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1.  INTRODUCTION

The Intergovernmental Panel on Climate Change
(IPCC 2013) Fifth Assessment Report on Climate
Change points out that over the past century, almost

all regions of the world have experienced a warming
process. With an average temperature increase of
0.85°C from 1880 to 2013 (IPCC 2013), many regions
are facing dire challenges due to climatic and hydro-
logical situations (Cai et al. 2011, Li et al. 2015). Tem-
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ABSTRACT: Annual, seasonal, and monthly changes in temperature and precipitation and their
links with elevation in the Hengduan Mountain region (HDMR) in China were analyzed based on
the daily climate data of 90 meteorological stations from 1961−2011. The results demonstrate that
the average annual mean temperature in the HDMR exhibited significant increasing trends of
0.16°C decade−1 during 1961−2011. The warming trends were found to be more apparent in win-
ter (December−January−February) and autumn (September−October−November) than in sum-
mer (June− July−August) and spring (March−April−May). All of the 12 monthly mean tempera-
tures increased, with trends ranging from 0.01−0.24°C per 10 yr. Temperatures increased by
0.06°C per 10 yr per 1000 m for elevations ranging from 500−4000 m. The elevation dependency
of climatic warming was most robust in winter followed by spring and summer, and was weakest
in autumn. The magnitudes of the monthly temperature changes ranged from 0.02−0.10°C per
10 yr per 1000 m. The relationships between annual, seasonal, and monthly temperature trends
and elevation indicate evidence of elevation-dependent warming. The average annual total pre-
cipitation showed a nonsignificant decreasing trend of −11.41 mm decade−1 in the HDMR from
1961− 2011. Summer, autumn, and winter precipitation showed nonsignificant decreasing trends
during 1961− 2011, while spring precipitation exhibited an increasing trend at a rate of 7.34 mm
decade−1. The HDMR exhibited a wetting trend during January to May and a drying trend during
June to December. The annual and seasonal precipitation changes showed positive correlations
with elevation, but annual and seasonal precipitation decreased, except for the spring precipita-
tion (which increased significantly). The relationships between annual and seasonal precipitation
trends and elevation indicate that the higher altitude regions experienced a slower drying trend
than regions at a lower altitude. The spring precipitation increasing trend was amplified with ele-
vation. This study will be helpful for improving our understanding of the variabilities in tempera-
ture and preci pitation in response to climate change, and will provide support for water resource
management in the HDMR.
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perature and precipitation are 2 of the most important
climate elements, and represent a crucial part of the
global hydrologic cycle (Thériault et al. 2015).
Changes in precipitation and temperature extremes
have been observed in many areas (Easterling et al.
2000, Alexander et al. 2006, Ning & Qian 2009).
Model outputs show that in the future, extremely high
temperature and intense precipitation events will in-
crease, and extreme low temperatures will  de crease
(Easterling et al. 2000). Extreme climate events are
occuring more frequently worldwide in recent de -
cades (Benis ton & Stephenson 2004, Zolina et al. 2010,
Zhang et al. 2012). Numerous extreme weather and
climate events, such as droughts and floods, affect the
environment, water resources, and human lives (East-
erling et al. 2000, Kunkel 2003, Shi & Xu 2008, You et
al. 2010, Boccolari & Malmusi 2013). 

Mountain regions provide habitat for many of the
world’s rare and endangered species (Pepin et al.
2015). In addition, high mountain regions above
2000 m represent the main water supply areas in Asia
and are considered ‘water towers’ of many major river
systems (Immerzeel et al. 2010). Mountain areas are
more sensitive and vulnerable to climate change than
lowlands (S. Wang et al. 2013). Therefore, mountain
areas have attracted attention for the study of ex -
treme events in order to identify adaptive actions
(Pepin & Lundquist 2008, You et al. 2008, Li et al.
2010, Wang Q et al. 2014, Pepin et al. 2015). Ohmura
(2012) showed that temperature variability increased
at high altitudes in 10 major mountain regions of the
world: the Alps, Kashmir, the Hima la yas, Tibet, the
Tienshans, the Qilianshans, the Japanese Archipel-
ago, the Andes, the North American Cordillera, and
the Appalachians. Dong et al. (2015) investigated the
relationship between temperature trends and alti-
tude in China during 1963−2012; they found that
temperature trend increased with elevation from 200
to 2000 m. Precipitation in China increased by 2%
while the frequency of precipitation events de creased
by 10% from 1960−2000 (Liu et al. 2005). At a regional
scale, many research studies have analyzed temporal
or/and spatial variations in precipitation or/and tem-
perature in many catchments (Liu et al. 2006, Fan et al.
2011, Wang H et al. 2013, Wu et al. 2013, Huang et al.
2014, Wang X et al. 2014). However, most previous
studies focused on plains or low-altitude regions,
while few studies have been conducted in mountain-
ous areas, especially in high-elevation regions.

The elevation dependency of temperature and pre-
cipitation change have attracted attention from both
academia and management agencies. Pepin et al.
(2015) collected evidence for an amplification of

warming rates with elevation, known as elevation-
dependent warming (EDW), which means that the
temperature changes faster in high-mountain re gions
than at lower elevations. Li et al. (2012) exa mined the
altitude dependence of trends of daily climate ex-
tremes in southwestern China between 1961 and
2008, and the analysis revealed an en hanced sensitiv-
ity of climate extremes to elevation in southwestern
China in the context of recent warming. Climate mod-
els predict that greenhouse warming will cause tem-
peratures to rise faster at higher than at lower
altitudes, with implications for glacier mass balance
and water resources, montane ecosystems, and higher
elevation agricultural activities (Bradley et al. 2004,
2006, Diaz et al. 2014). Liu & Chen (2000) and Liu et al.
(2009) also found that the recent warming over the Ti-
betan Plateau (TP) was correlated with elevation.
There is growing evidence for elevation-dependent
wetting in the arid region of northwest China, since,
with increases in elevation, the water vapour of the
mountains shows an increased trend, and increasing
water vapour may increase precipitation, so the
trends of increasing precipitation are amplified (Yao
et al. 2016). The increasing trend in precipitation is rel-
atively prominent at higher elevations, while a de-
creasing trend is significant at low-elevation stations
(Zeng et al. 2016). However, owing to the influence of
topography and atmospheric circulation, trend
changes in precipitation and temperature due to ele-
vation are complex.

The Hengduan Mountain region (HDMR), located
in the southeastern part of the TP, is an area of major
runoff production and water resource conservation.
Many different ecosystems exist in this region. With
an increase in population and economic develop-
ment, the ecological environment has deteriorated.
Changes in land use/land cover and vegetation cover
in the HDMR affect thermodynamic activity and fur-
ther affect the climate and ecological environment of
the surrounding areas, even into central and western
China (Zhu et al. 2013). Therefore, some scholars
have researched the environmental changes in this
region. Li et al. (2011) analyzed the spatial and tem-
poral trends of temperature and precipitation in the
HDMR. Zhang et al. (2014) analyzed the spatial dis-
tribution and temporal trends of extreme precipita-
tion events over the HDMR, and indicated that
extreme precipitation events decreased with alti-
tude. However, most studies have concentrated on
the spatial and temporal distribution of temperature
and precipitation; few have provided insight into the
seasonal and monthly changes in temperature and
precipitation and the relationship between the trends
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in temperature and precipitation with regard to ele-
vation in the HDMR. Using meteorological station
data, we analyzed changes in annual, seasonal, and
monthly temperature and precipitation, and investi-
gated the relationship between temperature and pre-
cipitation trends with regard to elevation. The find-
ings will be helpful for improving our understanding
of the temperature and precipitation re sponses to cli-
mate change in the HDMR, and for providing support
for water resource management in this region.

2.  STUDY AREA, DATA, AND METHODS

2.1.  Study area

The HDMR is located in the southeastern part of
the TP (24°40’−34°00’ N, 96° 20’−104° 30’ E) and com -
prises an area of 449 698 km2 (Fig. 1). There are
 numerous mountains (e.g. Mt. Minshan, Mt. Qiong -
lai shan, Mt. Daxueshan, Mt. Shalulishan, Mt. Haba -
 xue shan, Mt. Yulong, Mt. Ningjingshan, Mt. Yunling,
Mt. Gaoligongshan) and rivers (e.g. the Mijing, Da -
du he, Ya-lung, Chin-sha, Lancang, and Nujiang
Rivers) in the HDMR. Elevations range from above
5000 m in the north to >4000 m in the south. The
highest peak is Mt. Gonggashan (7556 m), lo cated in
the central HDMR. The elevation decreases from the
northwest to the southeast (Fig. 1). All rivers in the
HDMR drain into the Pacific Ocean except the Nuji -
ang River, which drains into the Indian Ocean from
the southwestern part of the HDMR. The HDMR has
a typical monsoonal climate that is controlled by the
East and South Asia monsoons (May–October), the
TP monsoon, and the westerlies (Li et al. 2012).
Owing to the effect of the complex topography, the
HDMR has extreme vertical climate zones. The mon-
soon brings a large amount of moisture, with rain ac -
counting for 75−90% of total annual precipitation.
November to April is the winter monsoon period,
which is influenced by the TP monsoon and the west-
erlies. Influenced by the monsoons’ strength or weak-
ness, this region has experienced ex treme flood or
drought events, such as the severe drought in south-
west China from autumn 2009 to spring 2010 (Zhou et
al. 2009, Lu et al. 2011).

2.2.  Data and methods

Daily temperature and precipitation data were
obtained from the National Meteorological Informa-
tion Center of the China Meteorological Adminis-

tration (CMA) (http://data.cma.cn/site/index.html).
The data lacked uniformity because the beginning
of the recording dates was inconsistent, and some
stations had missing data. Based on accepted stan-
dards that the observed data should be continuous
and as long as possible in duration, we chose 1961
as the start year, and used stations without missing
data. After rejecting 8 stations with inconsistent
data series, 90 stations were finally selected for this
study (Fig. 1). The weather station data ranged from
1 January 1961 to 31 December 2011. The eleva-
tions of the selected stations ranged from 639.5 m
(Ebian station) to 3948.9 m (Litang station); a histo-
gram of the elevations of the 90 stations is shown in
Fig. 2. There were only 4 stations below 1000 m, 44
stations between 1000 and 2000 m, 42 stations
above 2000 m, and 12 stations above 3000 m; no sta-
tion has an elevation higher than 4000 m in the
HDMR.

Fig. 1. Digital elevation model of the Hengduan Mountain
region (HDMR) and locations of the meteorological stations
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We used linear regression to study temperature
and precipitation trends and the relationship be -
tween these trends and elevation. The trends in tem-
perature and precipitation were investigated for dif-
ferent elevations in different periods, seasons, and
months. In this study, March−May, June−August,
September− November, and December−February

represent spring, summer, autumn, and winter,
respectively. The Mann-Kendall nonparametric sta-
tistical test (Yue et al. 2002) was used to detect trends
in the time series of temperature and precipitation in
the HDMR and to determine the correlation coeffi-
cients between the trends in temperature and precip-
itation and elevation.

3.  RESULTS

3.1.  Temperature and precipitation trend
 characteristics

Fig. 3 shows the distribution of the trends of annual
mean temperature (Tann) and annual total precipita-
tion (Pann) in the HDMR during 1961−2011. Tann in -
creased by 0.16°C decade−1 in the HDMR, which
indicates a significant warming trend at the 0.01 sig-
nificance level based on results calculated by the
Mann-Kendall method. A significant warming trend
was observed; only 8 stations in the south HDMR
experienced a cooling trend and 2 stations had val-
ues at the 0.05 significance level (Fig. 3a, Table 1); 82
of the 90 stations (accounting for 91%) showed a
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Fig. 2. Elevations of the meteorological stations in the Heng-
duan Mountain region

Fig. 3. Distribution of the annual mean (a) temperature (Tann) and (b) precipitation (Pann) trends in the Hengduan Mountain 
region during 1961−2011 (statistical significance at 0.05 level)



Xu et al.: Temperature and precipitation trends in China

warming trend and 68.9% reached the 0.05 signifi-
cance level. Pann decreased by −11.41 mm decade−1

in the HDMR, indicating a drying trend, while no sig-
nificant long-term linear trend was ob served. The
northeast and south of the HDMR be came dryer;
however, wetting occurred in the middle and north
regions of the HDMR (Fig. 3b). The statistical results
showed that 68.9% of the stations became dryer,
while only 13.3% reached the 0.05 significance level
(Table 1). These results indicate a clear warming
trend and a non-significant drying trend in the
HDMR during 1961−2011. Temperature increases for
spring, summer, autumn, and winter were 0.09°C per
10 yr (p = 0.0911), 0.14°C per 10 yr (p = 0.0002),
0.16°C per 10 yr (p = 0.0009), and 0.27°C per 10 yr
(p < 0.0001), respectively (Fig. 4). A significant warm-
ing trend was observed for all 4 seasons, except
spring. The most significant warming trend occurred
in winter, followed by autumn, summer, and spring.
In the winter, 84 stations exhibited warming; further-
more, 70 stations reached the 0.05 significance level,
while only 6 stations showed a cooling trend, which
was not significant (Table 1). There were 63 stations
exhibiting a warming trend in the spring (32.2%
reached the 0.05 significance level) and 27 stations
exhibiting a cooling trend (6.7% reached the 0.05
significance level); this resulted in a nonsignificant
warming trend for the mean temperature in spring.
The distribution of the seasonal precipitation trend in
the HDMR during 1961−2011 is shown in Fig. 5. The
precipitation trends in spring, summer, autumn, and
winter were 7.34 mm per 10 yr (p = 0.0116), −7.87 mm
per 10 yr (p = 0.1281), −8.90 mm per 10 yr (p =
0.0160), and −2.07 mm per 10 yr (p = 0.0378), respec-
tively. The precipitation in the spring increased sig-
nificantly, while precipitation in the other seasons
decreased, and autumn and winter precipitation
were statistically significant at the 0.05 level. The
most significant drying trend was ob served in

autumn, followed by summer and winter, while
spring precipitation increased significantly. In the
spring, 93.3% of stations exhibited a precipitation
increase (38.9% reached the 0.05 significance level;
Table 1) and 76.7% of the stations exhibited drying
trends for precipitation in the summer, especially in
the northeast and southwest of the HDMR (Fig. 5b,
Table 1). Overall, 78.9% of the stations ex hibited
drying trends for precipitation in autumn, mainly
concentrated in the north and south of the study
region (Fig. 5c, Table 1). Winter precipitation showed
little change at a rate of −2.07 mm per 10 yr in the
past 51 yr and 56.7% of the stations exhibited drying
trends, especially in the south of the HDMR (Fig. 5d,
Table 1). Because the precipitation was mainly con-
centrated in the summer (accounting for 54.4% of
Pann), the precipitation decrease was nonsignificant
in the summer; although autumn and winter precipi-
tation decreased significantly, spring precipitation
increased significantly, and this led to a nonsignifi-
cant decrease in Pann. The trends for temperature and
precipitation indicated that the regions experienced
warming and drying trends for the period of
1961−2011.

In order to examine the trends of temperature and
precipitation in more detail, we calculated the trends
in monthly mean temperatures and total preci pi -
tation amounts in the HDMR during 1961−2011
(Fig. 6). We also determined the percentage of sta-
tions with significant and nonsignificant trends (pos-
itive or negative) (Fig. 7). All 12 monthly mean tem-
peratures exhibited an increasing trend, ranging
from 0.01−0.24°C per 10 yr (Fig. 6a), and the trends
were significant at the 0.05 level in January, June,
August, September, November, and December. The
increasing trend in monthly mean temperature was
largest in January, followed by June, November, and
December; all 4 of these monthly mean temperatures
were above 0.20°C per 10 yr. The trends for May and
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Time period           Temperature                                                   Precipitation
            Warming        Cooling                 Wetting            Drying
                        Number       Trend             Number      Trend                     Number        Trend              Number        Trend 
                                      (°C decade−1)                    (°C decade−1)                            (mm decade−1)                     (mm decade−1)

Annual              82(62)          0.19                  8(2)           −0.09                        28(4)           14.52                 62(12)         −23.13
Spring               63(29)          0.18                 27(6)          −0.10                       84(35)           8.26                    6(0)            −5.59
Summer            78(55)          0.17                 12(0)          −0.04                        21(1)            8.58                  69(14)         −12.73
Autumn            81(51)          0.19                  9(0)           −0.06                        19(0)            4.58                  71(21)         −11.99
Winter               84(70)          0.30                  6(0)           −0.11                        39(4)            1.51                  51(14)          −4.80

Table 1. Numbers of stations and temperature and precipitation trends on an annual and seasonal basis in the Hengduan 
Mountain region. Parentheses: no. of sites that passed the 0.05 significance level test
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Fig. 4. Distribution of the seasonal mean temperature trend in the Hengduan Mountain region during (a) spring, (b), summer, 
(c) autumn, and (d) winter of 1961−2011 (statistical significance at 0.05 levels)
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Fig. 5. Distribution of the seasonal precipitation trend in the Hengduan Mountain region during (a) spring, (b), summer, (c) autumn, 
and (d) winter of 1961−2011 (statistical significance at 0.05 levels)
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July were 0.01 and 0.07°C per 10 yr, respectively, and
the other monthly mean temperature trends were be -
tween 0.10 and 0.20°C per 10 yr. Less than 50% of
the stations showed warming trends for May, while
the other months were above 66.7% (Fig. 7a); the
percentages for January, February, June, November,
and December were above 90%.

Trends in precipitation were above zero from Jan-
uary to May and below zero from June to December
(Fig. 6b); the data indicate a wetting trend during
January−May and a drying trend during June−
December. Only the trends of November and Decem-
ber reached the 0.05 significance level. The precipi-
tation in May had the largest wetting trend magni-
tudes (3.92 mm per 10 yr) and the precipitation in
August had the largest drying trend magnitudes
(−5.06 mm per 10 yr). Although the percent of the
upward trends ranged from 64−89% from January−
May, there were fewer stations (4−22%) that showed
a significant upward trend for precipitation. In con-
trast, the percent of the downward trend from June to
December ranged from 46−87% and fewer stations
(7−24%) showed a significant downward trend.
These results illustrate that the precipitation de -
crease was nonsignificant.

3.2.  Relationship between temperature trend
and elevation

The relationship between the annual and seasonal
temperature trends and altitude were analyzed using
linear regression (Fig. 8). Tann increased by 0.06°C
decade−1 per 1000 m (R2 = 0.083, p < 0.05) for alti-
tudes ranging from 500−4000 m, showing an increas-
ing trend with an increase in elevation during 1961−
2011 (Fig. 8a). The warming trends increased with
increasing altitude annually and for all seasons in the
HDMR (Fig. 8). The elevation dependency of the cli-
matic warming was most robust in winter, followed
by spring, summer, and autumn. The rates of in -
crease in winter, spring, summer, and autumn were
0.10, 0.08, 0.07, and 0.03°C per 10 yr per 1000 m. Fur-
thermore, all rates of increase were significant at the
0.05 significance level, except for autumn (p =
0.2074; Fig. 8d), indicating that the influence of alti-
tude on temperature was marked except in autumn.
Fig. 4c shows that the temperature in autumn ex -
hibits significant in creasing trends in the east and
south of the HDMR, although the temperature in the
west also shows an increasing trend but is not signif-
icant. The topography declines from west to east and
north to east for the HDMR (Fig. 1). The results show

Fig. 6. Monthly (a) temperature and (b) precipitation trends 
in the Hengduan Mountain region during 1961−2011

Fig. 7. Percent of stations with different significant levels for
the monthly (a) temperature and (b) precipitation trends in 

the Hengduan Mountain region during 1961−2011
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that there was no significant correlation between the
autumn trends in temperature and elevation.

Fig. 9 further shows the relationships between the
magnitudes of the trends for the monthly tempera-
tures and elevation. There were positive correlations
between temperature and elevation trend for all 12
months, and the relationships were significant except
for February, September, October, and November
(Fig. 9). The positive relationships had the largest
magnitudes in January and December (both were
0.10°C per 10 yr per 1000 m). In contrast, the magni-
tudes were lowest for September, October, and
November (0.04, 0.02, and 0.03°C per 10 yr per
1000 m, respectively). These results further demon-

strate that the elevation dependency of climatic
warming was weakest in autumn. The relationships
between an nual, seasonal, and monthly temperature
trends and elevation indicated that higher altitude
areas experienced more warming than areas at lower
elevations.

3.3.  Relationship between precipitation trend
and elevation

Similar to the temperature−elevation analysis, the
relationship between annual, seasonal, and monthly
precipitation trends and altitude were analyzed
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Fig. 8. Trend magnitudes of (a) annual and (b−e) seasonal
mean temperature versus elevation in the Hengduan Moun-
tain region. R2: correlation coefficients for the relationships; 

p: statistical significance
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using linear regression (see Figs. 10 & 11). Precipita-
tion increased by 7.8 mm decade−1 per 1000 m (R2 =
0.0525, p < 0.05) for altitudes ranging from 500−
4000 m, showing an increasing trend with an in -
crease in elevation during 1961−2011 (Fig. 10a). Pann

decreased by −11.41 mm decade−1 in the HDMR,
which showed a nonsignificant drying trend. That is
to say, the drying trend was slower at higher eleva-
tions. The elevation dependence of precipitation was
robust in summer, followed by winter and spring, and
was weakest in autumn; the rates of change in the

summer, winter, spring, and autumn were 3.1, 2.0,
1.7, and 1.0 mm per 10 yr per 1000 m, and only the
value for the winter reached the 0.05 significance
level (p = 0.0492; Fig. 10e). This indicates that the
influence of elevation on seasonal precipitation was
not marked except during winter. Fig. 5d shows that
winter precipitation exhibited a drying trend in
the south and an increasing trend in the northwest of
the HDMR. Therefore, there was a positive correla-
tion between the winter trends in precipitation and
elevation.
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Fig. 9. Trend magnitudes of monthly mean temperature versus elevation in the Hengduan Mountain region. R2: correlation 
coefficients for the relationships; p: statistical significance
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Fig. 11 further reveals the relationships between
the magnitudes of the trends for monthly precipita-
tion and elevation. April, August, and December pre-
cipitation trends showed positive and significant cor-
relations with altitude (2.3, 1.2, and 1.1 mm per 10 yr
per 1000 m, respectively). May, July, and September
precipitation trends showed negative and nonsignifi-
cant correlations with altitude, with trend magni-
tudes of −0.1, −0.2, and −0.03 mm per 10 yr per
1000 m, respectively. The relationship between the
other monthly precipitation trends and elevation
were positive and nonsignificant, ranging from 0.2 to
1.0 mm per 10 yr per 1000 m (Fig. 11).

Although the annual and seasonal precipitation
trends showed positive correlations with elevation,
Pann and seasonal precipitation decreased except
for spring precipitation (which increased signifi-
cantly) in the HDMR during 1961−2011. The rela-
tionships between annual and seasonal precipita-
tion (except for spring precipitation) trends and
elevation indicated that the higher altitude regions
experienced a slower drying trend than regions at
lower altitudes. The spring precipitation wetting
trend was amplified with elevation. Except for May,
July, and September, when the precipitation trends
showed negative correlations with elevation, the
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Fig. 10. Trend magnitudes of (a) annual and (b−e) seasonal
precipitation versus elevation in the Hengduan Mountain
region. R2: the correlation coefficients for the relationships; 

p: statistical significance
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other monthly precipitation trends showed positive
correlations with altitude. Additionally, monthly
precipitation from January to May showed non-
significant increasing trends while precipitation in
the other months showed drying trends. Therefore,
the relationships be tween the January, February,
March, and April precipitation wetting trends were
amplified with elevation. Compared with the rela-
tionship between temperature and elevation, the
relationship between precipitation and elevation is
much more complex.

4.  DISCUSSION

4.1.  Temperature and precipitation trends in
the HDMR

The HDMR showed a significant warming trend,
with a rate of 0.16°C decade−1 during 1961−2011 and
0.38°C decade−1 during 2001−2011. The result of the
increasing trend in Tann is similar to the findings of a
previous study of the HDMR that showed an increas-
ing trend of 0.15°C decade−1 during 1960−2008 (Li et

Fig. 11. Trend magnitudes of monthly precipitation versus elevation in the Hengduan Mountain region. R2: correlation 
coefficients for the relationships; p: statistical significance
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al. 2011), and is slightly lower than the results
(0.173°C decade−1) conducted in Sichuan Province
for the period of 1960−2009 (S. Wang et al. 2013). Our
result is significantly lower than that of a study at the
national level that showed an increase of 0.26°C
decade−1 during 1963−2012 (Dong et al. 2015) and
0.30°C decade−1 in the Yunnan Plateau during 1961−
2004 (Fan et al. 2011). Furthermore, the stronger
warming during the most recent 11 yr is consistent
with the results reported for the TP (Dong et al. 2015)
and for a previous study of the HDMR (Li et al. 2011).
There were 8 stations with a decreasing trend in Tann

in the southeast of the HDMR during 1961−2011
(Fig. 3a). Previous studies in this region also found a
cooling trend (Zhang et al. 2002, Qin et al. 2010, Fan
et al. 2011). Some researchers showed that the de-
crease in temperature was due to in creasing atmos-
pheric aerosol concentrations from regional pollu-
tants in the Sichuan basin and vicinity, which
decreased the intensity and duration of sunshine, re-
sulting in a decrease in temperature (Qian & Giorgi
2000, Li et al. 2011). At the seasonal scale, the in-
crease in magnitude of the mean temperature is most
notable in winter, followed by autumn and summer,
and is weakest in spring. This indicates that the in-
creased magnitude of Tann can be mainly attributed
to the warming contribution in winter and autumn.
The warming magnitude was higher in the middle
and north regions than in the south of the HDMR
during 1961−2011.The changes in the Pann showed a
regional and seasonal difference in the HDMR. Pann

decreased by −11.41 mm decade−1 during 1961−
2011, which is different from the results of a previous
study in the HDMR where the precipitation in -
creased 9.09 mm decade−1 during 1960−2008 (Li et
al. 2011). However, in that study, the number of sta-
tions and the elevation ranges of the stations were
different. We selected 90 stations with elevations
ranging from 639.5− 3948.9 m, while only 27 stations
were used in their study with elevations ranging from
1244.8− 4200 m. The study periods were different as
well; our study period was 1961−2011 while the other
study used 1960−2008. Furthermore, it is well known
that southwestern China experienced the worst
water shortage in 100 yr from autumn 2009 to spring
2010. In addition, our results indicate that precipita-
tion exhibited an increasing trend at a rate of
1.22 mm decade−1 during 1961−2000 in the HDMR,
and southwest China has experienced an ongoing
drought since 2000 (Wu et al. 2013). All of these dif-
ferences may be the main cause for the differing re-
sults between the 2 studies (Li et al. 2011). In
addition, Pann showed nonsignificant decreasing

trends of −4.19 mm decade−1 in Sichuan Province
during 1960− 2009 (Wang S et al. 2013), and increas-
ing trends of 0.61 mm yr−1 in northwest China during
1960− 2010 (Li et al. 2016). At a seasonal scale, Pann

de creased in all seasons except spring. The drying
was most notable in autumn, followed by summer
and winter during 1961−2011. The precipitation de -
creased at rates of −8.90, −7.87, and −2.07 mm
decade−1 in autumn, summer and winter, respec-
tively, while it increased by 7.34 mm decade−1 in
spring. The significant increase in spring precipita-
tion was consistent with the results of previous stud-
ies (You et al. 2012, Tong et al. 2014). The Pann de-
crease may have been caused by the decrease in
autumn and summer, which are the flood seasons in
the HDMR. The results of the temperature and pre-
cipitation trends in the HDMR indicated that this re-
gion experienced warming and drying during 1961−
2011, especially during the period of 2001− 2011.

Temperature and precipitation are affected by
atmospheric circulation and human activities. The
HDMR is located in a typical monsoonal climate
region and is affected by the TP monsoon and the
westerlies in spring and winter, the South China Sea
and the Bay of Bengal monsoons in summer, and the
western Pacific monsoon in autumn. Summer and
autumn are the main periods of rainfall in the HDMR.
The decrease in water vapor from the Bay of Bengal
and the South China Sea and Western Pacific during
summer and autumn is the main reason for the signif-
icant drying trend in the HDMR during 1961–2011
(Zhou et al. 2009, Gong & He 2002). When the west-
ern Indian Ocean’s sea surface temperatures are
warmer, the easterly wind appears in the tropical
Indian Ocean and a cyclonic anomalous circulation
occurs in the western Indian Ocean. The warm and
moist airflow in the western Indian Ocean enters
mainland China along the west side of the TP, moves
around the TP from north to south, and finally enters
the Bay of Bengal, which limits the development of a
trough over the Bay of Bengal; therefore, water vapor
transport to the HDMR is decreased, resulting in less
precipitation (Tan et al. 2015). Under this abnormal
circulation, it is sunny with little rain in HDMR, and
the high temperatures result in continuous drought
(Xu et al. 2014). Because of the abnormality of the
atmospheric circulation and the continuous strength-
ening of the Arctic Oscillation, the East Asian mon-
soon (EAM) weakened in the winter (Ju et al. 2004).
The East Asia major trough was weak, the cold air
restricted the movement and held the abnormal cir-
culation over the South China Sea, resulting in a
weakening of the warm moist air flows in the HDMR.
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All of this has contributed to the warming in the win-
ter in the HDMR. The WPSH is strong and moves
westward, resulting in a warming and drying trend
in the autumn in the HDMR. Studies have indicated
that the water vapor originating from the South
China Sea and the Bay of Bengal monsoon, moving
into the southwest, decreased in the summer; on the
other hand, water vapor from the westerlies in -
creased (Zhou et al. 2009, Li et al. 2012). Therefore,
summer precipitation exhibited a non-significant
decrease under the combined effects of the summer
monsoon and the westerlies. However, due to the
increases in the westerlies, spring precipitation in -
creased significantly. Summer is the main rainfall
season with 60−70% of the Pann. The decrease in
summer precipitation was not significant, and al -
though autumn and winter showed significant drying
trends, the spring precipitation increased signifi-
cantly. This caused a nonsignificant decreasing trend
in Pann of −11.41 mm decade−1 in the HDMR.

The temperature increased significantly and pre-
cipitation decreased non-significantly in the HDMR
during 1961−2011. The South Asian Summer Mon-
soon (SAM) and the EAM are important influences
on precipitation in the HDMR (Zhang et al. 2014).
The SAM and EAM decreased, while the WPSH was
strong and moved westward in recent years, result-
ing in warming and drying trends in the southwest in
the 21st century (Li et al. 2012). Increases in anthro-
pogenic aerosols led to a weakening of the EAM and
a decrease in precipitation in China (Menon et al.
2002, Liu et al. 2011, T. Wang et al. 2015, H. Wang et
al. 2015, Xie et al. 2016). The effects of socio-eco-
nomic development in the HDMR, especially the
Chinese Western Great Development after 2000,
resulted in more aerosol emissions, and the drying
trend was most robust during 2001−2011.

4.2.  Elevation dependency of the trends in
 temperature and precipitation

Climate change in higher altitude regions has re -
ceived increased attention and there is growing evi-
dence that the rate of warming is amplified with ele-
vation. The relationships between annual, seasonal,
and monthly temperature trends and elevation indi-
cated that higher altitude areas experienced more
warming than areas at lower elevations. For ex -
ample, Tann increased by 0.06°C decade−1 per 1000 m
in the elevation range from 500−4000 m, and the win-
ter temperature trend increased by 0.10°C decade−1

per 1000 m, which was the most robust trend amongst

the seasons. These results indicate that the high
mountain regions experienced more rapid changes
in temperature than regions at lower elevations. This
is consistent with previous studies (Giorgi et al. 1997,
Beniston 2003, Liu et al. 2009, Li et al. 2011, 2012,
Yan & Liu 2014, Dong et al. 2015, Yan et al. 2016).
There are a series of mechanisms that contribute to
the amplification of warming with elevation, such as
snow/ice albedo feedbacks, water vapor, clouds, and
aerosols.

As a result of climate warming, the amount of sur-
face snow/ice in high-altitude areas is being re -
duced. The decrease in snow/ice leads to a de crease
in surface albedo, and the increasing solar radiation
is absorbed by the earth’s surface, resulting in higher
temperatures and further reduction of the surface
snow/ ice mass. This feedback process in creases the
temperatures at higher altitudes. The HDMR is one
of the main distribution areas of the monsoonal tem-
perate glaciers in China, and glaciers are decreasing
and snowlines are retreating under climate warming
(Li et al. 2011). Climate warming and decreases in
glacial snow cover affect one another. On the one
hand, climate warming leads to the reduction of gla-
ciers and snowpack. On the other hand, the reduc-
tion of glaciers and snowpack causes high altitude
areas to heat up. This is the main reason for the EDW
in the winter and spring in the HDMR.

Increases in water vapor in the air can lead to an
increase in downward longwave radiation (DLR), but
the relationship between water vapor and DLR is
non-linear (Ruckstuhl et al. 2007). A small increase in
water vapor in the air causes a significant increase in
the DLR, resulting in accelerated heating. Winter and
spring are dry, with robust warming trends, and the
increases in the westerlies resulted in increases in
the water vapor in the HDMR in winter and spring;
this also contributed to EDW. Both observations
(Rangwala 2013) and climate models (Rangwala et
al. 2009) have suggested that water vapor contributes
to EDW.

Changes in clouds affect both shortwave and long-
wave radiation and thus the surface energy budget
(Pepin et al. 2015). There are fewer clouds at lower
altitudes and more clouds at higher altitudes, result-
ing in less shortwave radiation absorbed at lower
altitudes and greater DLR; at the same time, the sur-
face solar and infrared radiation increase, which has
a net effect of warming at high elevation, causing
EDW. Based on the simulation results of high spatial
resolution models, Liu et al. (2009) also suggested
that the cloud-radiation effect was one of the main
mechanisms of EDW in the southeast TP.
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Aerosols absorb solar and infrared radiation and
reduce surface albedo when deposited on snow,
resulting in lower amounts of sunlight reaching the
ground which causes local cooling. Most of the
aerosols are concentrated at relatively low elevations
(below 3 km) (Ramanathan & Carmichael 2008); as a
result, the effects of solar shortwave radiation are re -
duced at lower elevations, while the impact on solar
radiation in high-altitude areas is small; thus higher
elevation areas exhibit higher warming trends. Tann

increased by 0.03°C decade−1 per 1000 m in the ele-
vation range of 500−3000 m (Fig. 12a) and by 0.20°C
decade−1 per 1000 m in the elevation range of 3000−
4000 m (Fig. 12b). This demonstrates that aerosols
have more impact on temperatures in low-elevation
regions than in high-elevation regions.

The annual and seasonal precipitation trends
showed positive correlations with elevation. For ex -
ample, Pann increased by 7.8 mm decade−1 per 1000 m
for altitudes ranging from 500−4000 m, showing an
increasing trend with an increase in elevation during
1961−2011 (Fig. 10a). It is worth noting that Pann

showed a nonsignificant drying trend of −11.41 mm
decade−1 in the HDMR during 1961−2011. That is to
say, the drying trend was slower at higher than at
lower elevations. A significant wetting trend of
7.34 mm decade−1 was observed in the spring and the
elevation dependence of precipitation was 1.7 mm
per 10 yr per 1000 m (not significant at the 0.05 sig-
nificant level); the spring precipitation wetting trend
was amplified with elevation. There is growing evi-
dence of elevation-dependent wetting in the TP (Tao
et al. 2015), in southwest China (Li et al. 2012, Tao et
al. 2017), in Sichuan Province (Zeng et al. 2016), and
in arid regions of China (Yao et al. 2016).

There are several possible mechanisms for the rela-
tionship between the trends of regional precipitation

and elevation in the HDMR. On the one hand, climate
warming accelerates snow/glacier melting in higher
elevation areas and increases local atmospheric
water vapor, which consequently increases precipita-
tion. For example, a mean temperature in crease of
2°C is accompanied by precipitation in creases up to
30% (Schär et al. 1996). In the HDMR, especially in
the western Sichuan plateau, the snow cover, ice
sheets, and permafrost thaws, local air humidity in-
creases, and annual precipitation is changing at a
higher rate than at lower altitudes (Yang et al. 2014,
Tao et al. 2015). On the other hand, increases in an-
thropogenic aerosols are leading to a decrease in pre-
cipitation (Menon et al. 2002, Liu et al. 2011, Wang T
et al. 2015, Wang H et al. 2015, Xie et al. 2016). Most
of the aerosols are concentrated at relatively low ele-
vations (below 3 km) (Ramanathan & Carmichael
2008). As a result, aerosols reduce low-elevation area
precipitation, while the impact of aerosols on precipi-
tation in high-elevation areas is small; thus the lower
elevation areas have a greater drying trend. Socio-
economic development in the HDMR (especially as a
result of the Chinese Western Great Development
government policy after 2000) has led to increased
aero sol emissions, thus exacerbating the drying
trends in the lower elevation areas. However, it
should be noted that although climate warming can
lead to increases in precipitation, aerosols can result
in a greater drying trend in low-elevation areas. Re-
gional precipitation changes are regulated by modifi-
cations in large-scale circulation features such as
storm tracks and monsoonal flows (Giorgi et al. 1997).
These changes produce shifts in regional precipi -
tation patterns, and therefore can lead either to in-
creases or decreases in regional precipitation.

However, the sparsity of long-term observation sta-
tions (with >20 yr of observed re cords) has resulted

Fig. 12. Temperature trend magnitudes at elevations of (a) 500−3000 m and (b) 3000−4000 m in the Hengduan Mountain region. 
R2: correlation coefficients for the relationships; p: statistical significance
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in few studies being conducted in this region, espe-
cially in the high mountains (90 stations covering an
area of 449 698 km2 in the HDMR results in an aver-
age of only 5000 km2 per station). Furthermore, there
are no stations above 4000 m in the HDMR. The
highest altitude for the HDMR is 7556 m. In order to
record important changes in high-mountain areas by
global observational networks, more stations should
be set up in higher regions. Additionally, spatially
continuous remotely sensed land surface tempera-
ture (LST) data from satellites (Lau et al. 2010), such
as the Tropical Rainfall Measuring Mission (TRMM)
data and model studies should also be used (Pepin et
al. 2015). Moreover, due to the complexity of the
mechanisms of elevation-dependency on tempera-
ture and precipitation, the trends should be further
investigated using a combination of observational
analyses and model research.

5.  CONCLUSIONS

In this study, daily temperature and precipitation
data from 90 meteorological stations in the HDMR
were analyzed for the period of 1961−2011. We
detected changes in annual, seasonal, and monthly
temperature and precipitation, and conducted a
detailed analysis of the relationships between the
trends of temperature and precipitation and eleva-
tion in the HDMR. The main results can be summa-
rized as follows.

Tann increased by 0.16°C decade−1 during 1961−
2011, exhibiting a significant warming trend. At the
seasonal scale, warming trends were more apparent
in winter, followed by autumn and summer, while
spring showed the weakest trends. The temperatures
increased by 0.27, 0.17, 0.14, and 0.09°C decade−1 in
winter, autumn, summer, and spring, respectively.
All 12 monthly mean temperatures increased, with
trends ranging from 0.01−0.24°C per 10 yr. With
regards to spatial distribution, the warming magni-
tudes were higher in the middle and north regions
than the south during 1961−2011.

Pann exhibited a nonsignificant decreasing trend of
−11.41 mm decade−1 in the HDMR during 1961−
2011. At the seasonal scale, precipitation decreased
by −7.87, −8.90, and −2.07 mm per 10 yr in summer,
autumn, and winter, respectively, and increased by
7.34 mm per 10 yr in spring. The HDMR showed a
wetting trend during January− May, while a drying
trend was observed during June−December.

The temperature increased by 0.06°C decade−1 per
1000 m for elevations ranging from 500−4000 m,

showing an increasing trend with elevation during
1961− 2011. The elevation dependency of climatic
warming was most robust in winter, followed by
spring, summer, and autumn, and the rates of in -
crease in winter, spring, summer, and autumn were
0.10, 0.08, 0.07, and 0.03°C per 10 yr per 1000 m. The
trend magnitudes of the monthly temperatures ranged
from 0.02−0.10°C per 10 yr per 1000 m. The relation-
ships between annual, seasonal, and monthly temper-
ature trends and elevation indicated that there was
evidence of elevation-dependent warming.

The annual and seasonal precipitation trends
showed positive correlations with elevation. Precipi-
tation increased by 7.8 mm decade−1 per 1000 m for
altitudes ranging from 500−4000 m, showing an in -
creasing trend with an increase in elevation during
1961−2011. The elevation dependences of the pre-
cipitation were 3.1, 2.0, 1.7, and 1.0 mm per 10 yr per
1000 m in summer, winter, spring, and autumn; only
the values for winter precipitation were significant,
indicating that the influence of elevation on seasonal
precipitation was not marked except during winter.
Although the annual and seasonal precipitation
trends showed positive correlations with elevation,
both annual and seasonal precipitation decreased
ex cept for spring precipitation, which increased sig-
nificantly. The relationships between annual and
seasonal precipitation trends and elevation indicated
that higher altitude regions experienced a slower
drying trend, and that the spring precipitation in -
creasing trend was amplified with elevation.
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