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1.  INTRODUCTION

Climatic changes, with respect to temperature,
experienced across the world, particularly over the
last century, are influenced by human and natural
factors. Long-term temperature change, known as
global warming, is attributed to increasing atmo -
spheric greenhouse gas concentrations due to
anthro po genic activity. Increasing urbanisation over
time also contributes to stronger warming trends
experienced in cities (Oke, 1982, Fujibe 2009, Santa-
mouris 2015). Another type of change is temperature
variability, which refers to temperature fluctuations
about a mean. It is caused by naturally occurring cli-
mate oscillations at various timescales.

Apart from global warming, temperature variabil-
ity can bring social and economic problems. Temper-
ature variability is an emerging issue for highly pop-
ulated areas such as the Kanto region (KR) in Japan,
which was home to 42 million people in 2010, corre-
sponding to a third of Japan’s population. Climate
oscillations, coupled with global warming, are asso-
ciated with health issues, including disease transmis-
sion and heat-related illnesses. In Japan, death tolls
from heatstroke and cases of infectious diseases are
found to be strongly linked to temperature variability
brought by the El Niño−Southern Oscillation (ENSO)
and Indian Ocean Dipole (IOD) (Zaraket et al. 2008,
Akihiko et al. 2014). A better understanding of the
roles of climate oscillations on temperature variabil-
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ity is critical for producing better climate forecasts
and implementing early health warning systems
serving the large urban and rural populations of KR.

In the context of Japan, numerous climate studies
have focused on the long-term warming trend
between urban and rural areas. Several studies (e.g.
Fujibe 2009, Kataoka et al. 2009, Yamato et al. 2011)
have concluded that the urban areas tend to be
warmer than nearby rural areas and the urban heat
island intensities are increasing with time. This
observation is consistent with those in other parts of
Asia (Kataoka et al. 2009).

Currently there is no comprehensive study consid-
ering the relationship between Japan’s temperature
and multiple climate oscillations at decadal to cen -
turial time scales, as well as urban−rural differences.
Prokoph & Patterson (2004) is the only comparative
study of urban−rural temperature variability, com-
paring monthly mean urban and rural temperature
variability in western Ontario. These authors found
that urban and rural areas exhibit temperature fluc-
tuations of similar frequencies and magnitudes at
common time periods, thereby showing that urbani-
sation does not affect long-term temperature vari-
ability. The authors postulated that any variability in
urban and rural temperatures at interannual and
interdecadal timescales is related to natural oscilla-
tions, although they did not investigate this further
using climate oscillation indices.

Six climate oscillations with dominant intrasea-
sonal (4 to 12 mo) and/or interannual (>12 to 120 mo)
components are known to influence Japan’s climate.
They are ENSO, IOD, the Quasi-Biennial Oscillation
(QBO), the Arctic Oscillation (AO), the Pacific North
American Pattern (PNAP) and the West Pacific Pat-
tern (WPP). The first 3 are tropical pheno mena and
the latter 3 are mid-latitude or polar phenomena.
ENSO, the global leading mode of interannual and
interdecadal sea-surface temperature (SST) variabil-
ity, is found to bring a cooler autumn, and a warmer
spring and winter to KR during El Niño, although no
significant temperature anomalies are seen during
La Niña (Bridgman & Oliver 2014, Japan Meteoro-
logical Agency 2015a,b). IOD, the second leading
internal mode of interannual SST variability, which is
unique to the Indian Ocean, has been confirmed to
bring a warmer (cooler) summer to Japan during its
positive (negative) phase (Japan Agency for Mar-
ine−Earth Science and Technology 2003, Saji & Yam-
agata 2003). QBO, characterised by the reversal of
lower stratospheric zonal winds from west to east
every 2 to 3 yr, is known to reduce (increase) spring
rainfall over Japan during its westerly (easterly)

phase (Seo et al. 2013, Bridgman & Oliver 2014),
although its impact on temperature has yet to be eva -
luated. AO, characterised by the fluctuation of low-
tropospheric pressures between the northern polar
and mid-latitude regions from the interannual to mil-
lennial timescales, is observed to trigger more
(fewer) cold surges and a colder (warmer) winter in
Japan during its negative (positive) phase (Park et al.
2010, 2011, Darby et al. 2012). PNAP, which de -
scribes the intraseasonal and interannual fluctua-
tions of mid-tropospheric pressures between western
and eastern North America, is found to cause a colder
(warmer) winter in Japan during its positive (nega-
tive) phase (Yang et al. 2002, Bridgman & Oliver
2014). Finally, WPP, which describes the intrasea-
sonal and interannual fluctuations of mid-tropo -
spheric pressures in eastern Siberia and the western
North Pacific, is known to cause positive (negative)
temperature anomalies in Japan during winter
(Oshika et al. 2015, Park & Ahn 2016).

The aims and organisation of this paper are as fol-
lows. A brief description of the data and methodology
used is given in the next section. Focusing on the
period January 1973−August 2015, this paper inves-
tigates the leading modes of temperature variability
and compares urban−rural temperature variability
across the KR in Section 3.1. Section 3.2 covers the
long-term covarying relationships that the tempera-
ture has with various climate modes and the individ-
ual contribution of each climate mode to temperature
variability. Since the data are only ∼40 yr long and
monthly averages are used, climate oscillations with-
out any intraseasonal or interannual components,
like the Pacific Decadal Oscillation, are excluded
from this study.

2.  STUDY AREA, DATA AND METHODS

2.1.  Study area and stations

The KR consists of the central part of Honshu
Island, Japan. It includes Greater Tokyo, one of the
most populous metropolitan areas in the world
(Fig. 1a). Its total area is 32 000 km2, with the lowland
area (herein defined as <150 m above sea level) oc -
cupying ∼17 000 km2 or half of KR. Mountains to the
north and west of KR form the Central Highlands. KR
experiences a humid subtropical climate (Köppen
 climate classification Cfa) dominated by the annual
East Asian monsoon (Kurita et al. 2015). According
to the Japan Meteorological Agency (2017), during
winter (December−February), winter monsoonal

66



Seow & Roth: Climate oscillations and temperature of Kanto

north  westerlies bring cold, dry Siberian air to KR.
During spring (March−May), migratory anticyclones
and cyclones result in temperature swings and alter-
nating dry and wet periods. During summer (June−
August), warm, moist summer monsoonal south-
westerlies results in the Baiu front bringing cloudy,
wet weather. From mid-July to August, the North
Pacific High brings hot, sunny weather to KR, while
during autumn (September−November), the active
autumnal front and tropical cyclones may result in
heavy precipitation, making this the wettest season.
However, the weather turns sunny and cooler in
October and November with frequent passages of
anti cyclones.

A total of 7 meteorological stations across KR were
selected for this study, using 4 criteria. (1) The daily
mean temperature data are sufficiently complete
such that monthly mean temperatures can be calcu-
lated for >99% of the study period (at least 512 out of
516 months). This is to fulfil a condition of wavelet
analysis that requires uninterrupted data. To main-
tain an uninterrupted time series, missing monthly
mean data are replaced by zeros. (2) Elevations of
selected stations are <150 m, in line with this paper’s
focus on lowland stations. (3) Stations are sited in dis-
tinct urban and rural areas, where the land use/ land
cover (LULC) type within 0.5 km of the station is gen-
erally homogeneous, to allow classification as either
urban or rural. Fourth, following Sakakibara & Owa
(2005), only stations located inland are selected, to

enable assessment of the urban effect. This is
because marine air advection can influence coastal
temperatures and cause climatic variations between
inland and coastal areas. Moreover, all stations
selected are within 200 km of each other, so that syn-
optic climate variations between them are likely to
be small, again in order to be able to evaluate
urban−rural temperature variability differences. To -
kyo station was moved to a new location (0.9 km
away from its previous location) on 2 December 2014
(Japan Meteorological Agency 2016). Thus, a slight
discontinuity in the temperature time series is to be
expected. Despite this change, the new station’s sur-
rounding environment is still dominantly urban;
moreover only 9 out of 516 months (∼2%) of temper-
ature data used for this study was recorded at the
new station location, which would have little effect
on the wavelet analysis results, particularly for the
interannual frequency band. The station locations
are shown in Fig. 1b, and station characteristics are
summarised in Table 1.

To further ascertain that synoptic temperature vari-
ations among stations are small, seasonal mean tem-
peratures for each station based on the period Janu-
ary 1973−August 2015 are tabulated in Table 2. Of all
seasons, the temperature range is the largest during
winter (3.7°C); this can be attributed to the pro-
nounced winter urban heat island effect (Saka kibara
& Owa 2005). Nonetheless, within each season, the
standard deviations and ranges of mean tempera-
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tures amongst all stations are still below 1.3°C and
3.7°C respectively, which implies that temperature
variations among all stations are small across all
 seasons.

The latest LULC type surrounding each station is
assessed using satellite images taken in 2014 and
hosted on the Esri−DigitalGlobe ArcGIS World
Imagery basemap service. To confirm if the LULC
type has changed significantly over the study pe -
riod, past LULC types are determined using LULC
pattern-grid maps obtained from the Japan’s Min-
istry of Land, Infrastructure, Transport and Tourism
(http:// nlftp.mlit.go.jp/ksj-e/index.html). The earli-
est maps date back to 1976, and they have been
produced around once every decade since then.
Each grid corresponds to 0.01 km2, and different

grid patterns represent various LULC
types. LULC maps for 1976 and 1997 are
analysed. Only the area close enough to
influence the station temperature, which is
within 0.5 km from the station, is assessed
(Oke 2006). Past LULC maps identify
urban areas without revealing their built
types (building density, height and size).
Hence, stations are classified into either
urban or rural (vegetated, forested) cate-
gories based on the dominant LULC type
within the 0.5 km radial zone for 1976 and
1997. The dominant LULC type is deter-
mined (and, if any, a second-ranked LULC
type occupying at least 20% of the area)
by calculating and ranking the area per-
centages for all LULC types with ArcGIS
version 10.2.1. The LULC maps and satel-
lite imageries indicate that for all stations,
urban areas in 1976 are still predominantly

urban in 2014, and the same applies to rural areas.
The LULC types for all stations in 1976, 1997 and
2014 are shown in Table 1.

2.2.  Data

The data used in this study include temperature time
series from 7 stations and the 6 climate oscillation in-
dices mentioned earlier. Daily mean temperature data
for the stations from January 1973 to August 2015 are
taken from the National Climatic Data Center (https:
//www.ncdc.noaa.gov/cdo-web/). Month ly mean in-
dices of ENSO, AO, PNAP and WPP for the same time
period are retrieved from the NOAA Climate Predic-
tion Center, while those of QBO are taken from the
NOAA Earth System Research Laboratory (www.esrl.
noaa. gov/psd/data/ climateindices/ list/). Several in-
dices measuring the ENSO intensity, including the
Southern Oscillation Index and Niño SST 3.4 indices,
have been established, but this study employs the
Multivariate ENSO Index (MEI), which is the most
 holistic index: it captures the ENSO phenomenon by
incorporating 6 variable fields (sea surface pressure,
SST, zonal and meridional surface winds, surface
 temperature and total cloudiness fraction) instead of
only 1 variable field as other indices do (Wolter & Tim-
lin 1998). Monthly mean indices for the IOD, repre-
sented by the Dipole Mode Index (DMI), from January
1973 to August 2015 are ob tained from the Japan
Agency for Marine− Earth  Science and Technology
(www.  jamstec.go.jp/frsgc/ research/d1/ iod/iod/
dipole_ mode_ index. html).
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Station Latitude Longitude Elevation LULC
(°N) (°E) (m) 1976 1997 2014

Urban
Maebashi 36.400 139.066 114 U U U
Mito 36.381 140.468 76 U U U
Tokyo 35.683 139.766 36 U U U

(35.692) (139.751) (24) (UT)
Utsunomiya 36.550 139.866 140 UT U U

Rural
Hyakuri 36.181 140.415 32 G G G
Iruma 35.833 139.417 90 G G GU

Shimofusa 35.798 140.011 30 GT GT G

Table 1. Geographic coordinates and land use/land cover (LULC) of
urban and rural meteorological stations in Kanto, Japan, in 1976, 1997
and 2014. The Tokyo station was relocated in November 2014; data in
parentheses are for the new location, from December 2014 onwards.
Letter codes show the dominant LULC; in mixed LULC areas, the sub-
script letter code indicates the second-ranked LULC. G: open field or 

bare soil; T: trees such as orchard or forest; U: urbanised area

Station Winter Spring Summer Autumn 
(DJF) (MAM) (JJA) (SON)

Urban
Maebashi 4.3 12.8 24.4 16.5
Mito 3.9 11.8 22.9 16.0
Tokyo 6.9 14.3 25.1 18.5
Utsunomiya 3.4 12.2 23.6 16.0

Rural
Hyakuri 3.2 11.4 22.5 15.5
Iruma 4.3 12.8 24.0 16.4
Shimofusa 5.3 13.3 24.1 17.1

Table 2. Seasonal mean temperatures (°C) of urban and
rural meteorological stations in Kanto, Japan, for the period 

January 1973−August 2015
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To remove the effect of the seasonal cycle on tem-
perature data, monthly mean temperature data are
normalised by calculating monthly means and stan-
dard deviations of the base period January 1973− Au-
gust 2015 to obtain monthly normalised temperature
anomalies. Due to missing daily temperature data for
some stations, anomalies for months with <16 d of
daily values are not calculated but instead replaced
with zeros (i.e. the means of monthly anomalies) to
maintain an uninterrupted time series. For any given
station, not more than 5 months are re placed with
 zeros. Intraseasonal (4 to 12 mo) and interannual (12
to 120 mo) signals are extracted using a band-pass
Butterworth filter, as displayed in Fig. 2.

2.3.  Wavelet analysis

The wavelet analysis is employed to identify the
leading modes of temperature variability within a
temperature time series, as well as to establish any
covarying relationship between temperature and a
given climate oscillation. The wavelet analysis has
been applied in many meteorological studies investi-
gating interdecadal climate oscillations (e.g. Tor-
rence & Webster 1999, Lucero & Rodríguez 2000). It
decomposes the time series into the time−frequency
space, in contrast to the standard Fourier transform
that reveals only the frequency space. The time−
 frequency space allows easy identification of domi-
nant modes of variability and changes in amplitude
of oscillation over various frequencies and times. It is
a useful method to identify non-stationarity or quasi-
periodicity in meteorological time series (Prokoph &
Patterson 2004).

According to Addison (2002), the continuous wave -
let transform (CWT) is used to identify the leading
modes of temperature variability. By varying the
widths of filtering functions called wavelets, the
CWT generates a set of wavelet coefficients used to
construct the time−frequency representation of a
time series. In practice, a continuous time series is
standardised for easier detection of fluctuations and
discretised into values of xn at time index n, with 2
consecutive values separated by a constant time
interval δt. The wavelet coefficients Wn(s) are calcu-
lated from the convolution of the time series with a
mother wavelet ψ:

(1)

where N is the length of time series, * indicates the
complex conjugate, k is the wavelet translation

parameter controlling the wavelet position along the
time axis and s is the wavelet scale or period. Climate
signal processing studies often uses the Morlet
wavelet because of its better frequency resolution
(Baliunas et al. 1997). The Morlet wavelet is the prod-
uct of a complex sinusoid and Gaussian function:

(2)

where t is the time parameter and ω0 is the frequency
parameter, which is set to 6 for Morlet wavelet to sat-
isfy the wavelet’s admissibility condition of having a
zero mean (Farge 1992). According to Torrence &
Compo (1998), from the definition of power in Fourier
analysis, the wavelet power of time series, which
indicates the magnitude of oscillation at period s
and at given time associated with k, is the squared
wavelet coefficient |W |2. The global power at
scale s, which is the averaged wavelet power across
the whole length of time series, is:

(3)

As noted by Liu et al. (2007), the calculated |W |2

based on Fourier’s definition tends to overestimate
(underestimate) magnitudes of low (high) frequency
oscillations, making the comparison of power across
different periods difficult. This is because the ortho-
normal basis of wavelet transform leads to |W |2 being
equivalent to the product of true wavelet power and
scale s. Thus, bias-rectified spectra are generated
using the scaling-correction method developed by
Liu et al. (2007), dividing |W |2 by s to obtain the recti-
fied, true power.

The areas near to edges of the power spectrum are
where the wavelet power is reduced. These areas are
defined as the cone of influence (COI), which are
marked out in the spectra and should be interpreted
with caution (Addison 2002).

Strong power peaks in the CWT spectra are identi-
fied using statistical significance tests by comparing
the unrectified |W |2 against a red-noise function.
Assuming that W is normally distributed, the nor-
malised |W |2 follows a chi-square (χ2) distribution
with 2 degrees of freedom. In this paper, strong
peaks are significant at the 95% confidence level.
The critical value at 95% level is determined by the
product of 95-percentile value of χ2 and red-noise
spectrum (Gilman et al. 1963). The robustness of sig-
nificance tests used in CWT spectra is based on the
Gaussian red-noise function that assumes normality
(Torrence & Compo 1998). Thus, the normality of
time series is confirmed using the 1-sample Kolmo -
gorov−Smirnov test at the 95% confidence level.

W s x
k n

s
tn

k

N

n *
0

1

∑( ) = ψ −⎡
⎣⎢

⎤
⎦⎥
δ

=

−

e1/4 /20
2( )ψ = π− ω −t i t t

W sn
2( )

W s
N

W sn
k

N

n
12

0

1
2∑( ) ( )=

=

−

69



Clim Res 75: 65–80, 2018

Except for the QBO index, all temperature and cli-
mate oscillation index time series are identified to be
normally distributed. The QBO index is therefore
converted to percentiles and transformed to z-scores
using the normal inverse cumulative distribution
function. This forces the QBO index to adhere to the
standard normal distribution.

To determine how a given temperature time series
X and a given climate oscillation index Y at time
index n and scale s covary with each other, the wave -
let transform coherence (WTC), known as the coeffi-
cient of determination for frequency, is calculated.
The coherence R2

n(s) is defined by

(4)

where Wn
X and Wn

Y are the wavelet coefficients of
X and Y respectively, Wn

XY is the cross-wavelet
transform of X and Y, and SX, SY and SXY are the
smoothing operators. The phase difference of an
identified periodicity between X and Y is calculated
from the phase difference between the real and
imaginary parts of Wn

XY.
Since the coherence is normalised, R2 ranges from

0 to 1, where 1 indicates the strongest cross-correla-
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tion. Also, the COI in the WTC spectrum is marked
out using a similar method as for the CWT spectra.
According to Grinsted et al. (2004), significantly
strong R2 values can be identified using Monte Carlo
methods. Strong R2 values are significant at the 95%
level. Since R2 values are not known to follow any
statistical distribution, the critical values at 95% level
are determined empirically. For a given scale s, the
critical value is estimated by generating 1000 Gauss-
ian white-noise time series and taking data pairs out-
side of the COI using the Monte Carlo method. R2

values higher than the critical value are delineated in
the WTC spectra.

The CWT spectra are generated using the MAT-
LAB package by Torrence & Compo (1999) that is
corrected for bias rectification. The WTC spectra are
generated using the MATLAB package by Grinsted
(2014).

3.  RESULTS AND DISCUSSION

3.1.  Urban−rural temperature variability
 differences

Each CWT spectrum of temperature time series
across the entire study period shown in Fig. 3 is
accompanied by its respective global power spec-
trum generated with Eq. (3). The CWT spectrum is
represented in time−frequency space, with shaded
areas indicating strong wavelet power or periodicity
at periods and years covered by the shaded areas.
The most notable broad pattern among all CWT
spectra is quasi-periodicity, which is present in all
temperature time series. Quasi-periodicity is indi-
cated by the presence of dense shaded patches in
Fig. 3, instead of large, extensive shaded areas, and
occurs especially at the intraseasonal timescale.
Also, the varying vertical and horizontal widths and
power intensity of shaded patches across the entire
time interval reveal that the magnitudes and fre-
quencies of temperature variability are changing.
They imply that temperature variability is charac-
terised by a series of alternating active and break
periods without fixed lifetimes, another characteris-
tic of quasi-periodicity. A second common pattern is
the presence of strongest intraseasonal variability in
all CWT spectra at the 4−8 mo period in 1976−1985.
A third common pattern is there are 3 common time
intervals of peak interannual variability at the
16−64 mo period across all stations. Broadly speak-
ing they occur in 1980− 1987, 1990−1998 and
2002−2010.

Among all global power spectra, generally two pri-
mary peak powers occur at the 4−12 mo period, and
a secondary peak occurs at the ∼32 mo period. The
CWT and global power spectra suggest that temper-
ature variability is stronger at the intraseasonal than
interannual timescale, thereby indicating intra -
seasonal variability as the primary leading frequency
mode.

Sections of global power spectra from the intra -
seasonal and interannual timescales from different
stations are compared to study the difference in tem-
perature variability between 2 given stations using
the root mean-square error (RMSE) metric. The re -
sults are tabulated for both intraseasonal and interan-
nual timescales in Tables 3 & 4, respectively. At both
intraseasonal and interannual timescales, there is no
consistent pattern in the RMSEs between urban−
urban/ rural− rural, and urban−rural stations, where a
specific group of RMSEs is consistently higher than
the other group. For instance, focusing on RMSEs in-
volving Mito station, the RMSEs be tween Mito and
Maebashi stations (urban−urban) are greater than
those between Mito and Hyakuri stations (urban−
rural), but those for other urban− urban station differ-
ences are lower than those be tween Mito and Hya -
kuri stations (Tables 3 & 4). This implies differences
between RMSEs are due to inherent local climatic
variations between different stations. The same ob-
servation applies for the rest of the stations. Futher-
more, the 2-sided Wilcoxon rank sum test reveals no
significant difference between the 2 groups of RMSEs
(urban− urban/rural−rural, and urban− rural differ-
ences) at the 95% level for the intraseasonal (p = 0.19)
or interannual timescale (p = 0.23). Hence, there is no
 conclusive evidence indicating that urbanisation in -
fluences temperature variability.

3.2.  Relationships between climate oscillations
and temperature

To explore the covarying relationship between
each climate oscillation and temperature, WTC spec-
tra are generated for all 7 stations for each climate
oscillation. For each climate oscillation, the WTC
spectra of all stations are expected to not differ signif-
icantly from each other. This is because, from Eq. (4),
the wavelet coherence is analogous to the nor-
malised squared covariance (or correlation), where
the normalisation will not account for magnitudes of
variability in the temperature and climate oscillation.
Given that all stations are located close together at
the synoptic scale, it should follow that a given cli-
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mate oscillation correlates with temperatures of all
stations by almost the same extent at broadly similar
specific periods and years. The WTC spectra gener-
ated for all 7 stations are indeed broadly similar. For
this reason, only the WTC spectra for Tokyo are
shown in Fig. 4. Tokyo is used as the representative
station for KR, as designated by the Japan Meteoro-
logical Agency (2017), to analyse the relationships of

temperature in KR with the 6 climate oscillations
throughout this paper. 

In Fig. 4, the WTC spectrum is represented in time−
frequency space, with the vertical and horizontal axes
denoting the period and time respectively. In each
WTC spectrum, shaded areas enclosed in thick con-
tours (exceeding the 95% level) indicate very high co-
herence (R2 > ∼0.7), shaded areas without contours in-
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the time and averaged power respectively. The greyscale bar at
the top indicates the different intensities corresponding to dif-
ferent wavelet powers |Wn|2. Global power indicates the aver-
age of all powers outside of the cone of influence. Powers ex-
ceeding the 95% confidence level are enclosed in thick
contours. Hatched areas indicate the cone of influence (COI)
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dicate high coherence (0.5 < R2 < ∼0.7) and non-
shaded areas indicate low coherence (R2 < 0.5) at
those periods and times. Phase differences between
both time series are indicated (only on shaded areas)
with vec tors. With degrees indicating ro ta tion in a
clockwise direction, vectors pointing up [0°] (down
[180°]) indicate both series are in-phase (anti-phase)
with each other. Vectors pointing right [90°] and left
[270°] indicate that the phases of temperature and cli-
mate oscillation index differ by a quarter cycle. Since
the coherence is normalised, the WTC spectrum can
identify time− frequency regions with high coherence
even when wavelet powers of temperature and cli-
mate oscillation index time series in such regions are
low. It is important to refer to both vectors and shaded
areas to conclude if temperature variability and cli-
mate oscillation are related to each other. If they are
related, there should be evidence of phase-locking.
This means that most vectors, especially those on very
high coherence areas, at a particular period through-
out the entire study period should point consistently
in a specific direction. Random vector directions indi-
cate a lack of phase-locking and the random nature of

such high coherence, which means
that the climate oscillation is unlikely
to cause the temperature variability.

In addition to analysing the WTC
spectra, the CWT and global power
spectra for each climate oscillation
index are generated as shown in
Fig. 5. The CWT and global power
spectra allow us to identify the dom-
inant frequency modes in climate
oscillations to assist in the WTC
spectrum analysis. For MEI (Fig. 5a),
the CWT spectrum shows no visible
intra seasonal but strong interannual
variability at the 16−64 mo period,
particularly during 1975−2002 and
2008−2013 as indicated by the thick
contours. For DMI (Fig. 5b), strong
intraseasonal variability at periods
>8 mo is observed. Its intraseasonal
variability peaks in 1981−1984. Such
intraseasonal variability tends to be
short-lived, lasting for 1 to 3 yr, and
is interrupted by longer break time
intervals of >5 yr. The interannual
IOD variability at the 16−64 mo
period peaks in 1985−2000 but tends
to be significantly weaker or absent
in other years. For the QBO index
(Fig. 5c), while intraseasonal vari-

ability is negligible, strong, uninterrupted interan-
nual variability at the 28−32 mo period is seen across
the whole study  period. The AO, PNAP and WPP
indices (Fig. 5d−f) display strong intraseasonal vari-
ability, interrupted by break periods throughout the
whole study period at the 4−8 mo period. The inter-
annual variability is weaker in comparison and
occurs sporadically in certain years. For example,
active interannual variability at the ∼32 mo period for
the WPP index is only present in 1980−1990. Com-
paring between the glo bal spectra in Figs. 3 and 5,
the strongest temperature variability at the 4−8 mo
period corresponds to the rather strong intraseasonal
signals in the AO, PNAP and WPP indices, and the
secondary peak variability at the ∼32 mo period cor-
responds to the strong interannual signals in the
MEI, DMI and QBO index. The WTC will further
illustrate which climate mode(s) are significantly
linked to the strong temperature variability at those
mentioned periods. Also, generally, some climate
oscillations display distinct interdecadal variations in
their interannual signals, particularly for ENSO, IOD
and WPP, which affect the covarying relationship
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Urban stations Rural stations
Station Maebashi Mito Tokyo Utsunomiya Hyakuri Iruma

Urban
Mito 0.92 − − − − −
Tokyo 0.45 0.69 − − − −
Utsunomiya 0.69 0.90 0.3 − − −

Rural
Hyakuri 1.31 0.77 1.13 1.33 − −
Iruma 0.98 1.48 0.95 0.75 1.90 −
Shimofusa 1.03 1.17 0.81 0.61 1.30 0.87

Table 3. Matrix of calculated RMSE (× 10−2 °C) of global power spectra between
pairs of urban and rural meteorological stations in Kanto, Japan at the intra-

seasonal timescale for the period January 1973−August 2015

Urban stations Rural stations
Station Maebashi Mito Tokyo Utsunomiya Hyakuri Iruma

Urban
Mito 1.30 − − − − −
Tokyo 0.71 1.05 − − − −
Utsunomiya 0.75 0.89 0.64 − − −

Rural
Hyakuri 1.59 0.91 1.49 1.43 − −
Iruma 1.02 1.49 1.00 0.89 1.92 −
Shimofusa 1.73 1.17 1.50 1.53 1.01 2.05

Table 4. Matrix of calculated RMSE (× 10−2 °C) of global power spectra between
pairs of urban and rural meteorological stations in Kanto, Japan at the inter-

annual timescale for the period January 1973−August 2015
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between temperature and climate oscillation at dif-
ferent time intervals, as discussed at the end of this
section.

Of all the WTC spectra in Fig. 4, only the spectrum
for MEI (Fig. 4a) reveal that the temperature covaries
insignificantly with ENSO. The spectrum for MEI
consists of several small very high coherence areas
accompanied by random phase differences at the
4−8 mo period. This implies no connection between
temperature variability and ENSO at the intrasea-
sonal timescale, which is expected because ENSO
does not exhibit significant intraseasonal variability,
as seen from the CWT spectrum for MEI in Fig. 5a. At
the interannual timescale, shaded areas are present
in 1980−1985, 1987−1997 and 2007−2013, but the
phase differences for these years vary drastically
from 0° to 180°. Hence, the lack of phase-locking
accompanying high coherence between the temper-
ature and climate oscillation index for these spectra
indicates an insignificant covarying relationship be -
tween ENSO with temperature.

In contrast, the WTC spectra for DMI, QBO, AO,
PNAP and WPP illustrate that the temperature
covaries significantly with these climate oscillation
indices at certain time intervals. For the spectrum for
DMI (Fig. 4b) at the 4−12 mo period, shaded areas of
very high coherence are mainly present in 3 time
intervals of 1977−1982, 1987−1993 and 2010−2014,
where phase differences are consistently in the
315°–0° range. This suggests an in-phase relation-
ship be tween IOD and temperature variability at the
4−12 mo period for these 3 intervals. In addition, the
1977−1982 interval coincides with the duration of
strongest intraseasonal temperature variability
(1976− 1985) identified earlier. At the interannual
timescale, phase differences over shaded areas at the
12−16 mo period are random, indicating that IOD
does not covary with temperature at the 12−16 mo
period. At the 32−64 mo period, shaded areas of very
high coherence with phase differences of ∼0° are
found in 1985−2000. Also, the 1985−2000 duration
coincides with the peak variability of IOD at the
32−64 mo period. This means that the IOD is strongly
linked to interannual temperature variability in the
32− 64 mo period in certain years, especially in 1985−
2000. Moreover, the 1985−2000 interval matches one
of the 3 durations of peak interannual temperature
variability (1990−1998) identified earlier. It clarifies
the relationship that IOD has with the interannual
tempe rature variability during the 1990s. For the
QBO spectrum (Fig. 4c), small areas of high coher-
ence can be observed at the intraseasonal to shorter
interannual timescales (4−28 mo), but they can be

ignored as the variability of QBO is weak in this fre-
quency band. However, at the 28−32 mo period,
coinciding with the peak variability frequency band
of QBO, an elongated shaded area in the 1980−2005
interval with consistent phase differences in the
45−90° range is observed. Regarding the spectrum
for AO (Fig. 4d), at longer intraseasonal (>8 mo) and
interannual timescales (12−32 mo), large shaded
areas are present during 1975−2010. The 1975−2010
interval co incides with 2 of 3 durations of peak
interan nual temperature variability (1990−1998 and
2002−   2010). The spectrum mainly displays an ap -
proximately in-phase connection between AO and
temperature variability for these 4 durations. Regard-
ing the spectrum for PNAP (Fig. 4e), at shorter
intraseasonal timescales (4−8 mo), phase differences
vary drastically from 0° to 270°, thereby indicating a
lack of relationship between PNAP and temperature
variability in the 4−8 mo period. However, at longer
intraseasonal and interannual timescales (8−64 mo
period), large shaded areas are found, particularly in
1975−2008. Their associated phase differences are in
the 90−180° range, indicating that temperature vari-
ability and PNAP have a phase difference of 90−180°.
The 1975−2008 interval overlaps with all of the 3
peak durations of interannual temperature variability
(1980−1987, 1990−1998 and 2002−2010), which high-
lights the link between PNAP and interannual tem-
perature variability at those durations. The spectrum
for WPP (Fig. 4f) consists of several large patches of
shaded areas throughout the entire study period at
longer intraseasonal and shorter interannual
timescales (4−16 mo). Besides the lone shaded area
in ∼2010 where its phase differences are in the 90−
135° range, phase differences of other large shaded
areas are consistently in the 315−0° range. Moreover,
large shaded areas in 1977−1983 coincide with the
time when the strongest intraseasonal temperature
variability occurs (1976−1985). Similarly, very high
coherence areas in 1975−1990 at the longer interan-
nual timescale (28−64 mo), coinciding with the
1980−1990 interval of peak variability of WPP, are
accompanied by consistent phase differences of ∼0°.
Also, by visually comparing between the WTC spec-
tra, overall across the whole study period, the spec-
trum with the most extensive area of high coherence
at both intraseasonal and interannual timescales
belongs to that of WPP.

In addition to analysing each climate oscillation’s
covarying relationship with temperature, the respec-
tive contributions of various climate oscillations to
temperature variability across the whole study period
in general are compared. However, it is necessary to
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first clarify the nature of interdependency between
different climate oscillations. For example, Ashok et
al. (2003) note that strong ENSO and IOD events
sometimes co-occur simultaneously, and Park & Ahn
(2016) found that the combined influence of AO and
WPP can either diminish or reinforce the individual
contributions of AO and WPP to winter temperatures
over the East Asia. Indeed, the correlation matrix in
Table 5 shows that some climate modes, for example
ENSO and MEI, are strongly correlated with each
other at the 95% confidence level. A WTC spectrum
only shows the coherence between a given climate
oscillation and temperature without eliminating
simultaneous confounding influences of other cli-
mate oscillations. Visually comparing the coherence
signals in WTC spectra of different climate oscilla-
tions alone is an unreliable method to identify which
climate oscillation affects the temperature the most.
Hence, a multiple linear regression analysis is con-
ducted to resolve that issue, which measures the
individual contribution of each independent variable
(climate oscillation index) to the dependent variable
(temperature variability). The independent variables
are not significantly affected by multi-collinearity, as
their variance inflation factors are <1.5, which further
supports the suitability of the multiple linear regres-
sion technique in this study. Intraseasonal and inter-
annual temperature signals are regressed on the 6
climate oscillation indices. A significant p-value at
the 95% level corresponding to a climate oscillation
index variable  indicates a significant individual con-
tribution of that climate mode to temperature. The
regression analysis results are broadly similar among
all stations, and only the results for the Tokyo station
are shown in Table 6.

Comparing the results in Fig. 4 with Table 6, a sig-
nificant covarying relationship between temperature
and a given climate oscillation does not imply that
the given climate oscillation will significantly con-
tribute to temperature variability. As discussed ear-
lier, the intraseasonal (interannual) temperature sig-
nals significantly covary with IOD, AO, PNAP and
WPP (IOD, QBO, AO, PNAP and WPP) at certain time
intervals. However, only AO, PNAP and WPP but not
IOD significantly affect intraseasonal temperature
variability. Also, only ENSO, QBO, AO and WPP but
not PNAP significantly contribute to interannual tem-
perature variability. In addition, although as previ-
ously discussed ENSO does not covary strongly with
temperature, the regression analysis shows that
ENSO contributes significantly to interannual tem-
perature variability. There are several possible
explanations for the discrepancies between the WTC

and regression analysis results for ENSO, IOD and
PNAP. Regarding ENSO, observational data from
1958 to 2012 show that the impacts of El Niño and La
Niña on temperature over KR are asymmetric and
differ across seasons (Japan Meteorological Agency
2015a,b). Temperature anomalies are only statisti-
cally significant for the El Niño but not La Niña
phase, and anomalies are insignificant during the
summer El Niño phase. The asymmetry and lack of
continuous influence of ENSO throughout the year
could explain the insignificant covarying relation-
ship, even though a significant contribution by ENSO
to interannual temperature signals is detected by the
regression analysis. Focusing on IOD and PNAP,
from Table 5, IOD and PNAP are strongly correlated
with other climate oscillations. Thus, a possible ex -
planation is that the significant covarying relation-
ship between IOD and PNAP and temperature seen
in the WTC spectra is due to the simultaneous con-
founding impacts of other climate oscillations that
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ENSO IOD QBO AO PNAP WPP

ENSO 1 − − − − −
IOD 0.25* 1 − − − −
QBO −0.03 0.01 1 − − −
AO −0.10 0.02 0.04 1 − −
PNAP 0.18* −0.01 −0.06 −0.28* 1 −
WPP 0.10* 0.08 +<0.01 0.09* −0.01 1

Table 5. Correlation matrix between 6 climate oscillations
(ENSO: El Niño−Southern Osciallation; IOD: Indian Ocean
Dipole; QBO: Quasi-biennial Oscillation; AO: Arctic Oscilla-
tion; PNAP: Pacific North American Pattern; WPP: West
Pacific Pattern). Following Bretherton et al. (1999), effective
sample sizes

based on the lag-1 autocorrelation are used to determine
significant correlations, where n is the actual sample size
and rx and ry are lag-1 autocorrelations of 2 given time
series. *Significant correlation at the 95% confidence level

=
−
+

⎛
⎝⎜

⎞
⎠⎟

r r

r r
x y

x y
n n

1

1
eff

ENSO IOD QBO AO PNAP WPP

Intraseasonal 0.92 0.28 0.56 <0.01* 0.03 <0.01*
Interannual <0.01* 0.69 0.01* 0.05* 0.22 0.05*

Table 6. p-values corresponding to 6 climate oscillations
(see Table 5 legend for key to abbreviations) obtained by
multiple linear regression between intraseasonal and inter-
annual temperature signals of Tokyo meteorological station
with climate oscillation indices over the period January
1973−August 2015. *Significant p-value at the 95% confi-

dence level
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IOD and PNAP are strongly correlated with, and
these climate oscillations do actually influence tem-
perature variability. Another possible explanation
lies in the fact that the regression analysis assesses
the relationship averaged across the entire study
period and should IOD and PNAP only contribute to
temperature variability during certain time intervals,
those contributions will be overlooked by the regres-
sion analysis. To illustrate this, using IOD as an
example, since IOD only significantly covaries with
interannual temperature variability in the 1980−2005
interval (from Fig. 4b), a multiple linear regression
analysis is conducted using interannual temperature
signals and climate mode indices in the 1980−2005
interval. Indeed, the p-value for the IOD is <0.01 over
the 1980−2005 interval, suggesting that the IOD con-
tributes significantly to interannual temperature vari -
ability in the 1980−2005 interval.

Nevertheless, the results from both WTC spectra
and regression analysis are supported by other stud-
ies. Despite the fact that the WTC spectrum shows
no significant covarying relationship between ENSO
and temperature, the regression analysis shows that
the MEI is related significantly to interannual tem-
perature variability, which agrees with past observa-
tional data on the impact of El Niño on temperature
variability (Japan Meteorological Agency 2015a,b).
Also, despite the lack of a significant contribution by
IOD to temperature throughout the whole study
period, the WTC spectrum shows that IOD has an in-
phase covarying relationship with temperature vari-
ability in KR during certain periods and years, which
is consistent with Saji et al. (1999) who concluded
that positive (negative) IOD indices are associated
with positive (negative) temperature anomalies. The
AO and temperature variability mainly exhibit an in-
phase relationship in certain years and periods
>8 mo, except at the ∼64 mo period; moreover AO’s
contribution to temperature variability is significant,
concurring with Park et al. (2010) who found that
positive (negative) AO indices are linked to positive
(negative) temperature anomalies. The WTC spec-
trum shows that in the 1980−2005 interval, PNAP
leads temperature variability by 90−180° at the
8−16 mo period sporadically, while beyond the 28 mo
period, phase differences are mainly 90°. The anti-
phase relationship at the 8−16 mo period agrees with
the study by Yang et al. (2002), who found that posi-
tive (negative) PNAP indices are linked to negative
(positive) temperature anomalies. The lack of an
anti- phase relationship at the longer interannual
timescale (>28 mo), despite consistent phase differ-
ences and significant coherence, perhaps indicates

that other climate oscillations well-correlated with
PNAP rather than PNAP itself are contributing to the
observed coherence. This is especially likely, since
the regression analysis results do not show any sig-
nificant contribution by PNAP to interannual temper-
ature variability. WPP and temperature variability
mainly exhibit an in-phase relationship at certain
periods and years, which agrees with existing studies
(e.g. Oshika et al. 2015, Park & Ahn 2016) that reveal
positive (negative) WPP indices are associated with
positive (negative) temperature anomalies. Finally,
both the WTC spectrum and regression analysis
point out the significant link between QBO and inter-
annual temperature variability, although no existing
studies have looked into their relationship.

4. CONCLUSION AND RESEARCH
 IMPLICATIONS

The leading modes of temperature variability,
urban− rural temperature variability differences, and
the influences of different climate oscillations on
temperature variability are investigated for the pe -
riod January 1973−August 2015 using data from 7
stations distributed across KR. It is found that the pri-
mary leading mode of temperature variability occurs
at the intraseasonal timescale. Temperature variabil-
ity is strongest at the intraseasonal timescale, with
strongest intraseasonal (interannual) signals occur-
ring at the 4−8 mo (∼32 mo) period. The strongest
temperature intraseasonal variability occurs between
1976 and 1985 with a period of 4−8 mo. Active inter-
annual variability at the 16−64 mo period mainly oc -
curs in 1980−1987, 1990−1998 and 2002−2010. There
is no distinct difference in intraseasonal and inter -
annual temperature variabilities between urban and
rural stations. Based on the WTC spectra, the temper-
ature of Tokyo station, which is representative of KR,
is found to significantly covary with IOD, QBO, AO,
PNAP and WPP but not ENSO at certain periods and
years. On average over the whole study period and at
the 4−120 mo period, the WPP exhibits the highest co -
herence with temperature amongst all climate modes.
Across the whole study period on average, the multi-
ple linear regression analysis shows that the individ-
ual contributions of AO, PNAP and WPP (MEI, QBO,
AO and WPP) to intraseasonal (interannual) tempera-
ture variability are significant.

This study also shows that both intraseasonal and
interannual temperature signals of climate oscilla-
tions are subject to interdecadal variations, which in
turn affects the observed variations in the coherence
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between a climate oscillation and temperature at dif-
ferent periods and years. The regression analysis
results shown in this study are only applicable on
average across the entire study period that spans
several decades, and over the 4−12 mo and 12−
120 mo periods. Since the study of individual contri-
butions by climate modes to temperature at specific
decades and frequency bands is not of interest in this
paper, further research is needed to understand the
individual contributions at certain decades and time
intervals, perhaps with the use of partial wavelet co -
herence, including those periods beyond 1973.
Moreover, this study only resolves the confounding
influences of other climate modes with in the same
month when evaluating the individual contribution
of a given climate mode to temperature in the regres-
sion analysis. This study did not consider the signifi-
cant lag-correlation be tween some climate oscilla-
tions. For instance, Ashok et al. (2003) noted that the
IOD and ENSO (represented by the areal averaged
tropical Indian Ocean SST and Niño-3 SST index,
respectively) reaches a maximum strong correlation
of about 0.6 when the former lags the latter by 4 mo.
Also, Horel & Wallace (1981) discovered that the
summer− autumn ENSO phase can influence the win-
ter phases of PNAP and WPP. Thus, any interest in
understanding the intrinsic contribution of a given
climate oscillation to temperature variability with the
consideration of time-lag influences by other climate
modes should be dealt with by future studies.

Acknowledgements. We express our gratitude to Drs.
Chris Torrence and Liu Yonggang for assisting with the re -
search methodology. The LULC pattern-grid maps (in
shape file format) are downloaded from http://nlftp.mlit. go.
jp/ksje/ index.html. The temperature data are downloaded
from https:// www.ncdc.noaa.gov/cdo-web/. The MEI, QBO,
AO, PNAP and WPP indices are obtained from www.esrl.
noaa.gov/psd/data/climateindices/list/. The DMI are extrac -
ted from www.jamstec.go.jp/frsgc/research/d1/ iod/ iod/
dipole   _ mode_index.html. The CWT and WTC MATLAB
packages used in this study were provided by Drs. Chris
Torrence and Gilbert P. Compo as well as Dr. Aslak Grin-
sted, respectively. This research did not receive any specific
grant from funding agencies in the public, commercial or
not-for-profit sectors.

LITERATURE CITED

Addison PS (2002) The illustrated wavelet transform hand-
book:  introductory theory and applications in science,
engineering, medicine and finance. CRC Press, Boca
Raton, FL

Akihiko T, Morioka Y, Behera SK (2014) Role of climate vari-
ability in the heatstroke death rates of Kanto region in
Japan. Sci Rep 4: 5655

Ashok K, Guan Z, Yamagata T (2003) A look at the relation-
ship between the ENSO and the Indian Ocean Dipole.
J Meteorol Soc Jpn 81: 41−56

Baliunas S, Frick P, Sokoloff D, Soon W (1997) Time scales and
trends in the central England temperature data (1659−
1990):  a wavelet analysis. Geophys Res Lett 24: 1351−1354

Bretherton CS, Widmann M, Dymnikov VP, Wallace JM,
Ileana B (1999) The effective number of spatial degrees
of freedom of a time-varying field. J Clim 12: 1990−2009

Bridgman HA, Oliver JE (2014) The global climate system: 
patterns, processes, and teleconnections. Cambridge
University Press, Cambridge

Darby DA, Ortiz JD, Grosch CE, Lund SP (2012) 1500-year
cycle in the Arctic Oscillation identified in Holocene
 Arctic sea-ice drift. Nat Geosci 5: 897−900

Farge M (1992) Wavelet transforms and their applications to
turbulence. Annu Rev Fluid Mech 24: 395−458

Fujibe F (2009) Detection of urban warming in recent tem-
perature trends in Japan. Int J Climatol 29: 1811−1822

Gilman DL, Fuglister FJ, Mitchell JM Jr (1963) On the power
spectrum of ‘red noise’. J Atmos Sci 20: 182−184

Grinsted A (2014), Cross wavelet and wavelet coherence tool-
box for MATLAB. https: //github.com/grinsted/ wavelet-
coherence (accessed on 31 Oct 2017)

Grinsted A, Moore JC, Jevrejeva S (2004) Application of the
cross wavelet transform and wavelet coherence to geo-
physical time series. Nonlinear Process Geophys 11: 
561−566

Horel JD, Wallace JM (1981) Planetary-scale atmospheric
phenomena associated with the Southern Oscillation.
Mon Weather Rev 109: 813−829

Japan Agency for Marine−Earth Science and Technology
(2003) A triangle mechanism that brings hot summer of
East Asia has been revealed. https: //www.jamstec. go.jp/
frsgc/ eng/press/IOD/index.html

Japan Meteorological Agency (2015a) Characteristics of
Japan’s weather during El Niño Phase (in Japanese).
www.data.jma.go.jp/gmd/cpd/data/elnino/learning/tenkou
/nihon1.html

Japan Meteorological Agency (2015b) Characteristics of
Japan’s weather during La Niña phase (in Japanese).
www.data.jma.go.jp/gmd/cpd/data/elnino/learning/tenkou
/nihon2.html

Japan Meteorological Agency (2016) Relocation of Tokyo
observational weather station (in Japanese). www.jma.
go. jp/jma/kishou/books/sokkou/83/vol83p001.pdf

Japan Meteorological Agency (2017) Climate of Kanto/
Koshin District. www.data.jma.go.jp/gmd/ cpd/longfcst/
en/tourist/file/Kanto_Koshin.html

Kataoka K, Matsumoto F, Ichinose T, Taniguchi M (2009)
Urban warming trends in several large Asian cities over
the last 100 years. Sci Total Environ 407: 3112−3119

Kurita N, Fujiyoshi Y, Nakayama T, Matsumi Y, Kitagawa H
(2015) East Asian monsoon controls on the inter-annual
variability in precipitation isotope ratio in Japan. Clim
Past 11: 339−353

Liu Y, San Liang X, Weisberg RH (2007) Rectification of the
bias in the wavelet power spectrum. J Atmos Ocean
Technol 24: 2093−2102

Lucero OA, Rodríguez NC (2000) Statistical characteristics
of interdecadal fluctuations in the Southern Oscillation
and the surface temperature of the equatorial Pacific.
Atmos Res 54: 87−104

Oke T (1982) The energetic basis of the urban heat island.
QJR Meteorol Soc 108: 1−24

79

https://doi.org/10.1038/srep05655
https://doi.org/10.2151/jmsj.81.41
https://doi.org/10.1029/97GL01184
https://doi.org/10.1175/1520-0442(1999)012%3C1990%3ATENOSD%3E2.0.CO%3B2
https://doi.org/10.1038/ngeo1629
https://doi.org/10.1146/annurev.fl.24.010192.002143
https://doi.org/10.1002/joc.1822
https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1016/S0169-8095(00)00043-0
https://doi.org/10.1175/2007JTECHO511.1
https://doi.org/10.5194/cp-11-339-2015
https://doi.org/10.1016/j.scitotenv.2008.09.015
https://doi.org/10.1175/1520-0493(1981)109%3C0813%3APSAPAW%3E2.0.CO%3B2
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1175/1520-0469(1963)020%3C0182%3AOTPSON%3E2.0.CO%3B2


Clim Res 75: 65–80, 2018

Oke T (2006) Initial guidance to obtain representative mete-
orological observations at urban sites. World Meteoro-
logical Organization, Geneva

Oshika M, Tachibana Y, Nakamura T (2015) Impact of the
winter North Atlantic Oscillation (NAO) on the Western
Pacific (WP) pattern in the following winter through
 Arctic sea ice and ENSO. I. Observational evidence.
Clim Dyn 45: 1355−1366

Park HJ, Ahn JB (2016) Combined effect of the Arctic Oscil-
lation and the Western Pacific Pattern on East Asia win-
ter temperature. Clim Dyn 46: 3205−3221

Park TW, Ho CH, Yang S, Jeong JH (2010) Influences of Arc-
tic Oscillation and Madden−Julian Oscillation on cold
surges and heavy snowfalls over Korea:  a case study for
the winter of 2009−2010. J Geophys Res D Atmospheres
115: D23122

Park TW, Ho CH, Yang S (2011) Relationship between the
Arctic Oscillation and cold surges over East Asia. J Clim
24: 68−83

Prokoph A, Patterson RT (2004) Application of wavelet and
regression analysis in assessing temporal and geo-
graphic climate variability:  Eastern Ontario, Canada as a
case study. Atmos-ocean 42: 201−212

Saji N, Yamagata T (2003) Possible impacts of Indian Ocean
dipole mode events on global climate. Clim Res 25: 
151−169

Saji NH, Goswami B, Vinayachandran P, Yamagata T (1999)
A dipole mode in the tropical Indian Ocean. Nature 401: 
360−363

Sakakibara Y, Owa K (2005) Urban−rural temperature
 differences in coastal cities:  influence of rural sites. Int J
Climatol 25: 811−820

Santamouris M (2015) Analyzing the heat island magnitude
and characteristics in one hundred Asian and Australian
cities and regions. Sci Total Environ 512−513: 582−598

Seo J, Choi W, Youn D, Park DSR, Kim JY (2013) Relation-
ship between the stratospheric quasi-biennial oscillation
and the spring rainfall in the western North Pacific. Geo-
phys Res Lett 40: 5949−5953

Torrence C, Compo GP (1998) A practical guide to wavelet
analysis. Bull Am Meteorol Soc 79: 61−78

Torrence C, Compo GP (1999) Wavelet software. http: //
paos. colorado.edu/research/wavelets/software.html (ac -
cessed on 31 Oct 2017)

Torrence C, Webster PJ (1999) Interdecadal changes in the
ENSO−monsoon system. J Clim 12: 2679−2690

Wolter K, Timlin MS (1998) Measuring the strength of ENSO
events:  How does 1997/98 rank? Weather 53: 315−324

Yamato H, Mikami T, Takahashi H (2011) Influence of sea
breeze on the daytime urban heat island in summer in
the Tokyo Metropolitan Area. J Geog 120: 325−340

Yang S, Lau K, Kim K (2002) Variations of the East Asian
jet stream and Asian−Pacific−American winter climate
anomalies. J Clim 15: 306−325

Zaraket H, Saito R, Tanabe N, Taniguchi K, Suzuki H (2008)
Association of early annual peak influenza activity with
El Niño Southern Oscillation in Japan. Influenza Other
Respir Viruses 2: 127−130

80

Editorial responsibility: Oliver Frauenfeld, 
College Station, Texas, USA 

Submitted: July 12, 2017; Accepted: January 3, 2018
Proofs received from author(s): April 8, 2018

https://doi.org/10.1007/s00382-014-2384-1
https://doi.org/10.1007/s00382-015-2763-2
https://doi.org/10.1029/2010JD014794
https://doi.org/10.1175/2010JCLI3529.1
https://doi.org/10.3137/ao.420304
https://doi.org/10.3354/cr025151
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16862108&dopt=Abstract
https://doi.org/10.1002/joc.1180
https://doi.org/10.1111/j.1750-2659.2008.00047.x
https://doi.org/10.1175/1520-0442(2002)015%3C0306%3AVOTEAJ%3E2.0.CO%3B2
https://doi.org/10.5026/jgeography.120.325
https://doi.org/10.1002/j.1477-8696.1998.tb06408.x
https://doi.org/10.1175/1520-0442(1999)012%3C2679%3AICITEM%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0477(1998)079%3C0061%3AAPGTWA%3E2.0.CO%3B2
https://doi.org/10.1002/2013GL058266
https://doi.org/10.1016/j.scitotenv.2015.01.060



