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1.  INTRODUCTION

The Yangtze River flows through south-central
China and originates from the Qinghai Tibetan
Plateau. The river flows eastward for more than
6300 km and drains an area of >1.94 × 106 km2 before
finally discharging into the East China Sea (Liu et al.
2007). As one of the major rivers of the world, the

Yangtze River plays a critical role in the global water
cycle, sediment cycle, energy balance, climate change
and ecological development, and it exhibits seasonal
variability in its water levels and area because of
monsoon-driven precipitation (Li et al. 2011, Zeng et
al. 2013). Thus, high water  levels and an increased
area are observed in the wet season from May to Oc-
tober and low water levels and a reduced area are ob-
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served in the dry season from November to the follow-
ing April (Li et al. 2011).

The Three Gorges Dam (TGD) is the largest hydro-
electric project in the world. It is located 44 km
upstream of Yichang station, which is the control
point of the upper Yangtze River basin. Many lakes
are located downstream of the TGD. Among these,
Poyang Lake (28° 11’ to 29° 51’ N, 115° 31’ to 117°
06’ E) and Dongting Lake (28° 30’ to 29° 38’ N, 112°
18’ to 113° 15’ E) are the 2 largest freshwater lakes in
China (Feng et al. 2013, Q Zhang et al. 2014). Both
lakes receive water from tributaries as well as from
the Yangtze River, and both empty into the Yangtze
River (Du et al. 2011, Wu et al. 2013).

The TGD project began in 1994, and commission-
ing started in 2003; however, limited regulation
capacity was provided during the initial stage be -
tween 2003 and 2005. A transitional stage began in
2006, when the water level of the dam reservoir was
raised to 156 m; this stage was completed in 2009
(Deng et al. 2016). During normal operations, the
water level fluctuates seasonally between 145 and
175 m in response to water release and storage, and
the storage capacity varies between 17.2 and 39.3 km3

(Yang et al. 2014). Previous studies have shown that
the damming of rivers has impacted natural wetlands
around the world (Chai et al. 2009, Wu et al. 2013),
and that dams inevitably change river flow regimes
(Wu et al. 2013). Although the Yangtze has proven to
be a hydrologically resilient river (Chen et al. 2014),
changes have occurred in the monthly and seasonal
flows that are not detectable at the annual scale
(J Chen et al. 2016). The TGD has been in operation
since 2003, and it has affected the discharge and
water levels of the Yangtze River and substantially
altered the downstream flow regime. The signifi-
cance of these effects varies between seasons and
locations along the river, and the seasonal variations
largely follow the seasonal impoundment of the TGD
and its release of water. Moreover, the magnitude of
the variation is dependent on the impoundment,
release rate and seasonal flow of the river which is
determined by the regional climate (J Chen et al.
2016, Y Wang et al. 2016). These variations have
caused considerable upward trends in the outflow of
lakes to the river, and most lakes in the Yangtze River
basin have experienced significant downward trends
in water storage during this period, with the total
water storage of the lakes decreasing by 14 million
m3 mo−1 (Guo et al. 2012, Cai et al. 2016). Dongting
Lake and Poyang Lake have exhibited serious reduc-
tions in water area since 2003, and the wetland area
has in creased; moreover, the season with low water

levels in the lakes is occurring sooner than before the
dam was constructed, and the duration of low water
levels has increased (Yuan et al. 2015, Mei et al.
2016).

Many major rivers worldwide are regulated by
dams, which induce alterations in flow, sediment, and
water temperature regimes (Pegg et al. 2003, Nilsson
et al. 2005, Syvitski et al. 2005, Yang et al. 2008), Wol-
demichael et al. (2014) indicated that dam-triggered
land use and land cover can change regional temper-
ature and precipitation patterns. Although the TGD
was built to realize flood control, navigation and hy-
dropower generation, the project has created envi-
ronmental problems that have attracted the attention
of environmental activists, researchers and communi-
ties around the world. Studies have evaluated the
 effects of the TGD on the hydrology (Nakayama &
Shankman 2013a, Jiang et al. 2014, Liu et al. 2016, Y
Wang et al. 2016), sedimentation (S Yang et al. 2002,
2007, 2011, Z Yang et al. 2006, Xu & Milliman 2009, Li
et al. 2011, Dai et al. 2016, Du et al. 2016, Zhou et al.
2016) and ecosystem (Müller et al. 2008, Ye et al.
2012, Li et al. 2013, Nakayama & Shankman 2013b, S
Chen et al. 2016, Li et al. 2016, Ma et al. 2016, Y
Wang et al. 2016) in the region. The effect of the TGD
on regional climate has also been analyzed in previ-
ous studies. For instance, Yao et al. (2013) noted that
the Three Gorges reservoir increased the air temper-
ature in winter and decreased the air temperature in
summer. Moreover, after the impoundment, most
parts of the Three Gorges Reservoir area reported a
tem perature rise (Jiao et al. 2013, Yao et al. 2013),
with the numbers of high and low temperature days
in the reservoir area experiencing a 32 percent in-
crease and 21 percent decrease, respectively (Jiao et
al. 2013). Precipitation declined in most of the reser-
voir area after the impoundment (Jiao et al. 2013),
and has been significantly reduced in the Xiangxi
River  watershed in September (Han et al. 2014). Wu
et al. (2006) suggested that the climatic effect of the
TGD is on a regional scale (100 km) rather than a
local scale (10 km), and that the construction of the
TGD has  increased precipitation in the region be-
tween the Daba and Qinling mountains. However,
most studies have focused on the reservoir area,
whereas climate change in the regions downstream
of the TGD is rarely reported. Previous research has
shown that climate change affects the land surface
(Bossa et al. 2014, Jiang & Zhang 2015, Stagl & Hat-
termann 2015, Congjian et al. 2016, Fay et al. 2016, S
Kim et al. 2016, Naz et al. 2016, Qin et al. 2016, Toure
et al. 2016, G Wang et al. 2016), and that land surface
alterations can also impact regional climate (Gao et
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al. 2014, Cao et al. 2015, Chacón et al. 2016, Halder et
al. 2016, H Kim et al. 2016, Sylla et al. 2016). The TGD
has altered the hydrological regime in the middle
reaches of the Yangtze River (Y Wang et al. 2016), but
the effect is  diminished in the lower reaches of the
Yangtze River (Guo et al. 2012). Thus, an interesting
question arises: How have changes in the hydrologi-
cal regime and underlying surface affected the other
climatological variables in the middle reaches of the
Yangtze River downstream of the TGD? A detailed
analysis is needed to better inform the TGD opera-
tions and ecological management of the Yangtze
River. In this study, we analyzed changes in several
climatological variables (including daily mean, maxi-
mum, minimum surface temperatures, daily accu -
mulated pre cipi tation and daily diurnal temperature
range) in the middle reaches of the Yangtze River
based on ob servations, assessed the mutation time of
the number of high and low temperature days via the

Mann-Kendall (MK) test, and used remote sensing
data to  investigate changes in the vegetation growth
status. Our study aimed to determine the regional cli-
mate changes caused by anthropogenic hydrological
re gime changes and to provide a reference for further
research.

2.  STUDY AREA AND DATA RESOURCE

Because the impacts of the TGD on river discharge
rapidly weaken with distance from the TGD (Guo et
al. 2012), we set the study area in the middle reaches
of the Yangtze River, which encompasses Hubei,
Hunan and Jiangxi provinces (24° 27’ to 33° 18’ N,
108° 20’ to 118° 31’ E) (Fig. 1).

This study used a meteorological data set that
includes the daily surface air mean, maximum and
minimum temperatures, and daily accumulated pre-
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cipitation obtained from the National Meteorological
Information Center of the China Meteorological
Administration (Li et al. 2017) (http://data.cma.cn).
The data set includes data from 824 meteorological
stations covering mainland China (16° 32’ to 53° 29’ N,
75° 11’ to 132° 58’ E), most of which were established
in the 1950s. The data have been quality controlled
(including gross error limit checks, internal and time
consistency checks, space and time consistency checks,
manual verification and correction) by the National
Meteorological Information Center of the China
Meteorological Administration. Based on the com-
pleteness of the data, times series covering the period
1971−2015 were ultimately selected from 90 of the
92 stations in the study area, and the limited amount
of missing data was corrected by the average value
of 4 nearby stations. The remote sensing data utilized
in this study are the Moderate Resolution Imaging
Spectrometer (MODIS) Terra Vegetation Index
Monthly L3 Global 1 km product, MOD13A3, and the
Land Surface Temperature (LST) 8-Day L3 Global
1 km product, MOD11A2, obtained during 2001−2015
by the National Aeronautics and Space Administra-
tion (NASA). The MODIS vegetation index products
are designed to provide consistent spatial and tem-
poral comparisons of global vegetation conditions
that can be used to monitor photosynthetic activity
(Justice et al. 1998). Among the 2 MODIS vegetation
indexes, the normalized difference vegetation index
(NDVI) and the enhanced vegetation index (EVI), the
NDVI is sensitive to chlorophyll contents, whereas
the EVI is more responsive to canopy structural vari-
ations, including the leaf area index, canopy type,
plant physiognomy and canopy architecture (Gao et
al. 2000). The NDVI displays asymptotic saturation
in high biomass regions, whereas the EVI remains
 sensitive to canopy variations. In addition, the EVI
has a stronger linear relationship with gross primary
production than the NDVI (Huete et al. 2002, Xiao et
al. 2004). In our study, we focused on the analysis of
the EVI and LST to analyze the dynamics of the pre-
dominantly lush vegetation and land surface temper-
ature in the middle reaches of the Yangtze River.

3.  METHODS

3.1.  Study period

Based on the construction periods of the TGD de -
scribed in Section 1, we divided the study period into
3 stages: the pre-construction stage (stage 1) be -
tween 1971 and 1994, the construction stage (stage 2)

between 1995 and 2006 and the commissioning stage
(stage 3) between 2007 and 2015 when the TGD
began to affect the downstream river flow. The mete-
orological data cover all 3 stages, but the MODIS
data only cover parts of stage 2 and stage 3.

3.2.  Climatic factors

We investigated differences in climatic factors be -
tween 2 stages (from stage 1 to stage 2 and from
stage 2 to stage 3) in summer (June to August) and
winter (December to February), respectively. We used
the inverse distance weight interpolation method to
obtain the results on the surface. The variable names
are consistent throughout all formulas (Eqs. 1−24).

3.2.1.  Temperature

The daily mean temperature in both summer and
winter, the daily maximum temperature in summer
and the daily minimum temperature in winter were
examined to investigate seasonal changes from stage
1 to stage 2 and from stage 2 to stage 3. In this study,
global warming was considered by using a total of
518 meteorological stations from a broader area (yel-
low area in Fig. 1; approximately 6 times larger than
the study area and without high altitude and extreme
terrain areas), which encompassed the 90 stations of
our study area, to eliminate the interference of global
warming (see Sections 4.1 and 4.2). The temperature
changes of a single station from one stage to the next
can be expressed as follows:
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represent the mean summer daily mean
temperatures, the mean summer daily maximum
temperatures, the mean winter daily mean tempera-
tures and the mean winter daily minimum tempera-
tures at station n in stage xi (i = 1,2,3), respectively.

denote the re -
spec tive temperatures of the wider area in stage xi.
The above variables are expressed as follows:

                                             (5)

                                             
(6)

                                             
(7)

                                             
(8)

                                             
(9)

                                           (10)

                                           
(11)

                                           (12)

where are the sum -
mer daily mean temperatures, the summer daily
maximum temperatures, the winter daily mean tem-
peratures and the winter daily minimum tempera-
tures at station n on the j th day in the i th year, respec-
tively; ki depends on the number of days of summer
or winter in year i; for stage x1, we used t1 = 1971, and
t2 =1994; for stage x2, t1 = 1995, and t2 = 2006; and for
stage x3, t1 = 2007, and t2 = 2015. The constant N is
518 and denotes the total number of meteorological
stations used to define the wider area.

The diurnal temperature range was defined as
 follows:

                                           (13)

                                           (14)

where represent the mean summer
and winter diurnal temperature range (Section 4.3) at
station n in stage xi, respectively.

3.2.2.  Precipitation

The change in precipitation can be expressed as
follows:

                                           (15)

                                           (16)

                                           (17)

                                           (18)

where are the changes in
accumulated precipitation in summer and winter
(Section 4.5) at station n from stage x1 to stage x2,
respectively; are accumulated pre-
cipitation in summer and winter  at station n at stage
xi, respectively; are the daily precipi -
tation in summer and winter at station n on the j th day
in the i th year, respectively.

3.2.3.  Number of high and low temperature days

We determined the threshold from the 95th (5th)
percentile of all data in a single station and then
defined a day for that station as a high (low) temper-
ature day when the daily maximum (minimum) tem-
perature was higher (lower) than this threshold.
Since the threshold for each individual station was
based on its own original climate data, the threshold
combines extreme characteristics with local climatic
characteristics. The threshold temperature Ts max th or
Tw min th can be defined as follows:
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where hij(n) and l ij(n) represent the number of high
and low temperature days, respectively; yi depends
on the number of days in year i; and H xi(n) and Lxi(n)
represent the frequency of high temperature days in
summer and low temperature days in winter (Section
4.4) in stage xi. In addition, the frequency of high and
low temperature days in every month (months 6,7
and 8 in summer; months 12,1, and 2 in winter) was
calculated (see Fig. 6).

3.3.  Mann-Kendall test

The MK test (Mann 1945, Kendall 1975) deter-
mines the trend based on the statistic:

                                           (25)

where xi and xj are elements of a sequential data
series, with i = 1,2,3,...n – 1 and j = 1,2,3,...n – 1; n is
the sample size; and

                                           (26)

When n ≥ 8, the statistic, S, follows an approxi-
mately normal distribution with the mean and vari-
ance expressed as follows (Marengo et al. 1998, Joshi
et al. 2016, Ruml et al. 2017):

                                           (27)

where ti is the number of ties of extent i. The stan-
dardized test statistic, ZMK, is expressed as follows:

                                           (28)

Under the null hypothesis, the assumption is a lack
of trends; however, the null hypothesis will be
rejected when the absolute value of ZMK is >1.96 at
a significance level of 0.05.

When the MK method is used to test the aberrance
of the series, the test statistic is expressed as follows:

                                           (29)

                                           
(30)

E (sk) = k(k + 1)/4                        (31)

Var(sk) = k(k – 1)(2k + 5)/72               (32)

where sk is a cumulative number, E is average, Var is
variance, α is judgement, UFk is the forward sequence,
and the backward sequence, UBk, is calculated using
the same equation but with a reversed series of data.
The null hypothesis (no step change point) is rejected
if any of the points in the forward sequence UFk are
outside the confidence interval. A positive UFk value
denotes a positive trend and a negative value denotes
a negative trend; if the value exceeds the significance
level, it indicates a significant trend (Wang et al. 2012,
Ye et al. 2013). The se quen tial MK test is often used to
determine the approximate time of occurrence of a
change point by locating the intersection of the for-
ward and backward curves of the test statistic. An in-
tersection point of UFk and UBk located within the
confidence interval indicates the beginning of a step
change point (Gerstengarbe & Werner 1999, Ye et al.
2013), which is defined as the mutation time in this
paper. Generally, the confidence level was set at
0.05. We calculated the yearly average of the number
of high and low temperature days in  different regions,
and investigated mutation times of the number of the
high and low temperature days in different regions
using the MK test.

3.4.  EVI and LST trends

We processed the EVI and daytime LST data to
determine the seasonal means and then performed a
yearly linear trend analysis, and tested the signifi-
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cance of results via t-tests (0.05 significance level).
The data were processed by geometric correction
and radiometric correction. To correct for pixels that
did not show data in the 8-day LST images because
of cloud cover, we only took into account valid data
points to calculate the seasonal means.

4.  RESULTS

4.1.  Daily mean temperature

We analyzed the changes in daily mean tempera-
ture during the summer season (Eq. 1) from stage 1 to
stage 2 and from stage 2 to stage 3. From stage 1 to

stage 2, positive values during summer occurred
mostly in the northern study area, and the maximum
value was 0.56°C in the Wuhan region (Fig. 2a). From
stage 2 to stage 3, there were positive changes in the
south and negative changes in the north with the
Yangtze River as the dividing line. High negative
values were distributed in the Danjiangkou region
and the Wuhan region, and a minimum value of
−0.60°C was observed in the Wuhan region. High
positive values were distributed along the
Xiangjiang River and the Ganjiang River, with
a maximum value of 0.74°C observed in the south-
ern region of Dongting Lake. Only the southeastern
part of the study area showed significant changes
(Fig. 2b).
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Fig. 2. Spatial distribution of changes in (a,b) summer and (c,d) winter daily mean temperature from (a,c) stage 1 to stage 2
and (b,d) stage 2 to stage 3. Dark shaded regions with horizontal lines: significant at the 95% confidence level; statistical 

significance was evaluated based on 2-tailed Student’s t-tests (the same applies to Figs. 3,4, 5 & 8)
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Fig. 2c shows the changes in daily mean temper-
ature during the winter season (Eq. 2) from stage 1
to stage 2. Most of the study area showed a down-
ward trend in daily mean temperature, except the
Wuhan region and the Poyang Lake region; the
only significant area was in the Wuhan region.
From stage 2 to stage 3, a warming zone was
observed along the Xiangjiang River, and the max-
imum value was 0.53°C in the Dongting Lake
region, whereas a cooling zone was found in the
Wuhan region, and the significant areas were scat-
tered sporadically in the northern study area. The
winter daily mean temperature in the Dongting
Lake region showed an upward trend, which was
similar to that of the summer daily mean tempera-
ture (Fig. 2d).

4.2.  Daily maximum and minimum temperature

Fig. 3a maps the changes in daily maximum tem-
perature during the summer season (Eq. 3) from
stage 1 to stage 2. Whereas the southern region
showed a decrease in summer daily maximum tem-
perature from stage 1 to 2, the northern region
exhibited an increase. From stage 2 to stage 3, the
pattern reversed, such that the southern study area
became a warming zone, and the northern area
became a cooling zone. Regions to the south of the
Yangtze River experienced an increase in the sum-
mer daily maximum temperature. High positive val-
ues occurred around the lakes and rivers, and the
maximum was 0.68°C in southern Jiangxi Province.
Furthermore, the significant areas were mainly dis-
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Fig. 3. Spatial distribution of changes in (a,b) summer and (c,d) winter daily maximum temperature from (a,c) stage 1 to 
stage 2 and (b,d) stage 2 to stage 3. Other datails as in Fig. 2
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tributed along the Ganjiang River. However, the
summer daily maximum temperature decreased in
Hubei Province, which showed a minimum value of
−0.89°C (Fig. 3b).

From stage 1 to stage 2, large positive changes oc-
curred in daily minimum temperature during the win-
ter season (Eq. 4) in the northeastern study area, and
the maximum value of 1.10°C was observed in the
Wuhan region, which showed a significant increase
(Fig. 3c). Large negative changes were observed in
the Three Gorges region. From stage 2 to stage 3, the
Wuhan region became a significant cooling zone, and
featured a minimum value of −1.57°C, whereas re-
gions along the Xiangjiang River and the Dongting
Lake were warming zones (a maximum of 0.77°C was
observed in the Dongting Lake region; Fig. 3d).

4.3.  Diurnal temperature range

Fig. 4a shows a downward trend in the summer di-
urnal temperature range (Eq. 13) from stage 1 to stage
2 distributed in the middle of the study area. Small
 areas mostly located in western Hubei Province had
positive values. From stage 2 to stage 3, the areas
that showed increased summer diurnal temperature
ranges (Fig. 4b) were mostly located in the Wuhan
 region and the Yuanjiang River region (maximum
value of 0.71°C was observed in the Wuhan region),
whereas decreases were observed in the northwestern
and northeastern study area, the significant areas
were mainly in the middle northern study area.

Changes in the winter diurnal temperature range
(Eq. 14) were observed in the middle of the study area,
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Fig. 4. Spatial distribution of changes in (a,b) summer and (c,d) winter daily maximum temperature from (a,c) stage 1 to 
stage 2 and (b,d) stage 2 to stage 3. Other datails as in Fig. 2
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which showed negative values from stage 1 to stage 2,
but there was no significant area (Fig. 4c). From stage
2 to stage 3, the Wuhan region experienced an
increase in the diurnal temperature range, with a max-
imum value of 1.55°C. The southern and western part
of our study area experienced small changes in the
winter diurnal temperature range, and a minimum
value of −0.68°C was observed in the southern Three
Gorges region (Fig. 4d). In general, significant changes
could only be found on rather local scales.

4.4.  Number of high and low temperature days

Fig. 5a shows that small areas exhibited a decrease
in the frequency of summer high temperature days

(Eq. 23) from stage 1 to stage 2, and that these areas
were in western Poyang Lake and in the Three
Gorges region. High positive values were concen-
trated in the northern study area. From stage 2 to
stage 3, the northern study area showed a downward
trend in the frequency of summer high temperature
days, whereas the southern study area showed an
upward trend, and the significant area was located
along the Ganjiang River (Fig. 5b).

The frequency of low temperature days in winter
(Eq. 24) generally decreased over the whole study
area from stage 1 to stage 2, and high values were
concentrated in the Dongting Lake region, the Po -
yang Lake region and the Wuhan region; the mini-
mum value was −14.5 d yr−1 (Fig. 5c). However, the
change observed from stage 2 to stage 3 were com-
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Fig. 5. Spatial distribution of changes in (a,b) summer and (c,d) winter daily maximum temperature from (a,c) stage 1 to 
stage 2 and (b,d) stage 2 to stage 3. Other datails as in Fig. 2
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pletely different from that from stage 1 to stage 2,
with the frequency of low temperature days in winter
increasing in the study area. High positive values
were observed in the northern study area, and the
significant area was located in the Wuhan region
(Fig. 5d).

According to Fig. 5, the major changes in the fre-
quency of low temperature days were mainly con-
centrated in the northern study area, and the major
changes in the frequency of high temperature days
were mainly concentrated in the southern study area.
We further studied the monthly frequencies of high
temperature days in summer and low temperature
days in winter for southern and northern study areas
during the 3 stages. In Fig. 6, high temperature days
in each summer month in the southern study area
occurred more frequently in stage 3 than in the first
2 stages. The frequency of high temperature days
increased from 1.1 to 2.0 d mo−1 in June; from 9.0 to
11.1 d mo−1 in July; and from 6.7 to 9.7 da mo−1 in
August. In the northern area, the frequency of high
temperature days decreased from stage 2 to stage 3
in June and July. However, the frequency of low tem-
perature days decreased from stage 1 to stage 2 and
increased from stage 2 to stage 3, except in the south-
ern area in December, and the northern area showed
a stronger increase than the southern area from stage
2 to stage 3.

Changes in the number of high and low tempera-
ture day series in the southern and northern study
areas and the corresponding MK test results are
shown in Fig. 7a–d. As depicted in Fig. 7a, the num-
ber of high temperature days in the southern area
showed a long-term upward trend that was gradual
from 1985 to 2015 and then rapid from 2004 to 2015.

Fig. 7b shows that the UF values for the number of
high temperature days were below zero from
1971−1977 and that they did not surpass the critical
value lines. Afterwards, the UF values were was near
the zero line until 2003; however, an abrupt change
occurred in the variables in 2002−2003 at the 0.05
significance level, and the intersection point of the 2
curves was located within the confidence interval.
An obvious increasing tendency began in 2003, and
this trend was significant during the period 2010−
2015 because the values of UF were above the critical
limit. As shown in Fig. 7c, the number of low temper-
ature days in the northern study area showed a
downward trend from 1971−2002 and an upward
trend thereafter. The UF curve intersected with the
UB curve in 1984−1985 within the confidence inter-
val (Fig. 7d), and the values of UF were below zero
after 1987. The curve penetrated the critical line for
the period from 1995−2009, which indicated a signif-
icant decrease. However, the UF curve increased
after 2006 and then rose upward through the critical
line in 2010. For the Dongting Lake region and the
Poyang Lake region (Fig. 7e,i) the mutation time of
high temperature days was in 2001, and a marked
upward trend was observed thereafter. The number
of low temperature days in these 2 regions (Fig. 7h,l)
did not show the same changes observed in the
northern study area, where the UF curve increased
after 2006 and then rose upward through the critical
line. In the Wuhan region (Fig. 7p), a more obvious
tendency was observed compared with the northern
area (Fig. 7d). The UF curve of the number of high
temperature days in the Wuhan region (Fig. 7n)
did not penetrate the critical line as in the southern
study area.

43

Fig. 6. Monthly frequencies of high temperature days in summer and low temperature days in winter for southern and north-
ern study areas during the 3 stages
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4.5.  Precipitation

Accumulated precipitation for the entire season
was calculated for both summer and winter (Eqs. 15
to 18). In summer, the precipitation levels increased
in the Dongting Lake region and in most of the east-
ern study area from stage 1 to stage 2, with a maxi-
mum value of 21.8 mm; nevertheless, there was no
significant area (Fig. 8a). Fig. 8b indicates that the
precipitation decreased in the middle study area,
with a minimum value of −17.6 mm from stage 2 to
stage 3. Small precipitation increases were observed
in certain areas, including the Three Gorges region,
eastern Hubei Province and northern Jiangxi Pro vince,
and the maximum value was 7.0 mm in the Three
Gorges region. The significant areas were mainly
located in the Dongting Lake region.

In winter, an area with markedly enhanced precip-
itation from stage 1 to stage 2 was observed along the
Yangtze River that stretched up to the Yuanjiang
River, and a maximum value of 7.0 mm was observed
in the southwestern Dongting Lake region (Fig. 8c).
From stage 2 to stage 3, most of the study area
showed dryer conditions. The Yuanjiang River re -
gion near Dong ting Lake showed decreased precipi-
tation, and the minimum value in the decreasing
zone was −8.3 mm. The significant areas covered the
Dongting lake region and the northern study area.
The only zones with increasing precipitation were in
the southern and northeastern regions of Jiangxi
Province (Fig. 8d).

4.6.  The EVI and LST

We calculated the linear trends of the EVI and LST
in summer and winter from 2006−2015. The summer
EVI trend in a majority of the study area (71.1%) was
positive; the percentage of the area in green (Fig. 9a),
which showed a significant increase, was 12.8%. The
percentage of the area in purple, which showed neg-
ative values, was 28.9%, and the area with signifi-
cantly negative values accounted for 3.2% (Table 1).
Areas with significantly increased vegetation index
values were primarily distributed in the high-elevation
areas. The downward trend coefficients were con-

centrated in the northern study areas, mainly distrib-
uted along the Yangtze River, Dongting Lake and
Poyang Lake (Fig. 9a). The summer LST increased in
the northern and western study areas (50.1%). The
areas with significant upward trends were concen-
trated in the Wuhan region, the Dongting Lake
region and central Hubei Province (1.9%). LST de -
creased in the southeastern portion of the study
areas, in the east and in western Hubei Province
(49.9%), while the areas with significant decreases
were mostly in the Poyang Lake region (Fig. 9b).

For the winter EVI, significant upward trends were
mostly mapped in the south of the Yangtze River
(34.0%), and while significant downward trends
were mapped in the northern study area (1.2%), it
was generally smaller than that in summer (3.2%)
(Fig. 9c). Fig. 9d shows that the winter LST decreased
in most of the southern study area (59.1%), and
increased in the northern study area, the Dongting
lake region and the Poyang lake region (40.9%).
However, the significant positive and negative areas
only accounted for 0.1 and 0.2%, respectively.

5.  DISCUSSION

Under the background of changes in the hydrolog-
ical regime after the commissioning of the TGD, we
identified regional climate changes and vege tation
variations in the areas downstream of the TGD.
When global warming interference was eliminated,
from stage 2 to stage 3 the daily mean temperature
and daily maximum temperature were found to have
significantly increased in the southeastern study area
in summer, while the daily mean temperature and
daily minimum temperature were found to have sig-
nificantly decreased in the Wuhan and surrounding
regions in winter. The diurnal temperature range
increased in both seasons, and these changes are
inconsistent with the variation observed from stage 1
to stage 2. Moreover, the frequencies of high and low
temperature days showed a similar spatial distribu-
tion to that of the temperatures.

Precipitation in the middle reaches of the Yangtze
River declined from stage 2 to stage 3 in summer and
winter. Dongting Lake and its surrounding area was
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Fig. 7. Left column: time series of the number of high or low temperature days (see y-axis) in summer in (a,b) the southern
area, (c,d) the northern area, (e–h) the Dongting Lake region, (i–l) the Poyang Lake region and (m–p) the Wuhan region. Right
column: the corresponding Mann-Kendal (MK) trend tests. Dashed lines in the left-hand figures are cubic polynomial trend
lines; short dashed lines in the right-hand figures represent the critical value with a 0.05 significance level. UF and UB: 

forward and backward sequences, respectively
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Fig. 7 (continued)
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the most significantly affected region. Compared
with the abundant precipitation in the middle reaches
of the Yangtze River (Deng et al. 2016, Tian et al.
2016), changes in precipitation levels from stage 2
to stage 3 were not sufficient to noticeably affect the
discharge.

From stage 1 to stage 2, there were few areas that
showed significant changes in the above factors,
which means that the changes during this period can
be attributed to natural variability. However, from
stage 2 to stage 3, these factors showed significant
changes. The MK aberrance test results also showed
that the mutation times of the number of high tem-
perature days in summer in the southern study area,
including the Dongting Lake and Poyang Lake re -
gions, and the number of low temperature days in

winter in the northern study area, including the
Wuhan region, occurred around the time that the
TGD began commissioning. We hold the opinion that
the above factors changed significantly in certain
regions after commissioning of the TGD.

Temperatures generally increased in the study
area after TGD commissioning began, and the trend
varied from north to south. Under conditions of
global warming (Jiang & Zhang 2015), vegetation
showed increased coverage in most regions during
summer and winter under the changed climate and
hydrological regime, except in the Wuhan region,
the Dongting Lake region and the Poyang Lake
region. Increased vegetation coverage was more ob -
vious in winter, while the decreased vegetation cov-
erage was more obvious in summer. Vegetation can
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Fig. 8. Spatial distribution of changes in (a,b) summer and (c,d) winter daily maximum temperature from (a,c) stage 1 to 
stage 2 and (b,d) stage 2 to stage 3. Other details as in Fig. 2
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affect the LST and the land sur-
face energy balance by altering
the exchange of energy and water
between the land surface and the
air (Li et al. 2009, Petropoulos et
al. 2014), and the vegetation index
presented triangular and trape-
zoidal relationships with the LST
under different conditions (Moran
et al. 1994, Carlson et al. 1995,
Kustas et al. 2003). The LST is a
vital parameter in the physics of
land surface  processes on regional
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Season EVI LST
Trend value % of % with % of % with 

study area significant trends study area significant trends

Summer
Positive 71.1 12.8 50.1 1.9
Negative 28.9 3.2 49.9 1.1

Winter
Positive 86.0 34.0 40.9 0.1
Negative 14.0 1.2 59.1 0.2

Table 1. Percentage of areas showing positive and negative trend values for the
enhanced vegetation index (EVI) and land surface temperature (LST) during 

2006−2015. Significance: p < 0.05

Fig. 9. Spatial distribution of (a) enhanced vegetation index (EVI) trend and (b) land surface temperature (LST) trend in sum-
mer during 2006−2015. Panels (c) and (d) are the same as (a) and (b), respectively; but for winter EVI and LST. White and gray: 

non-significant positive and negative EVI changes, respectively; significant EVI change is shown in the colored areas
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and global scales, and the LST values were com-
bined with the results of all surface− atmosphere
interactions and energy fluxes between the atmos-
phere and the ground (Wan et al. 2002, Wan 2008).
Areas in this study with a significant negative EVI
trend usually had a positive LST trend, particularly in
the Wuhan region, the Dongting Lake region and the
Poyang Lake region. In summer and winter, regions
in the southern study area showed a significant posi-
tive EVI trend that was generally accompanied by a
negative LST trend, and the LST decrease may have
been caused by greater vegetation transpiration. In
the southern study area, the summer air tempera-
tures and high temperature days showed greater
increases than those in the northern study area. The
increased air temperature played a positive role in
vegetation growth in the southern study area, which
is generally consistent with the study by Y Zhang et al.
(2014). However, high temperatures can also induce
vegetation stomatal closure, which may further
decrease the surface latent heat flux and increase the
sensible heat flux (McDowell et al. 2008); therefore,
certain regions with positive EVI trends in the south-
ern study area also had positive LST trends. LST has
a positive effect on air temperature, and the distribu-
tion of summer and winter EVI trends were similar to
those of the air temperature trends in this study,
likely because of the feedback between vegetation
and the regional climate.

6.  CONCLUSIONS

This study demonstrated that regional climate
changed significantly in the middle reaches of the
Yangtze River after the commissioning of the TGD,
and the TGD is a possible cause. There may be differ-
ent ways of taking into account the global warming
background, and the influence of nonlinearities and
teleconnections cannot be ruled out at this stage.
Trends in the EVI changes were identified and may
provide a reference for local agricultural zoning.
Local climate change is also affected by other factors,
such as global-scale climate variability and changes
of land−sea thermal contrasts. Thus, further analysis
of specific influence mechanisms is warranted, and
additional attention should be focused on projects
that involve regional economic and ecological sys-
tems.
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