lower for cold tem-
perature) extremes than observed is not surprising
because the simulations produce 100 possible reali-
ties, among which higher or lower extremes could
have been observed. This thus shows that the model is
not only able to produce extremes, but it can also pro-
duce more extreme extremes than observed.

Finally, we investigate the ability of the model to
produce heat or cold waves. Cold waves are defined
as periods of consecutive days with daily minimum
temperature lower than the 2nd percentile and heat
waves as periods of consecutive days with daily max-
imum temperature above the 98th percentile. The
number of consecutive days varies between 1 and 15,
the last class corresponding to the few episodes with
more than 15 d, where these occur. Thus for each
location, the 2nd and 98th percentiles of the ob -
served time series are computed and the distribution
of episodes in the observed time series is compared
to the minimum, maximum, and mean frequencies of
such a distribution in the 100 simulations. Fig. 5
shows the results for cold waves in Petro pavs lovsk
and heat waves in Charleston. Even though the sto-
chastic model tends to overestimate the proportion of
1 d cold spells compared to the observations, it is still
able to produce longer episodes in a reasonable pro-
portion, even for the longest events. This tendency
to overestimate the frequency of 1 d events is less
systematic for heat waves.

4.  POSSIBLE USE IN THE CLIMATE CHANGE
CONTEXT

The previous section has shown that the proposed
stochastic model, when fitted on a temperature time
series, is able to correctly reproduce the bulk of the
distribution as well as the extremes of the studied
time series. This is an interesting result as far as the
model allows reliable simulations of a high number of
possible temperature evolutions at a given location
giving access to potential unobserved but still possi-
ble levels. In the climate change context, it could also
be very interesting to produce possible temperature
evolutions for the future, given that climate is warm-
ing. General or regional climate models are designed
to allow such projections for the different climatic
variables, but their ability to represent extreme val-
ues for a precise location is still questionable. Thus
different downscaling techniques, from simple bias
corrections to full dynamical downscaling with lim-
ited area models, are explored (Maraun et al. 2010).
The aim here is to check whether the proposed sto-
chastic model can be used as a statistical downscal-
ing tool giving reliable indications of temperature
extremes.

4.1.  Simulation procedure

To do so, among the previously used temperature
time series, 2 have been selected as showing an iden-
tifiable break in the evolution of mean temperature,
splitting the time series in 2 sub-series of roughly
similar length. The break is identified using the
Mudelsee (2009) method which consists of selecting
the date for which the standard deviation of the re -
siduals resulting from the 2-phase regression model
is the minimum, after having considered all dates
(except the first and last 5, to avoid edge effects) as
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                               TX                                        TN
                                          Observations                  Simulations                             Observations                         Simulations

Berlin                              38.2 (37.1; 39.2)             39.8 (38.8; 41.0)                    −23.4 (−25.5; −21.0)            −26.5 (−31.5; −22.9)
Biarritz                            39.6 (38.8; 40.4)             41.0 (39.0; 43.5)                      −9.4 (−12.2; −6.6)              −11.0 (−12.6; −9.7)
Petropavlovsk                 38.5 (37.6; 39.5)             41.5 (39.3; 44.8)                    −43.7 (−45.2; −42.1)            −48.7 (−52.5; −45.3)
Olekminsk                                  −                                     −                                −56.3 (−57.8; −54.8)            −58.8 (−61.4; −56.2)
Death Valley                  54.3 (53.5; 55.1)             55.2 (54.3; 56.1)                      −6.4 (−7.5; −5.3)                  −7.4 (−8.8; −6.0)
Jacksonville                    41.8 (40.3; 43.3)             43.1 (41.5; 44.5)                    −29.5 (−31.3; −27.7)            −33.8 (−38.5; −30.6)
Glasgow                          42.0 (41.1; 42.8)             45.5 (44.3; 46.9)                    −42.9 (−44.4; −41.4)            −46.9 (−50.4; −44.0)
Charleston                      39.5 (38.6; 40.4)             40.3 (39.5; 41.2)                    −11.3 (−13.7; −9.0)                −8.8 (−10.0; −7.5)

Table 4. 50 yr return levels (RLs) estimated from observed and simulated time series. For observations, the 95% confidence in-
terval (in brackets) is obtained with the delta-method; for simulations, the given interval corresponds to the 2.5th and 97.5th 

percentiles of the distribution of the 100 obtained 50 yr RLs. TX (TN) daily maximum (minimum) temperature
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potential break points. This simple technique is used
because the identification of the break is not the ulti-
mate goal of the work but is only made for the sake of
illustration. More general regression techniques
exist, such as the segmented regression proposed by
Muggeo (2003). Such a break is identified in the year
1980 for TN in Berlin and 1985 for TX in Death Valley
for both the mean and variance evolutions.

Each time series is then split into 2 shorter time
series: 1950−1980 and 1981−2009 for TN in Berlin
and 1962−1985 and 1986−2009 for TX in Death Val-
ley. For both sub-series, the residuals Z(t), after

removing trends and seasonalities in mean and vari-
ance, are estimated. The parameters of the stochastic
model defined to simulate Z(t) are fitted over the first
sub-series in each case. The reconstruction of the
desired temperature time series for each period
necessitates that trends and seasonalities are added
to the simulated residuals. Two approaches are com-
pared to compute the desired temperature time
series over the second (and warmer) sub-period:

(1) Average mean and variance changes are added
to the trends computed from the first sub-period: if
m1 is the mean over the first period, s1 the standard
deviation, and m2 and s2 the same quantities for the
second period: 

(8)

where are the seasonali-
ties and trends estimated over the first sub-period.
Table 5 summarizes the means and variances of each
sub-series.

(2) Seasonalities and trends are those computed
over the second sub-period: 

(9)

where are the seasonal-
ities and trends estimated over the second sub
period.

In the first approach, interannual variability, in-
cluded in the smoothing parameter of the nonpara-
metric trends, remains that of the first period, whereas
the second approach allows interannual variability of
the second period to be taken into account.

4.2.  Results

4.2.1.  Bulk of the distribution

As before, the first comparisons aim at validating
the reproduction of the main characteristics of the
bulk of the distribution. Table 6 gives the observed
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                               m1 (°C)     m2 (°C)      s1 (°C)       s2 (°C)

TN Berlin                  4.7             5.5             7.0             6.9
TX Death Valley      32.3           33.2           10.4           10.7

Table 5. Mean and SD estimated for the first (m1 and s1) and
second part (m2 and s2) of the time series. The first part cor-
responds to 1950−1980 for Berlin and 1962−1985 for Death
Valley and the second part corresponds to 1981−2009 for 

Berlin and 1986−2009 for Death Valley
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and simulated mean and variance obtained for the
second period in winter and in summer with each of
the above 2 approaches (see Section 4.1) for each
location and variable. As expected, approach 2,
which takes trends and seasonalities of the second
period into account, gives better results, but the
results given by the first approach are also close to
the observations. Fig. 6 gives a better view of the
entire distribution: it presents, for different per-
centiles (from the very low 1% to the very high 99%
through the median), the distribution of such per-
centiles obtained from the 100 simulations in black
and the values obtained from the observations in
grey. It shows that for all percentiles, the observed
estimates fall inside the distributions of the simulated
estimates, regardless of the approach taken for the
simulations. This thus validates the 2 approaches to
compute the distribution of temperature for a future
period when mean and variance have changed.

4.2.2.  Extremes

We now consider the extremes, in terms of 50 yr
return levels and of heat or cold waves. Table 7 gives
the obtained 50 yr return levels for period 2, again
considering the series as stationary, and estimated
from the observations and from each type of simula-
tion. As in the previous section, the 95% confidence
interval for the observations is computed with the
delta-method, while for the simulations, the 2.5th
and 97.5th percentiles of the distribution of the 100
estimated 50 yr RLs are taken. The results show that
for Berlin, approach 2 gives slightly better results
than approach 1, whereas for Death Valley, this is not
the case. This can be explained by the fact that the
smoothing parameter computed to estimate the mean
and variance trends is the same for both periods for
Death Valley (0.08), whereas for Berlin it changes

from 0.32 in the first period to 0.08 in the second.
Thus, in Berlin, interannual variability for daily mini-
mum temperature is higher in the second period, and
taking this into account logically improves the simu-
lations. Fig. 7 shows the distributions of cold waves in
Berlin and heat waves in Death Valley according to
each simulation procedure in the same way as Fig. 5
in the previous section. Here, both approaches give
similarly good results.

5.  CONCLUSION AND PERSPECTIVES

In this study, we present and validate a stochastic
seasonal functional heteroscedastic auto-regressive
model for daily temperature for different climates in
Eurasia and the US.

When fitted over a long temperature series (daily
minimum or maximum) and used to simulate a large
number of equivalent trajectories, the model is able
to correctly reproduce both the bulk and the
extremes of the observed distribution. In particular, it
is able to produce higher or lower extremes than
observed.

For 2 temperature time series for which a break in
the evolution of both mean and variance was identi-
fied around the middle of the period, the model was
constructed over the first part of the period and used
to reproduce the second part. As the model simulates
the residuals after accounting for trends and season-
alities in mean and variance, the reconstruction of
the observed variable for any period consists of re-
introducing this information on trends and seasonali-
ties. Two approaches have been tested: firstly taking
global mean and variance changes between both
periods into account (such as in the so-called ‘delta
method’) and secondly introducing the real trends
and seasonalities computed over the second period.
The second approach allows interannual changes to
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                           Winter                                                                         Summer
          Mean                                     Variance                                 Mean                            Variance
Obs         Sim1             Sim2           Obs       Sim1            Sim2          Obs      Sim1            Sim2          Obs      Sim1            Sim2

TN Berlin
−1.7         −2.0              −1.8           25.0        25.2            23.2          13.1       13.2            13.0           8.7         8.2              9.1 
          (−2.7; −1.4)   (−2.5; −1.2)               (20.8; 29.8)  (18.9; 28.4)             (12.9; 13.4)  (12.8; 13.2)               (7.5; 8.9)      (8.2; 9.9)

TX Death Valley
20.2          20.7              20.2           18.7        18.2            18.4          45.7       45.4            45.7          15.0       13.6            14.5 
          (20.4; 21.1)   (19.9; 20.6)               (15.5; 20.8)  (15.9; 21.2)             (45.1; 45.8)  (45.3; 46.0)             (11.7; 16.1)  (12.6; 17.1)

Table 6. Observed (Obs) and simulated (Sim) winter and summer mean and variance for the second period (1981−2009 for
Berlin, 1986−2009 for Death Valley) according to each of the 2 approaches used to reconstruct temperature (Sim1 and Sim2: 

mean with 95% confidence interval in brackets)
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be taken into account if any occur. This is the case for
the daily minimum temperature time series in Berlin,
for which this last approach improves the results.
Both approaches, however, give equivalently good
results, both in terms of the bulk of the distribution
and in terms of extremes.

Our results are encouraging from the perspective
of using this tool as a downscaling technique suitable
to deal with temperature extremes. The second
approach in particular makes it possibile to take into
account interannual variability changes. We can
imagine, for example, that the model is fitted over an
observed temperature time series representative of a
location of interest, and then future temperatures for
this location can be obtained by introducing the sea-
sonalities and trends estimated over a corresponding,
suitably corrected, grid point time series produced by
different climate models with different scenarios.
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   Observations             Simulation 1             Simulation 2

Cold extremes Berlin
          −21.6                         −28.2                        −26.7 
   (−24.7; −18.5)            (−37.3; −22.3)           (−37.5; −21.5)

Warm extremes Death Valley
           53.2                           54.3                          55.1 
     (52.2; 54.1)                 (53.2; 55.6)               (54.1; 56.2)

Table 7. 50 yr return levels (RLs) of winter cold minimum
daily temperature (TN) in Berlin and summer warm maxi-
mum daily temperature (TX) in Death Valley estimated from
observed and simulated time series for the second period
(1981−2009 for Berlin, 1986−2009 for Death Valley) and ac-
cording to both approaches to reconstruct temperature
(Simulations 1 and 2). For observations, the 95% confidence
interval (in brackets) was obtained with the delta-method;
for simulations, the given interval corresponds to the 2.5th
and 97.5th percentiles of the distribution of the 100 obtained 
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Our results show that this technique is able to give
reliable information for the temperature extremes,
for highest or lowest values as well as episodes. How-
ever, further studies should be devoted to hot and
cold episodes. Although the model is able to produce
long cold or heat waves, it should be able to produce
more of such events among 100 simulations. Here the
autocorrelation coefficient has been considered peri-
odic, but it is suspected that it may increase once a
certain high or low threshold is crossed. This will
be further investigated. In a broader perspective, the
model could be part of a more general weather gen-
erator in addition to a rainfall generator, for example.
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Before choosing a model for the reduced process Z(t),
after removal of trends and seasonalities in mean and
variance, its correlations and conditional variance were
analyzed. The nonparametric analysis of the conditional
variance of Z(t) given Z(t − 1) shows a particular behavior:
linear in the core of the distribution, and close to 0 for
very high and low values of Z(t − 1), with the conditional
mean being close to a linear function. The first step is
thus to choose a FARCH model with finite bounds for the
distribution. The application of the extreme theory is not
justified at this step (because a mathematical theory does
not exist for these processes) but once done, it gives a
negative shape parameter (ξ < 0) that suggests a bounded
distribution.

The idea is then to choose a modified FARCH model
Z(t) = b(Z(t – 1)) + a(Z(t – 1))εt where εt is a truncated Gauss-
ian noise whose bounds depend on the value of Z(t − 1).
The second step is then to represent the temperature as a
continuous time process (with continuous trajectories). The
FARCH processes are the first-order Euler scheme approx-
imation of the discrete Markov chain M, where M(t) is the
observation at time t of the continuous diffusion given by:

where b is the drift, a the
diffusion coefficient, and W(t) a Brownian motion. The esti-
mation of the coefficients of such a continuous stationary
diffusion is commonly done using its first-order Euler
scheme Z, thus a FARCH process with the same functional

coefficients. Technically this situation is very informative in
relation to the extremes theory. From the geometric ergod-
icity of the diffusion, the extreme parameters and the
bounds of the continuous time process can be estimated us-
ing only the chain M. Z is from now considered as an ap-
proximation of M. Now we use the continuous process as a
tool. The coefficients of extremes and thus the bounds r1

and r2 are estimated by fitting a GEV distribution to the
maxima of the reduced series modeled here as M(t). The
domain of M(t), say (r1, r2), is bounded so that r1 and r2 are
inaccessible boundary points for Y. At the boundary, we
have:

(1) a and b are defined and continuous on [r1, r2]
(2) 
Under hypotheses 1 and 2 and ξ < 0, Dacunha-Castelle

et al. (2013) proved the following theorem:
If the distribution of the maximum of the diffusion Y is in

the domain of attraction of a GEV distribution with ξ < 0,
then the marginal distribution is common to the chain M
and to Y, and so they are in the same domain of max attrac-
tion.

We have the following behavior of a as x → r2:

a2(x) = −2b(r2)ξ’(r2 − x) + o(r2 − x) where 

This information is then plugged in as constraints in the
likelihood of the Euler scheme to estimate coefficients a
and b with bound constraints.

( ) ( , ( )) ( , ( )) ( )dY t b t Y t a t Y t dW t= +

( ) ( ) 01 2b r b r ≠

1
′ξ = ξ

ξ −

Appendix 1. Model description
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