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1.  INTRODUCTION

Aridity or humidity are important hydroclimatic
characteristics sensitive to climate change (McCabe
& Wolock 2002) and greatly influence water re -
sources management, ecosystem function, agricul-
tural production and desertification control. Under
climate change, there is a likelihood of changes in
aridity with complicated spatial-temporal features
and significant implications for hydrologic cycles.
Drier or wetter conditions can be effectively identified
by capturing the changes in the background aridity

(Sherwood & Fu 2014, Roderick et al. 2015), which is
an essential re quirement to interpret landscape char-
acteristics and to make reasonable use of water re-
sources (Kukal & Irmak 2016). Variations in aridity
have a remarkable impact on annual runoff rates
(Arora 2002) and links to biogeochemical dynamics
that influence key ecosystem functions and services
(Delgado-Baquerizo et al. 2013). For example, if arid-
ity increases in the future, trees are likely to suffer
considerably reduced growth (Williams et al. 2010).

High spatial and temporal variability in aridity has
occurred over the last few decades. Recently, ob -
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served trends in global dryness have exposed contra-
dictions, and large uncertainties still exist (Sheffield
et al. 2012, Dai 2013, Feng & Fu 2013, Greve et al.
2014, Trenberth et al. 2014, Mueller & Zhang 2016).
Regionally, increases in aridity have been revealed
in southwestern Spain during 1951−2010 (Moral et
al. 2017) and Iran during 1966−2005 (Tabari & Agha-
janloo 2013). In contrast, wetter trends have been
reported in the eastern US, as indicated by statisti-
cally significant increases in precipitation (P) minus
reference evapotranspiration (ETo) during 1895−1990
(McCabe & Wolock 2002). Moreover, a downward
trend in aridity has been found in Northwest China
(Huo et al. 2013), and 91.7% of the wetter trend has
been attributed to increasing precipitation from
1960−2010 (Liu et al. 2013).

Considering changes in the hydroclimatic system,
it has been suggested that aridity is controlled by a
joint effect of climatic supply of water (P) and the
atmospheric evaporative demand (e.g. ETo) (McCabe
& Wolock 2002, Cook et al. 2014, Greve & Senevi-
ratne 2015, Zarch et al. 2015, Huang et al. 2016). In
particular, the latter plays a significant role in global
atmosphere−hydrosphere−biosphere interactions (Wu
et al. 2006). Overall, evidence from early observa-
tional and modeling studies has agreed on the
decreasing trends of annual atmospheric evaporative
demand at regional to continental scales during the
past half-century (Peterson et al. 1995, Schimel et al.
1997, Roderick & Farquhar 2002, Hobbins et al. 2004,
Dolman & de Jeu 2010, Wu et al. 2010, McVicar et al.
2012a, Kukal & Irmak 2016).

Indeed, recent studies stated that global and regio -
nal warming trends are nonlinear (Franzke 2014,
Good et al. 2015). Similarly, nonlinear processes have
been detected in precipitation (Xue et al. 2005, Chang
et al. 2015) and aridity (Zhao et al. 2014, Li et al.
2015), with multi-scale changes over a relatively long
period. The nonlinear changes in aridity during the
past several decades have usually been diagnosed
based on methods such as wavelet analysis and en-
semble empirical mode de com position (EEMD). These
methods have also been applied to hydrologic factors
such as runoff and groundwater, and have produced
meaningful results (Partal 2012, Carmona & Poveda
2014, Yu & Lin 2015).

Particularly, EEMD, proposed by Wu & Huang
(2009), is an effective time-series signal processing
method, especially for nonlinear and nonstationary
time series (Qian et al. 2009, Xue et al. 2013, Qian &
Zhou 2014, Guo et al. 2016). For example, Li et al.
(2015) and Sun & Ma (2015) used EEMD to analyze the
temporal and spatial variations in the Palmer drought

severity index and its influencing factors. Moreover, it
was possible to extract representative scale expo-
nents from precipitation data using EEMD to help
construct regional intensity−duration− frequency
curves (Kuo et al. 2013); it was also possible to predict
the future long-term evolution of preci pitation pat-
terns using a stochastic model combining the EEMD
method and non-parametric techniques (Ba sha et al.
2015). However, nonlinear changes in aridity remain
poorly understood and need to be investigated —
especially in countries with several different climates,
such as China — in order to comprehensively under-
stand regio nal climate change and its effects.

The major objectives of this study were (1) to ex -
plore the nonlinear variations in hydroclimatic vari-
ables including precipitation, reference evapotran-
spiration and aridity using the EEMD method during
the period 1961−2015; (2) to analyze the spatial char-
acteristics of nonlinear variations in aridity; and (3) to
quantify their contributions to changes in aridity and
its relationships with large-scale climatic oscillations.
Investigating aridity variations provides a reliable
way to detect and quantify the response of hydro -
logical processes to climate change in detail, and
provides useful information for agricultural water
management.

2.  MATERIALS AND METHODS

2.1.  Materials

A total of 573 meteorological stations (Fig. 1) with
high-quality monthly data for the period 1961−2015,
which include minimum and maximum tempera-
tures, wind speed, relative humidity and sunshine
duration, were obtained from the Climatic Data Cen-
ter (CDC) of the National Meteorological Information
Center (NMIC) of the China Meteorological Admin-
istration (CMA). Missing data were estimated by
averaging values from observations in other years for
the same station.

In this study, the sea surface temperature anomaly
(SSTA) over the Nino 3.4 region (5° N–5° S, 120−
170° W) was selected as the indicator of El Niño/
Southern Oscillation (ENSO) and downloaded from
the Climate Prediction Center of the National Oce -
anic and Atmospheric Administration (NOAA). The
monthly Nino 3.4 SSTA values during 1961− 2015
were calculated based on centered 30 yr base periods
updated every 5 yr, in order to remove the warming
trend in the recent decades. The Pacific Decadal
Oscillation (PDO) is often deemed as a long-lived
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El Niño-like pattern of Pacific climate variability
(Zhang et al. 1997), and the monthly PDO index for
1961−2015 was obtained from NOAA’s National
Centers for Environmental Information.

China is characterized by a broad range of climate
types, from tropical to cold-temperate and from
humid to arid, with correspondingly diverse ecosys-
tems. The distribution of eco-geographical regions
adopted from Zheng (2000) (Fig. 1) was used in this
study to describe the spatial differences of variation
in aridity over China.

2.2.  Aridity index

In this study, the aridity index (AI) is defined as the
ratio of annual reference evapotranspiration (ETo)
over precipitation (P). It is widely used to reflect
regional aridity or humidity conditions, and high val-
ues of the index indicate stronger aridity (Liu et al.
2013, Yin et al. 2015). It is a direct indicator of cli-
matic moisture conditions. The contributions of an -
nual ETo and P to aridity change can be assessed in a
straightforward way by using AI.

Modeling is a common approach to obtain ETo. In
1998, the Food and Agricultural Organization (FAO)
modified the Penman−Monteith model (hereafter
FAO56-PM model) by defining a hypothetical refer-
ence crop closely resembling an extended surface of

green grass of uniform height, vigorously growing,
completely covering the ground and sufficiently
 watered. The model integrates mass transfer and en-
ergy balance and considers vegetation morphological
characters, and it has proven to be valid in both arid
and humid climates (Allen et al. 1998). The FAO56-
PM model has been applied widely around the world.
In this model, ETo is calculated according to:

(1)

where Rn is the net radiation (MJ m−2), G is the soil
heat flux (MJ m−2), γ is the psychrometric constant
(kPa °C−1), Δ is the slope of the saturation vapor pres-
sure curve (kPa °C−1), T is the average temperature
(°C), U2 is the wind speed at 2 m height (m s−1), es is
the mean saturation vapor pressure (kPa), and ea is
the actual vapor pressure (kPa).

Radiation in the model can be calculated through
an empirical formula, and its accuracy is determined
by empirical coefficients which have regional limita-
tions. In this study, ETo was calculated using the radi-
ation-modified FAO56-PM model. The modified net
radiation (Yin et al. 2008) was:

(2)

where σ is the Stefan-Boltzmann constant (4.903 ×
10−9 MJ K−4 m−2 d−1), Tx,k and Tn,k are the maximum
and minimum temperatures in Kelvin, respectively, n
is actual sunshine hours, N is potential sunshine
hours, and Rso is the clear-sky solar radiation.

2.3.  EEMD method

The EEMD (Huang & Wu 2008, Wu & Huang 2009)
is generally an adaptive time series analysis ap -
proach with the addition of noise. It works well in
extracting long-term trends and oscillatory compo-
nents characterized by multiple scales from com-
plex signals, which makes it appropriate to address
 nonlinear and nonstationary processes. The EEMD
inherits the advantages of its predecessor, empirical
mode decomposition (EMD; Huang et al. 1998), in
terms of processing signals and analyzing time-fre-
quency characteristics. Meanwhile, the mode-mixing
problem found in the EMD is resolved to guarantee
the physical uniqueness of intrinsic mode functions
(IMFs). Moreover, no a priori assumption is required
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Fig. 1. Meteorological stations (red dots) used in this study
and eco-geographical regions in China. I: Cold temperate hu-
mid region, II: mid-temperate humid/ sub-humid region, III:
warm temperate humid/sub-humid region; IV: north subtrop-
ical humid region; V: mid-subtropical humid region; VI: south
subtropical humid region; VII: tropical humid region; VIII:
north semi-arid region; IX: northwest arid region; X: Tibetan 

Plateau alpine region
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for the EEMD, which decomposes data on a basis of
local features. Recently, EEMD has been gradually
incorporated in the field of climatic change (Wu et al.
2011, Franzke 2012, Ji et al. 2014, Li et al. 2017),
among which studies focusing on hydrological ele-
ments such as precipitation and evapotranspiration
have mostly concentrated on the regional scale.

The key thought of the EEMD method is adding
white noise to the original sequence x(t) and decom-
posing the mixed data into a number of amplitude-
frequency modulated oscillatory components Cj (j =
1, 2, …, m) and a residual component Rm as in Eq. (3):

(3)

where t corresponds to the time in years (t = 1961,
1962, 1963, …, 2015), Cj is a finite set of oscillatory
functions known as IMFs, and Rm is a monotonic
curve or contains at most 1 extreme.

The added white noise could cancel out with
enough trials to achieve the adaptive decomposition
within the dyadic filter windows. Finally, the IMFs
will be acquired from the ensemble means through
repetition of the above procedures. IMFs reflect the
fluctuations of hydroclimatic variables with high fre-
quency to low frequency, and vary unevenly with
time. The number and attributes of IMFs rely exclu-
sively on the data length and local features. The
residue Rm is monotonic or includes no more than 1
extreme, which is assumed to have eliminated inher-
ent fluctuations and retained secular trends indica-
ting the true information of the signal. The trend
varies with time, yet does not depend upon any given
shape. It can reflect the potential, nonlinear and non-
stationary characteristics of a time series more effec-
tively than traditional linear fitting methods.

To obtain spatially-temporally coherent informa-
tion, we first performed EEMD at each meteorologi-
cal station with the same data length. Four IMFs and
the final remainder were obtained from the 55 yr
time series for each station over the whole area. The
oscillatory components on similar timescales from all
stations were then pieced together to form the spatial
structural evolution of that timescale. Likewise, the
secular trends were displayed by instantaneous
rates, varying with time and space. The method
could be deemed as a type of multi-dimensional
EEMD, which combines the spatial and temporal
locality, and is conducive to the diagnosis of climate
system evolution (Ji et al. 2014).

In this study, the time series were augmented with
white noise for 100 trials, when applying the EEMD
to yearly data. The amplitude value was 0.2. A Monte

Carlo method was implemented to test the statistical
significance of the IMF, indicating whether it con-
tained information with actual physical meaning at a
given confidence level (Wu & Huang 2004). IMF
components with mean periods of 1−10 yr and 10−
50 yr are regarded as interannual and interdecadal
variability, respectively. Considering the data length
limitation, multidecadal variability in the case of a
mean period of >50 yr was not studied.

The changing rate (Rate(t)) of the residual trend is
determined by its temporal derivatives as in Eq. (4).
To reflect the spatial pattern of nonlinear changes,
we selected the changing rates of 5 years, i.e. 1970,
1980, 1990, 2000 and 2010:

(4)

where dRm(t) and dt indicate the differentials of Rm(t)
and t, respectively, and dRm(t)/dt is the first deriva-
tive of Rm(t) versus t.

2.4.  Linear trends and significance test

Linear regression analysis was used to detect linear
trends in annual ETo, P and AI from 1961−2015. The
slope of the regression, calculated by ordinary least
squares, was used to quantify linear trends (slope)
over time as in Eq. (5):

(5)

where i denotes the index of the year (i = 1, 2, 3, …, s),
and s is the total number of years (s = 55). The posi-
tive slope indicates an increasing trend in the annual
average variable during the period 1961−2015, and
vice versa.

In addition, we used a non-parametric Mann−
Kendall trend test (Sneyers 1990) to determine the
statistical significance levels of the linear trends in
annual hydroclimatic variables in 1961−2015.

2.5.  Contribution assessment

To quantitatively investigate the contributions of
ETo and P to the AI, the trends of ETo and P series,
respectively, were removed to recalculate the AI.
The difference between the original and recalculated
AI could then be derived. The ratio of the difference
divided by the original AI was perceived as the
change in AI caused by the ETo or P trend.

Note that when subtracting the residual trend from
the original series, the trend value at the starting
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time of 1961 was added to guarantee the comparabil-
ity of the detrended and original data as in Eq. (6)
below. The time series tended to be stationary after
the trend was removed, with the first data value
remaining unchanged. Using detrended ETo and
original P, or using original ETo and detrended P, the
AI was recalculated and compared with its original,
generating the changing ratio of the difference in the
AI as in Eqs. (7) and (8). It also varied with time due
to the time-varying nature of the EEMD trend:

(6)

(7)

(8)

3.  RESULTS

3.1.  Changes in reference evapotranspiration

EEMD was performed at each station to decom-
pose the annual ETo time series from 1961−2015, so
that the spatial distribution of the mean periods for
each IMF component could be obtained. Fig. 2 shows
the spatial distributions of the mean period of the
EEMD components of IMF1, IMF2, IMF3 and IMF4
for annual ETo. It showed that IMF1 at most stations
represented a quasi 3 yr oscillation but was not statis-
tically significant. The IMF2 components were
mainly 5 and 6 yr quasi-periodic oscillations, with
significant periods primarily distributed in Northwest
China and the Tibetan Plateau. Mean periods of
IMF3 were predominantly 11 yr in the southeast and
14 yr in the northwest, approximately 31% of which
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Fig. 2. Mean period of the ensemble empirical mode decomposition (EEMD) components (a) intrinsic mode function 1 (IMF1),
(b) IMF2, (c) IMF3 and (d) IMF4 for annual reference evapotranspiration (unit: year). Note that circles with an outline indicate 

statistical significance (p < 0.05)
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were statistically significant, concentrated in the
Northeast Plain, Northwest China and the Tibetan
Plateau. IMF4, at more than 42% of stations, showed
obvious oscillations, with main periods of 21−30 yr in
the southeast and 41−50 yr in the northwest. The spa-
tial pattern of the IMF mean periods indicated that
annual ETo had longer period variations in the north-
west than the southeast.

By calculating the temporal derivatives of the resid-
ual series based on EEMD, the changing rate of an-
nual ETo at each station could be obtained. Fig. 3a−e
shows the spatial distributions of changing rates in
1970, 1980, 1990, 2000 and 2010, respectively. The
most striking nonlinear changes occurred in the areas
south of the middle and lower reaches of the Yangtze
River, where annual ETo were mainly decreasing by
>2 mm yr−1 in 1970, but weakened in 1980 and trans-
lated into increases for some stations in 1990, with
changing rates of −2~2 mm yr−1. Most annual ETo in
this area exhibited increasing trends in 2000 with
more considerable rates, reaching over 2 mm yr−1 in
2010 for most stations. Other areas where annual ETo

showed a decreasing to increasing trend included the
eastern Inner Mongolian Plateau and parts of North-
west China, while the opposite changes were pre-
sented in places such as North China and the south-
ern Tibetan Plateau.

Comparatively, the results show that annual ETo at
most stations (40.84%) displayed obvious negative
linear trends in 1961−2015 across much of the coun-
try, based on the linear trend analysis. Only a small
number of stations (11.17%), scattered across the
study region, showed significant positive linear
trends in ETo (Fig. 3f).

Fig. 4 presents the EEMD components and linear
trends of hydroclimatic variables averaged over the
573 stations during 1961−2015. Generally, IMF1 and
IMF2 represent interannual variability, and IMF3 and
IMF4 represent interdecadal variability. ETo had
quasi 3 yr and quasi 6 yr interannual scale oscillations,
as well as quasi 11 yr and quasi 35 yr interdecadal
scale oscillations (Fig. 4a). IMF4 was statistically sig-
nificant at the 99% confidence level. ETo anomalies
relative to the average of 1961−2015 were mainly pos-
itive in the 1960s and 1970s, were negative from the
1980s to the early 2000s, and returned to positive in
the mid- to late 2000s (Fig. 4b). The linear trend in an-
nual ETo was −0.65 ± 1.64 mm yr−1 (p < 0.01) for the
period 1961−2015. There was also an obvious nonlin-
ear change, indicated by the EEMD residual trend of
annual ETo, which was generally divided into 2 stages
by 1997, decreasing to increasing, with averages rate
of −1.19 and 0.58 mm yr−1, respectively.

3.2.  Changes in precipitation

Fig. 5 shows the spatial distributions of the period
of EEMD components IMF1, IMF2, IMF3 and IMF4
for annual P. During 1961−2015, the main periods of
the IMF1, IMF2 and IMF3 components of annual P
were similar with those of annual ETo. However,
there were only a few stations that had significant
periods. Specifically, IMF2 with significant mean
periods only occurred in about 5% of the stations,
which were mainly located in Southwest China and
western Northwest China. Stations that had signifi-
cant interdecadal periods of IMF3 and IMF4 were
scattered across Northwest and South China. In addi-
tion, mean periods of IMF4 ranged between 21 and
30 yr, especially in the northwest, where the periods
were much shorter than those for annual ETo.

Over the past 55 yr, the patterns of changes in
annual P have been spatially heterogeneous (Fig. 6).
From the respective EEMD trends, the spatial pat-
terns of changing rates in 1970, 1980 and 1990 were
similar, i.e. increases in Southeast China, Northwest
China and the Tibetan Plateau, with the exception of
an area of decreasing P in 1990 that was enlarged to
western Northeast China. However, areas with posi-
tive rates gradually expanded from 2000, especially
for southern Northeast China and North China,
where annual P began to increase. During the same
period, areas with negative rates shrank, such as the
areas south of the middle and lower reaches of the
Yangtze River and eastern Inner Mongolia, where
annual P first increased and then decreased. By 2010,
ap proximately 61% of the stations showed an in -
creasing trend, among which annual P in the eastern
areas generally increased faster than 2 mm yr−1.
From the perspective of a linear trend, annual P had
statistically significant increasing trends (10.47%) on
the southeast coast, northwest inland and the
Tibetan Plateau and significant decreasing trends
(2.62%) in the Loess Plateau and southwestern areas
over the study period (Fig. 6f). Comparatively, the
linear trends mainly reflected the patterns of vari-
ability in annual P before 1990, but as for the incon-
sistent changes after 1990, variability in annual P
could only be unraveled through the nonlinear
analysis.

With reference to the station-averaged data, an -
nual P had the same interannual variation periods
with ETo, but with interdecadal variation periods of
quasi 14 yr and quasi 24 yr (Fig. 4c). Fig. 4d shows
that the annual P anomalies oscillated around zero
during the study period, with an insignificant linear
trend of 0.18 ± 1.93 mm yr−1. More specifically, the
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Fig. 3. Changing rate based on the EEMD trend in (a) 1970, (b) 1980, (c) 1990, (d) 2000 and (e) 2010 and based on the linear
trend during (f) 1961−2015 for annual reference evapotranspiration (unit: mm yr−1). Note that circles with an outline indicate 

statistical significance (p < 0.05)
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residual trend in annual P had a decelerating upward
trend before 1992, and then accelerated with an
increasing trend during 1992−2015. The variance
contribution rates of trend components in annual ETo

and P accounted for 40.00% and 2.77% of their total
variability, respectively, illustrating that the nonlin-
ear trend in annual ETo had a relatively large influ-
ence on the characteristics of the original series,
while the overall trend in annual P contained much
less of the variability.

3.3.  Changes in AI

After decomposing the annual AI during 1961−
2015 using EEMD, the mean periods of IMF1, IMF2,
IMF3 and IMF4 had similar patterns to that of P
(Fig. 7). Most stations had an insignificant quasi 3 yr
oscillation indicated by the IMF1 components. The
IMF2 components showed mainly 5 and 6 yr quasi-
periodic oscillations, with only 4.71% of the stations
having statistically significant periods. The IMF3

270

Fig. 4. EEMD components and linear trends of (a,b) annual reference evapotranspiration, (c,d) annual precipitation and (e,f) 
annual aridity index averaged over 573 stations during 1961−2015
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components indicated 11 and 14 yr oscillations, with
only 5.58% of the stations being statistically signifi-
cant. For IMF4, a few stations (8.55%) with statisti-
cally significant oscillations were scattered with a
mean period of >20 yr.

Fig. 8 illustrates the spatial distributions of changes
in annual AI during 1961−2015. According to the
nonlinear variations in the EEMD trend (Figs. 8a−e),
approximately 76.09% of the stations had reversed
changes during 1961−2015. The annual AI decreased
in 1970 in Northwest China, Inner Mongolia and the
region south of the Huai River, whereas it increased
in the Loess Plateau, North China Plain and east of
Northeast China, mostly exceeding 0.005. In 1980,
the changing rates of the annual AI slowed down in
eastern Northeast China where it increased, and
south of the Huai River where it decreased, mostly
not exceeding 0.005. However, the annual AI re -

versed to increase in eastern Inner Mongolia in 1980.
In 1990, the spatial pattern of the AI changes gener-
ally remained the same as in 1980 except that the
annual AI reversed to decline in eastern Northeast
China and south of the North China Plain. The
changing rates of AI in 2000 were further enhanced
in the same direction as in 1990. However, some of
the stations reversed to decrease in the middle of the
Loess Plateau and reversed to increase south of the
Yangtze River in 2000. By 2010, the areas with
stronger positive rates of AI >0.005 extended to
23.91% from 14.66% in 2000, and included most sta-
tions south of the Yang tze River and several stations
in Northwest China. However, annual AI decreased
in the middle of the Loess Plateau in 2010.

In general, the spatial pattern of linear trends dur-
ing the past 55 yr was quite similar to the changing
rates of the annual AI in 1990. A small number of sta-

Fig. 5. Mean period of the EEMD components (a) IMF1, (b) IMF2, (c) IMF3 and (d) IMF4 for annual precipitation (unit: year). 
Note that circles with an outline indicate statistical significance (p < 0.05)
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Fig. 6. Changing rate based on the EEMD trend in (a) 1970, (b) 1980, (c) 1990, (d) 2000 and (e) 2010 and based on the linear
trend during (f) 1961−2015 for annual precipitation (unit: mm yr−1). Note that circles with an outline indicate statistical 

significance (p < 0.05)
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tions had upward trends in annual AI, which were
mainly located in northern and western Northeast
China, North China, north of the Loess Plateau and
eastern Southwest China. Increasing trends above
0.005 yr−1 were concentrated mainly in the northern
areas. At the same time, >64% of the stations had lin-
ear downward trends in the annual AI, which were
mainly distributed in Northwest China, the Tibetan
Plateau, southern Northeast China, and the region
south of the Huai River. Particularly, the annual AI
had statistically significant decreasing trends in the
northwest arid region, where monotonic decreases in
the EEMD changing rates also occurred.

The average station values from the mean periods
of IMF1, IMF2, IMF3 and IMF4 in AI were quasi
3 yr, quasi 5 yr, quasi 9 yr and quasi 23 yr (Fig. 4e).
The hydroclimatic variables of ETo, P and AI had

similar interannual and decadal-scale quasi-periodic
oscillations indicated by the first 3 IMFs. IMF1 con-
tributed the greatest variance to the original time
series, ex plaining approximately 34.06, 73.60 and
55.49% of the total variability for annual ETo, P and
AI, respectively. It indicated that the AI oscillation
on inter annual to decadal time scales was mainly
influenced by both ETo and P. On timescales longer
than 20 yr, the AI oscillation was mainly attributed
to changes in P.

Averaged from all stations in China, the AI anom-
alies appeared to be mainly positive before 1986, and
after 1986, they were usually negative (Fig. 4f). The
linear trend exhibited a statistically significant de-
creasing trend of −0.02 ± 0.12 yr−1 SD (p < 0.01). At the
same time, the EEMD residue of the annual AI de -
clined continuously but with a decelerating to accel-

Fig. 7. Mean period of the EEMD components (a) IMF1, (b) IMF2, (c) IMF3 and (d) IMF4 for annual aridity index (unit: year). 
Note that circles with an outline indicate statistical significance (p < 0.05)
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Fig. 8. Changing rate based on the EEMD trend in (a) 1970, (b) 1980, (c) 1990, (d) 2000 and (e) 2010 and based on the linear
trend during (f) 1961−2015 for the annual aridity index (unit: yr−1). Note that circles with an outline indicate statistical 

significance (p < 0.05)
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erating rate, and the lowest rate occurred in 1997. The
variance contribution rate of the residual trend in an-
nual AI was 18.30% of its total variability. Comparing
the overall linear trends of the hydro climatic variables,
the nonlinear variations were better suited to further
reveal the time-varying trends and interdecadal tran-
sition of hydroclimatic variables in China.

3.4.  Contribution of changes in annual P
and ETo to AI

We have illustrated the spatial-temporal variations
in the AI that resulted from the synthesized changes
in P and ETo. To quantify the separate contribution
of nonlinear change in a variable in different eco-
 geographical regions in China, we analyzed the
changes in the AI between the original and recalcu-
lated series with the EEMD trend removed (Fig. 9).

Based on eco-geographical regionalization, the re -
sults illustrated that in most regions, the EEMD trend
of ETo or P produced a decrease in the AI over the
past 55 yr. The P trend contributed more than the ETo

trend to the change in the AI in most regions. Com-
pared to the original series, the decline in the AI
caused by the ETo trend averaged −1.38 ~ −7.86%,
with the greatest change occurring in the mid-
 subtropical humid region; the trend of P reduced the
AI by −3.28 ~ −15.23%, on average, and the most
obvious reduction occurred in the tropical humid
region and the northwest arid region. Particularly in
the subtropical and northwest arid regions, the
EEMD trend of both ETo and P led to a decrease in
the AI over the past 55 yr. In the northwest arid
region, the trends of decreased ETo and increased P
during 1961−2015 led to an average declining ratio of
−4.24% and −10.66% for the AI, respectively.

Moreover, there were also some regions where the
AI was increased by the ETo and/or P trends. For ex -
ample, in the northern semi-arid region, the trends of
increased ETo and decreased P during 1961−2015
raised the AI by an average ratio of 1.34% and
9.66%, respectively. These may have negative impli-
cations for the current water scarcity in the semi-arid
region. For temperate regions, tropical regions and
the Tibetan Plateau region, the trends of ETo and
P had differing effects on the AI, among which the
P trend played a leading role in the increase of the
AI in warm temperate humid/sub-humid regions
(15.51%) and in the decrease of the AI in the cold
temperate humid region (−5.43%) and tropical humid
region (−15.23%). The contributions of ETo and P
were comparable in degree but contrary in direction

for the mid-temperate humid/sub-humid region
(−2.68% and 3.20%) and the Tibetan Plateau region
(2.46% and −5.04%).

Nonlinear changes of ETo and P have complicated
impacts on the regional AI in most regions. Because
of the ETo trend, the AI first decreased and then in -
creased in the subtropical and tropical regions,
where P changes contributed to the accelerated
down ward AI after 1997 in the north and mid-
 subtropical regions, with an average ratio of −4.00%
and −5.00% during 1998−2015, respectively. In the
mid-temperate and warm temperate humid/sub-hu-
mid regions as well as in the north semi-arid region,
the AI first increased and then decreased, driven by
nonlinear changes in P. These changes mostly ap-
peared in the 1980s−1990s for the above regions. In
the cold temperate region and northwest arid region,
P in duced the accelerating changes of AI after 1997,
with an average ratio of −13.57% and −20.30%,
 respectively.

3.5.  Correlations with changes in ENSO and PDO

We further explored the relationship of changes in
aridity, as well as its determining factors, with large-
scale climatic oscillations, including the ENSO and
PDO. These relationships were measured by the
Pearson correlation coefficients, and statistical signif-
icance was analyzed using a t-test. Fig. 10 illustrates
the correlations of changes in the 3 variables with the
SSTA over the Nino 3.4 region and the PDO index in
different eco-geographical regions across China.
Generally, in terms of the correlations in different
eco-geographical regions, mid-temperate and warm
temperate humid/sub-humid, north and south sub-
tropical humid, north semi-arid and northwest arid
regions were not appreciably affected, while the
other regions suffered major impacts from the SSTA
and PDO. The cold temperate humid and mid-sub-
tropical humid regions were mainly affected by the
PDO; the Tibetan Plateau region was mainly affected
by the SSTA. Both the PDO and SSTA exerted obvi-
ous influences on the tropical humid region. Consid-
ering the lag effect of the ENSO event and the PDO
phenomenon, the correlation analysis was further
conducted for 1 yr lagged hydroclimatic variables
with large-scale climatic oscillations. The result sug-
gested that the SSTA also had effects on mid-temper-
ate humid/sub-humid, north semi-arid and north-
west arid regions.

Specifically, for the significant correlations, ETo

was negatively correlated with the PDO in both cold
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temperate and mid-subtropical humid regions. For
the mid-temperate humid/sub-humid region, the
SSTA was positively correlated with the lagged P.
P was negatively associated with the SSTA in the

Tibetan Plateau region. Both SSTA and PDO were
negatively related to P in the tropical humid region
where ETo was positively correlated with the SSTA
and the lagged P was also negatively correlated with
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Fig. 9. Changes (%) in the aridity index (AI) between the original and recalculated series with the EEMD trend removed in differ-
ent eco-geographical regions. A negative value indicates that a change in reference evapotranspiration (ETo) or precipitation (P)
causes a decrease in the AI, and a positive value indicates that an ETo or P change causes an increase in the AI. Note differences 

in y-axis scales
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the PDO. For both north semi-arid and northwest arid
regions, the lagged ETo was negatively associated
with the SSTA, yet the lagged P was positively asso-
ciated with the SSTA.

Since large-scale climatic oscillations influenced
the AI by affecting ETo and P, the significant relation-
ships of regional AI with the SSTA and PDO were
reflected as follows. The lagged AI was negatively
correlated with the SSTA in the mid-temperate
humid/  sub-humid, north semi-arid and northwest
arid regions. Both the SSTA and PDO were positively
correlated with the AI in the tropical humid regions
where the lagged AI was also positively correlated
with the PDO. For the cold temperate and mid-sub-
tropical humid regions, as well as the Tibetan
Plateau, there were obvious correlations between
ETo or P and large-scale climatic oscillations, but the
correlations between the SSTA or PDO and the AI
failed the significance test.

4.  DISCUSSION

4.1.  Nonlinear changes in aridity during
1961−2015

The linear trends of AI indicated in this study are in
line with the results of Huang et al. (2017) and Chen
et al. (2017), who identified a wetting trend distrib-
uted in regions west of 100° E, mainly including arid
regions and the Tibetan Plateau, and a drying trend
in a large part of regions east of 100° E, including
semiarid and cold and temperate semi-humid regions

in the past half century. Moreover, the climate system
has evolved in a nonlinear and chaotic way. The
EEMD is part of non-stationary methods such as net-
works, tipping point predictions and regime states,
which lead to new physical insights into the climate
system (Franzke 2014). Our study quantified the non-
linear changes of aridity in China during 1961−2015
based on the EEMD. Our results indicated that a con-
tinuous wetting trend occurred in Northwest China,
which generally agreed with the findings of other
studies (Huo et al. 2013, Liu et al. 2013, Wang et al.
2015). Consistent with our study, drying trends in
Southwest China and east of Inner Mongolia were
also reported in previous studies, e.g. Sun et al. (2016)
and H. Zhang et al. (2016). Unlike previous studies,
we further found that AI had nonlinear changes from
decreasing to increasing mainly in Inner Mongolia
and in the areas south of the middle and lower
reaches of the Yangtze River, and changes from in-
creasing to decreasing in the southern part of North-
east China, the east of the Loess Plateau and the
southern North China Plain.

Compared with nonlinear changes in precipitation
and aridity, there was a clear reversal for the nation-
ally averaged ETo, which was detected to be between
1997 and 1998 in China as a whole, and the reversal
trends in the ETo were also detected at 75.91% of the
stations in China. The reversal from decreasing to
increasing ETo estimated in this study is consistent
with research by Liu et al. (2011), who reported a
decrease in annual pan evaporation during 1960−
1991 and increases since 1992 through subsection
linear fitting. A recent study also revealed a gener-
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Fig. 10. Correlations of reference evapotranspiration (ETo), precipitation (P) and the aridity index (AI) with the sea surface
temperature anomaly (SSTA) over the Nino 3.4 region and the Pacific Decadal Oscillation (PDO) index in different eco-

geographical regions
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ally decreasing ETo trend during 1956−2015 and an
abrupt increase in the 1980s in most areas of China,
except for the Tibetan Plateau in the 1990s (Fan et al.
2016). Similarly, although ETo decreased signifi-
cantly from 1981−1997, it has significantly increased
since 1998 on the Tibetan Plateau (Yin et al. 2013).
Nevertheless, the recent trend reversal suggested by
these studies did not alter the overall downward
trend of ETo during the last several decades.

4.2.  Attribution of the hydroclimatic changes

There are complicated mechanisms to explain the
changes in the hydroclimatic variables. Our study in-
dicated that the impacts from ETo and P on the AI
have large spatiotemporal variability due to their
nonlinearity. In particular, their relative contributions
differed greatly among the climate regions. The
EEMD trend in P contributed more than the ETo trend
to the change in the AI in most eco-geographical re-
gions in China during the past 55 yr, mainly including
the temperate regions and western regi ons. Our re-
sults confirmed previous studies documenting contri-
butions to regional aridity changes. For instance, it
was estimated that the increase in precipitation has
contributed more than the decrease in ETo to the de-
creased AI in Northwest China over the last 5 dec -
ades (Huo et al. 2013). Increasing precipitation was
indicated to be the dominant factor of the wetter cli-
mate in the Tibetan Plateau region by Gao et al.
(2015). It should be mentioned that the limited
ground-based precipitation information owing to a
harsh environment on the Tibetan Plateau would pro-
duce more uncertainties in the regional results (Liu et
al. 2017). Even though the AI did not explicitly show a
reversal for China as a whole, the changing rate of
the AI became positive since the 1990s in the subtrop-
ical regions due to the reversal in ETo and P in the
1990s, indicating a potential shift from wet to dry. Re-
lationships among P, ETo and AI research for longer
periods and on seasonal scales are needed to verify
these results.

Aerodynamic and radiative components primarily
determined the dynamics of annual atmospheric eva -
porative demand (McVicar et al. 2012b). The domi-
nant factor varied for different regions. During the
last several decades, the widely decreased an nual at-
mospheric evaporative demand has been mainly at-
tributed to declining near-surface wind speed in the
Tibetan Plateau (Chen et al. 2006, Y. Zhang et al.
2007, X. Zhang et al. 2009), North China (Xu et al.
2006, Yin et al. 2010) and some other mid-latitude re-

gions worldwide (McVicar et al. 2012a). Moreover,
solar radiation is the dominant source of energy at the
land surface. Our previous study suggested that the
reduced sunshine duration was the decisive factor to
explain the decreasing trend in ETo in south China in
the past decades (Yin et al. 2010). At a global scale,
solar radiation has changed from dimming to bright-
ening, with a reversal occurring around ca. 1990
since the 1950s, which was possibly due to the inter-
action between direct and indirect ef fects of aerosols
(Wild et al. 2005). The reversed trend is consistent
with the changes in annual ETo for south China in this
study. Rising temperature was suggested to be
largely responsible for the recent up ward trend in
pan evaporation observations in China (Liu et al.
2011). Also, the recent increase in ETo values was af-
fected by the aggregated emission of greenhouse
gases and air pollution from energy consumption
(Fan et al. 2016).

Large-scale climatic oscillations, including ENSO
and PDO, have had substantial links to the changes
in the hydroclimatic variables in some regions in
China. Specifically, the 1 yr lagged responses of ETo

and P to the SSTA were more pronounced than the
contemporary correlations in the medium temperate
zone extending from 35 to 50° N. Precipitation in
northwestern China was probably also related to
westerly circulation and topographical factors (Shi et
al. 2016), and other climate indices, such as the Arctic
Oscillation and North Atlantic Oscillation, were re -
ported to play an important role in the drought evo-
lution as well (Wang et al. 2015). Zhang et al. (2017)
found that the impact of ENSO on AI overweighed
the Arctic Oscillation effects on AI in northern China
during the past 5 decades, particularly on the time -
scale of 2−6 yr. Moreover, the multidecadal variabil-
ity of aridity in north China was significantly corre-
lated with the PDO phase changes during the last
century (Qian & Zhou 2014). Furthermore, multiscale
characteristics of the relationship between large-
scale ocean−atmosphere interactions and aridity
need to be examined in future studies. Exploring
these relationships would help to improve the ability
to forecast regional drought (Wang et al. 2014, Z. Liu
et al. 2016, Xiao et al. 2016, Zhang et al. 2017).

This study provided a deep and promising perspec-
tive for detecting and attributing the hydrological re-
sponse to climate change, which would have pro-
found implications for understanding hydrological
processes and estimating water use efficiency and
the response of both of these factors to climate
change, as well as agricultural irrigation and optimal
allocation of water re sources. Besides aridity change,
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human activities also have significant impacts on hy-
drological processes, such as actual evapotranspira-
tion and runoff (Liu et al. 2012, Douville et al. 2013, B.
Zhang et al. 2016). Changes in vegetation type, due
to deforestation for example, can play an important
role in partitioning the catchment water yield (Wood-
ward et al. 2014, Q. Liu et al. 2016). Indeed, in regions
with intensive human activities like China’s Loess
Plateau where the Grain-for-Green project was im-
plemented, ecological restoration and more efficient
water management practices could have much larger
contributions to streamflow changes than those of cli-
mate change (Liu & McVicar 2012, Liang et al. 2015).
The above implies the importance of quantifying the
interactive role that hydroclimatic changes and an-
thropogenic influences play in regional hydrological
processes and water resources management.

5.  CONCLUSION

Based on 573 stations and a nonlinear and nonsta-
tionary processing method using EEMD, we investi-
gated the nonlinear variability and spatial differ-
ences in aridity and their influencing climatic
variables in China from 1961−2015. Furthermore, the
contributions of ETo and P on the AI and their links to
variations in the ENSO and PDO were also explored.
The primary conclusions are as follows:

(1) Aridity had evident nonlinear variations with
spatial differences. Particularly, 57.42% of the sta-
tions had decreased AI during 1961−2015. About half
of these stations showed reversals from decreasing to
increasing AI, primarily distributed in areas south of
the middle and lower reaches of the Yangtze River. In
contrast, increased AI with reversals, from increasing
to decreasing (20.94%), largely focused on the east of
the Loess Plateau, which indicated a wetter trend
emerging since the late 1990s, although a relatively
arid status was still dominant.

(2) The majority of the stations experienced re -
versals from downward to upward trends of ETo

(53.92%), and mostly occurred around the 1990s in
South China and Northwest China, where the en -
hance ment effects of such reversed ETo trends on AI
were offset by the increment of P. If the offset degree
was large enough, it could induce a continuously
downward AI, as observed at the majority of stations
in Northwest China.

(3) At the regional scale, the nonlinear changes in
AI were determined by combined effects of ETo and
P. Comparatively, the contribution of the P trend to
the regional AI was larger than the ETo trend, except

in the subtropical regions, where ETo variations also
played a key role. The significant spatial difference
and distinct multiscale variations of aridity both sug-
gest that ETo and P should be synthesized, and non-
linear changes could provide more specifics on
hydroclimatic variations.
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