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1.  INTRODUCTION

In this study, historical droughts in the Southeast-
ern USA (hereafter, ‘the Southeast’) are evaluated
using 32 downscaled climate models. The Southeast
has been subject to increased population pressure
following rapid development, which has resulted in
multiple water-related conflicts. The conflicts are
foremost related to water quantity and allocation and
include, but are not limited to, the ‘tri-state water dis-
pute’ (Alabama, Georgia and Florida), water supply
problems in the Tampa Bay region (Florida) and
groundwater pumping around Memphis (Tennessee)
leading to decreased surface discharge in Mississippi
(Yuhas & Daniels 2006, Manuel 2008, Upholt 2015).
Due to their complexity, these conflicts typically per-
sist over multiple years, and tend to flare up at times
of drought. Florida and Mississippi are also among
the 14 states identified by the Natural Resources
Defense Council (2010) as being projected to face

high to extreme water supply shortages by 2050, due
to increased population in combination with climate
change.

Even though the Southeast has abundant vegeta-
tion and is mostly in a humid subtropical climate, the
region is no stranger to droughts. Recent extended
periods of dry conditions include the years of
1986−1988, 1998−2002 and 2006−2009 (Seager et al.
2009, Pederson et al. 2012, Kunkel et al. 2013). Fol-
lowing above-normal temperatures and low precipi-
tation rates, 2016 also turned out to be an abnormally
dry year, with parts of the Southeast being in ex -
treme or exceptional drought. During the fall of 2016,
historical records of most consecutive days without
rainfall were broken throughout the continental
parts of the Southeast, leading to extensive agricul-
tural losses and sparking widespread wildfires
throughout the region (Gattis 2016, National Drought
Mitigation Center 2017a, NOAA National Centers for
Environmental Information 2017a). The spring of
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2017 brought relief to most of the Southeast, apart
from Florida where Governor Rick Scott declared a
‘state of emergency’ in April 2017 due to the dry con-
ditions that were expected to continue throughout
the spring (Scott 2017). By the end of May, over 50%
of the state was in severe to extreme drought
(National Drought Mitigation Center 2017b), spark-
ing extensive wildfires that caused road closures due
to smoke, and caused agricultural losses, following
the lack of precipitation (NOAA National Centers for
Environmental Information 2017b).

However, these droughts cannot be attributed to
recent climate change alone. The 1930s experienced
very dry conditions and above-normal temperatures,
and the droughts the Southeast has faced in the past
century do not stand out as extreme in the multi-
 century historical record. In fact, for much of the
region, the last century has been slightly wetter than
previous historical records indicate (Seager et al.
2009, Pederson et al. 2012, Kunkel et al. 2013).
Focusing on the second half of the 20th century, Pow-
ell & Keim (2015) found no spatial trends in droughts
in the Southeast, but suggested that wet spells have
become shorter. This is further confirmed in findings
by Martinez et al. (2012) and Irizarry-Ortiz et al.
(2013) in their studies of the climatology of Florida.
Inter- to intra-annual modes of climate variability
have been attributed to several large-scale atmo -
spheric drivers, including, but not limited to, the
Atlantic Multidecadal Oscillation, El Niño-Southern
Oscillation, North Atlantic Oscillation and Pacific−
North American pattern, which have been identified
as potential drivers of hydroclimatic variability and
drought in the Southeast (Ropelewski & Halpert
1987, Dracup & Kahya 1994, Enfield et al. 2001, Orte-
gren et al. 2011, Labosier & Quiring 2013, Engström
& Waylen 2017).

Recognizing the challenges associated with the re-
occurring droughts in the Southeast, this study aims
to analyze how well the downscaled models replicate
historical dry spells of consecutive days without pre-
cipitation. Through identification of models best able
to replicate the probability density function of con-
secutive dry days and specifically match the ob -
served long-lasting or extreme dry spells (above the
90th percentile), the best-performing models can be
used to shed light on what severity of droughts the
region may be facing in the future. Identifying the
best-performing models based on historical obser -
vations gives a higher level of confidence in future
projections, compared with including an ensemble-
approach utilizing all models, both well and poor
 performing, in future simulations (Perkins 2011).

Previous studies have examined the performance
of multimodel ensembles of Coupled Model Inter-
comparison Project Phase 5 (CMIP5) models over
North America and found that the ability of models to
simulate surface climatology is highly variable be -
tween models and across regions (Sheffield et al.
2013). Model biases are more pronounced in repre-
sentation of extreme values of temperature and pre-
cipitation. Daily maximum temperature is repre-
sented well in some models in the southern USA, but
precipitation is not simulated well in the Southeast,
with slightly low model biases likely related to large-
scale circulation patterns and underestimation of
tropical cyclone numbers (Sheffield et al. 2013).
However, CMIP5 models have been found to repli-
cate spatial patterns and magnitudes of consecutive
dry days well, as consecutive dry days are usually
present at a larger spatial scale than extreme precip-
itation events, which are more localized and difficult
for models to resolve (Sillmann et al. 2013).

Although there have been previous studies evalu-
ating the performance of climate models in replicat-
ing high temperatures (Keellings 2016), cool tem-
peratures (Pan et al. 2013) and extratropical storms
(Colle et al. 2013), in the Southeast, Perkins (2011)
noted that the climate model skill varies de pending
on what parameter is analyzed. It should be empha-
sized that model evaluation is dependent on the
metrics utilized and on the variable being re -
produced. A full and robust assessment of model
 performance should include all variables and incor-
porate the potential influence of large-scale atmo -
spheric drivers and temporal variability (Brekke et
al. 2008, Hidalgo & Alfaro 2015). This type of as -
sess ment is not the objective of this study, which
focuses on the skill of models in reproducing certain
aspects of extreme dry events. The assessment of
skill is based on comparison of simulations of the
entire statistical distribution of consecutive dry
days. A temporal ana lysis, identifying specific dry
spells, is not the focus of this paper study. However,
if model skill is high, it can be assumed that the
model simulates the distribution of consecutive dry
day lengths, and therefore, also the drivers respon-
sible for their occurrence.

Downscaled climate models generally perform
poorly in simulation of precipitation, particularly
when it comes to extremes. The simulations are often
either lacking in variance through producing too
many drizzle days (brought about by averaging),
and/or lacking in spatial detail through introduction
of high levels of spatial autocorrelation (Hidalgo et
al. 2008, Maraun 2013, Hwang & Graham 2014). In
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this study, we examine the performance of a new
downscaled dataset in simulation of lengths of dry
periods across the Southeast from 1950 to 2005. This
new dataset has been constructed using a new down -
scaling technique, localized constructed analogs
(LOCA) (Pierce et al. 2014), that should be able to
produce better estimates of extreme precipitation.

2.  MATERIALS AND METHODS

2.1.  Data

Thirty-two downscaled global climate models
(GCMs) from the World Climate Research Pro-
gramme’s (WCRP) CMIP5 (Table 1) were downloaded

from the Downscaled CMIP3 and CMIP5  Climate and
Hydrology Projections archive (http:// gdo-dcp. ucllnl.
org/downscaled_cmip_projections/ dcpInterface.
html). These daily data are downscaled to a spatial
resolution of 1/16° for the period 1950−2005 using
LOCA, which, unlike other constructed analog tech-
niques, constructs the downscaled field point-by-
point from a single best match analog day rather than
using a weighted sum of numerous analog days
(Pierce et al. 2014). By reducing the averaging nor-
mally found in other constructed analog methods and
by using a point-by-point approach, LOCA generally
produces better estimates of extremes, reduces the
tendency to produce drizzle through averaging of low
and high values, and generates more realistic spatial
autocorrelation (Pierce et al. 2014). One LOCA
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Model name                  Affiliation

ACCESS1-0                   CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia) and BOM 
                                        (Bureau of Meteorology, Australia)
ACCESS1-3                   
BCC-CSM1-1                Beijing Climate Center, China Meteorological Administration
BCC-CSM1-1-m            
CanESM2                       Canadian Centre for Climate Modeling and Analysis
CCSM4                          National Center for Atmospheric Research
CESM1-BGC                 National Science Foundation, Department of Energy, National Center for Atmospheric Research
CESM1-CAM5              
CMCC-CM                    Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CMS                  
CNRM-CM5                  Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation 
                                        Avancée en Calcul Scientifique
CSIRO-Mk3-6-0            Commonwealth Scientific and Industrial Research Organization, Queensland Climate Change 
                                        Centre of Excellence
EC-EARTH                    EC-EARTH consortium
FGOALS-g2                   LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University
GFDL-CM3                    NOAA Geophysical Fluid Dynamics Laboratory
GFDL-ESM2G               
GFDL-ESM2M              
GISS-E2-H                     NASA Goddard Institute for Space Studies
GISS-E2-R                      
HadGEM2-AO              Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto 
                                        Nacional de Pesquisas Espaciais)
HadGEM2-CC              
HadGEM2-ES               
inmcm4                          Institute for Numerical Mathematics
IPSL-CM5A-LR             Institut Pierre-Simon Laplace
IPSL-CM5A-MR            
MIROC-ESM                 Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research 
                                        Institute (The University of Tokyo) and National Institute for Environmental Studies
MIROC-ESM-CHEM   
MIROC5                         Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 
                                        for Environmental Studies and Japan Agency for Marine-Earth Science and Technology
MPI-ESM-LR                 Max Planck Institute for Meteorology
MPI-ESM-MR                
MRI-CGCM3                 Meteorological Research Institute
NorESM1-M                  Norwegian Climate Centre

Table 1. List of Coupled Model Intercomparison Project Phase 5 (CMIP5) models evaluated
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ensemble member is available for each of the 32
models in the archive.

The precipitation dataset used to evaluate the
CMIP5 LOCA models is model-derived from ob -
served data developed for the North American Land
Data Assimilation System Variable Infiltration Capa -
city simulations over North America (www.colorado.
edu/lab/livneh/data) (Maurer et al. 2002, Livneh et
al. 2015). These daily data have a spatial resolution of
1/16° for the period 1950−2005. The dataset is com-
piled from over 20 000 National Oceanic and Atmo -
spheric Administration (NOAA) Cooperative Ob -
server Network (COOP) stations, gridded using a
synergraphic mapping system (SYMAP) algorithm
(Shepard 1984, Widmann & Bretherton 2000), and
then interpolated using an asymmetric spline (Mau-
rer et al. 2002).

The USA can be divided into numerous climate
regions and what comprises the Southeast is not set
in stone, but varies with the scope of the analysis
(Ortegren et al. 2011, Kunkel et al. 2013, Keellings
2016, Engström & Waylen 2018). In this study, the
Southeast is defined as the southern states east of the

Mississippi river, and includes Alabama, Florida,
Georgia, Mississippi, North Carolina, South Carolina
and Tennessee (Fig. 1). The results are presented by
climate division (nClimDiv, provided by NOAA) to
re duce noise and give a more generalized picture of
the performance of the climate models. Due to gener-
ally high evapotranspiration rates in this geographi-
cal region, a dry day is defined according to the defi-
nition of no measureable precipitation as a day with
less than 3 mm of precipitation (Wilks 2011, Kunkel
et al. 2013).

The data are divided into 2 seasons, recognizing
that lack of precipitation during the warm (grow-
ing) season will lead to excessive economical and
environmental implications, compared with the
cold season. The warm season is defined as April−
October, while the cold season constitutes the
months of November−March. The seasons are gen-
eralized and based on the US Department of Agri-
culture’s data on planting and harvesting dates of
field crops in the states of interest (US Department
of Agriculture National Agricultural Statistics Serv-
ice 2010).
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Fig. 1. Southeastern USA study region with climate divisions. The climate divisions are named based on state abbre viation
(Florida: FL; Georgia: GA; South Carolina: SC; North Carolina: NC; Tennessee: TN; Mississippi: MS; Alabama: AL) followed 

by number



Engström & Keellings: Drought in the Southeastern USA

2.2.  Model evaluation

The performance of the LOCA downscaled CMIP5
models are evaluated using distribution-based and
extreme-based (upper tail) Perkins skill scores (Per -
kins et al. 2013), as the focus of this study is on long-
lasting droughts that can severely affect the environ-
ment and economy of the Southeast. These skill
scores compare the distribution of counts of consecu-
tive dry days between observed and modeled data in
each grid cell for the entire period (1950−2005). Sig-
nificance tests of these skill scores are made follow-
ing the method of Keellings (2016) using inverse
mapping of the cumulative distribution function of
the observations and random number generation.

A probability density function (PDF)-based skill
score (Perkins et al. 2007) is calculated by taking the
cumulative minimum value of the observed and
modeled distributions of periods of consecutive dry
days (Eq. 1). If the 2 PDFs completely overlap, the
skill score will equal one.

(1)

where n is the number of intervals at which the PDF
has density, Zm is the density of values at a given
interval from the model and Zo is the density of val-
ues at a given interval from the observations. The
intervals are generated from the minimum observed
or modeled (whichever is lower) length of consecu-
tive dry days to the maximum observed or modeled
(whichever is higher) length of consecutive dry days
in 1 d increments.

A tail skill score for extreme lengths of consecutive
dry days is calculated in the same manner as above,
by taking the cumulative minimum value of 2 PDFs,
but only the overlap above the 90th percentile of the
observation PDF is examined to focus on extreme
lengths of consecutive dry days.

Interpretation of skill scores is somewhat subjec-
tive, e.g. the closer to 1 the better, and it is unclear
what threshold constitutes a good score. Therefore,
to give a more probabilistic assessment of skill
scores, a skill score significance test developed by
Keellings (2016) is employed. The Keellings skill
score significance test uses a Monte Carlo and in -
verse mapping approach to construct random cumu-
lative distribution functions that are constrained to be
of the same distribution as the observations. The con-
structed densities and observation densities are com-
pared using the PDF skill score and this process is
repeated 1000 times to derive an empirical distribu-
tion of constructed skill scores. The model skill score

is considered to be significantly lower than could be
expected at random if it falls below the 5th percentile
of all constructed skill scores. If the model skill score
fails this test, it is lower than at least 95% of the
 constructed skill scores and indicative of a model
PDF that is significantly different from the observa-
tion PDF. Using the PDF and tail skill scores, each
model was ranked from highest to lowest based on
average performance across all climate divisions.
From this ranking, the top 5 best-performing and
bottom 5 worst- performing models are identified in
each season.

The generalized extreme value (GEV) distribution
is used to assess differences in lengths of dry spells
between observations and models. The GEV is com-
monly applied to extreme hydrometeorological vari-
ables (Zwiers & Kharin 1998, Kharin et al. 2005,
Waylen et al. 2012). The GEV is chosen as it makes
no a priori assumptions regarding the form of the
extreme value distribution (Jenkinson 1955). Here
we estimate the GEV parameters with the method of
maximum likelihood using the extRemes package in
R. The cumulative distribution function of the GEV is
given by:

(2)

where μ is the location parameter (central tendency),
σ is the scale parameter (variance) and ξ is the shape
parameter (skew) (Coles 2001). Return periods are
estimated using the fitted GEV for an ensemble of
the best- or worst-performing models, as identified
by the skill score measures, and compared with the
observations.

3.  RESULTS

Before evaluating the downscaled models, a
Mann− Kendall trend test (Kendall 1955) was used to
assess the presence of a statistically significant (0.05
significance level) trend in the observed time series
of dry spells in each grid cell. Few cells exhibit a sig-
nificant trend in dry spells and, in total, there is no
field significance. Model PDF skill scores by climate
divisions are shown in heat maps for the warm sea-
son (Fig. 2) and cold season (Fig. 3). Model tail skill
scores are shown for the warm season (Fig. 4) and
cold season (Fig. 5). Model PDF skill score signifi-
cance by climate divisions are also shown in heat
maps for the warm season (Fig. 6) and cold season
(Fig. 7). The tail skill score significances are not
shown, as the tail skill scores are not significant
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Fig. 2. Heat map of warm season probability density function (PDF) skill score for each downscaled model by climate division.
Bottom plot shows density of skill scores in the above heat map. Values closer to 1 indicate better overlap between observed 

and modeled distribution of dry spells

Fig. 3. As Fig. 2 for cold season probability density function (PDF) 
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Fig. 4. As Fig. 2 for warm season tail skill score

Fig. 5. As Fig. 2 for cold season tail skill score
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Fig. 7. As Fig. 6 for cold season probability density function (PDF) skill score significance

Fig. 6. Heat map of warm season probability density function (PDF) skill score significance for each downscaled model by climate
division. Bottom plot shows density of skill score significance in the above heat map. Significance scores below 0.05 indicate a PDF
skill score that is significantly lower than could be expected at random, and suggests a poor fit between model and observation
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across all models, climate divisions and seasons. The
top 5 best-performing models identified using the
PDF skill scores are shown in Fig. 8a−e for the warm
season and Fig. 8f−j for the cold season. The cold sea-
son shows continental clusters of climate divisions
where the models’ performance is significant, while
the warm season show more geographically dis-
persed significance. The models have the greatest
difficulty in simulating dry spells in south Florida

during the cold season. Only PDF skill scores were
used to identify the best- and worst-performing mod-
els as the tail skill scores were not significant.

To further investigate the models’ ability to repli-
cate longer dry spells, the length of dry spell that
constitutes the 20 yr return period was identified. For
the warm season, such a drought lasts 33−49 d, with
the shortest droughts found in the central and north-
western part of the region (Fig. 9a). During the cold
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Fig. 8. Probability density func-
tion (PDF) skill score and sig-
nificance test by climate divi-
sion for top 5 best-performing
models in warm season (a−e)
and cold season (f−j). Climate
divisions with a significant skill
score are highlighted with 

thicker outlines
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season, droughts with a 20 yr return period become
more extreme lasting up to 77 d in southeastern
Florida, while the more continental parts of the study
area experience shorter dry spells that often last less
than 1 mo (Fig. 9d).

Figure 9 also contains maps for comparison of how
long 20 yr return period droughts are estimated to be
by the climate models. Figure 9b (9e) shows the aver-
age 20 yr return period drought length of the 5 best
climate models for the warm (cold) season and Fig. 9c
(9f) the average of the 5 worst model estimations for
the warm (cold) season. These comparisons show
that the worst-performing models have a tendency to
overestimate 20 yr return values in both seasons and
across the majority of climate divisions.

4.  DISCUSSION AND CONCLUSIONS

In general, the models perform better during the
cold season, possibly due to the frontal-driven pre-
cipitation that dominates in the region during this

season. During the cold season, the climate divisions
with significant and high-value skill scores are clus-
tered in more continental locations again, indicating
that the models may be performing better in winter
at locations subject to dominant frontal-driven pre-
cipitation rather than mixed processes. The models
fail to significantly simulate the long extended dry
periods occurring during the cold season in south
Florida. It can be speculated that the climate of this
region in winter is subject to differing physical mech-
anisms of precipitation. In winter, the dominant
mechanism of precipitation is frontal activity from the
southward movement of cold air. However, these
fronts rarely reach South Florida and at the same
time the temperatures are not high enough for con-
vective precipitation. This results in extensive dry
periods here during the winter. However, estimates
of 20 yr return periods by the 5 best-performing mod-
els do simulate these periods to within ±5 d. These
long dry periods in excess of 70 d, while occurring
out of the growing season, may have a large impact
on natural ecosystems and wildfires. In contrast,
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Fig. 9. The 20 yr return values of consecutive dry days for: (a) warm season observations; (b) ensemble of 5 best models based
on probability density function (PDF) skill for warm season; (c) ensemble of 5 worst models based on PDF skill for warm sea-
son; (d) cold season observations; (e) ensemble of 5 best models based on PDF skill for cold season; (f) ensemble of 5 worst 

models based on PDF skill for cold season
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warm season precipitation is a result of convection,
sea breeze and tropical cyclones, which tend to have
a less predictable behavior and are spatially hetero-
geneous. This is reflected in the geographical spread
of significant climate divisions depicted in Fig. 8a−e.

The findings of this study also emphasize the im -
portance of ranking models based on performance.
Through identifying the best- and worst-performing
models, we have shown that there is large variability
(>30 dry days for 20 yr returns) present between
model simulations, and we note large overestimation
of 20 yr returns by the worst-performing models across
both seasons and almost all climate divisions. We sug-
gest using skill scores to create a smaller yet better
performing ensemble may be essential when investi-
gating future impacts (see also, Perkins et al. 2013).

There are several limitations to the current work
that center around definitions of seasons and dry
spells. We have defined seasons from agricultural
growing seasons that vary slightly in length, in start
and end dates, and by crop type across the study re-
gion. In doing so, we have taken a fairly conser vative
and parsimonious approach by applying the longest
growing season across the entire study re gion instead
of varying the seasonal definition spatially. We
believe this approach is preferable in that it makes for
easier comparisons across the region. The use of 2
seasons in the analysis may also cut single consecutive
dry spells in 2 if they straddle the start or end dates of
the growing season, but as we have applied the same
seasonal definitions across observations and models,
this is likely to have little impact other than to reduce
the occurrence of extreme long-duration events in all
datasets. The simulation of  timing of events within
each season may be included in future analysis using
a similar non-homogeneous Poisson process to the
one applied by Keellings & Waylen (2014) to heat-
waves. Another limitation lies in our definition of in-
dependence between dry spells, with 1 d of precipita-
tion not necessarily being enough relief after a long
dry spell if followed by numerous further days lacking
in precipitation. The number of days of precipitation
required to alleviate an extended dry period will ulti-
mately vary based on the current precipitation deficit,
the total precipitation occurring on days following a
dry spell and indeed the lens of interest. We believe
the 1 d separation applied here is adequate as we are
purely focused on the ability of downscaled models to
simulate dry periods.

Long periods of little to no precipitation have his-
torically severely impacted the Southeast both envi-
ronmentally and economically. In this study, climate
models are used to simulate historical drought pat-

terns in the Southeast. The downscaled models simu-
late the entire distribution of observed dry spells
well, as shown by high PDF skill scores and signifi-
cance tests. When focusing on longer or extreme dry
periods, using tail skill scores and the stringent tail
significance test, the models do not perform as well.
However, selecting a smaller ensemble of the best-
performing models improves simulation of extremes.
The top 5 models provide good estimates of 20 yr
return values in both the warm and cold seasons, and
could hence be useful in an assessment of future
drought risks in the Southeast.
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