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1.  INTRODUCTION

The integration of robust snow cover or snow para -
meter models is a classic feature in hydrological run -
off simulations or ecological habitat modelling
(Hiem stra et al. 2006, Shrestha et al. 2012, Rohrer et
al. 2013, Carlson et al. 2015) and thus requires reli-
able input data. Snow cover is not only one of the
most dynamic properties of the cryosphere from an
(intra)diurnal or seasonal point of view (Gao et al.
2006), but it is also expected to be one of the fastest-
changing climate features under current climate

warming (Stocker et al. 2013). The close relationship
between the spatial distribution of snow cover and
plant communities additionally leads to major im -
pacts on mountain ecosystems and their biota (Litaor
et al. 2008, Grabherr et al. 2010, Chen et al. 2011).
According to Gao et al. (2012), snow cover extent
stretches from 1% in August up to 87% in February
with a mean of 35 ± 20% (SD) for eastern Tibet, and
the snow cover fraction over the whole Tibetan
Plateau (elevation >2000 m a.s.l.) ranges from an
average minimum of 5.3% between March and
August to a mean maximum of around 33% in Febru-
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erties. Nevertheless, detailed knowledge about shifts in seasonal ablation times and spatial distri-
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high resolution spatio-temporal climate datasets and climate-related topographic data, which were
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enables the mapping of major physical processes controlling snow accumulation, melt and stag-
nation in a high mountain environment in the Gaurishankar Conservation Area in Nepal. We used
the random forest technique, which represents a state of the art machine learning algorithm. The
snow distribution was predicted very accurately with high spatio-temporal resolution (daily on 0.5
× 0.5 km), with hit rates of around 90% and an overall model accuracy of 90.8% compared to inde-
pendent Moderate Resolution Imaging Spectroradiometer (MODIS) observations.
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ary (Pu et al. 2007). In eastern Tibet, high inter-
annual variations in snow cover occur (Immerzeel et
al. 2009), with a negative correlation (R = −0.651, p <
0.001) between the duration of snow-free periods
and elevation. Snow cover shows an increase at
higher elevation, induced by enhanced orographic
precipitation, whereas lower elevations show a de -
creasing trend in recent years, controlled through
higher air temperatures (Gao et al. 2012).

Beside spatio-temporal characteristics, the phy sical
properties of snow are highly relevant (Paudel &
 Andersen 2011). The density, thermal conductivity,
permeability and optical properties of snow are
both interdependant and also highly dependent on
the overlying atmosphere and underlying ground
(Domine et al. 2008). Alterations in snow density, for
example due to snow temperature changes, result in
dry or wet metamorphism throughout freeze−thaw
cycles. Therefore, snow cover has a strong regulating
function for latent heat fluxes (Rast ner et al. 2009, Za-
itchik & Rodell 2009, Endrizzi et al. 2014). According
to Wiscombe & Warren (1980), the unique radiative
properties of snow allow 3 different allocations: (1) In
the visible spectrum, snow appears white for its high
albedo but is affected by light-absorbing impurities.
(2) Within the near-infrared spectrum, snow appears
‘grey’ and is mainly influenced by grain size. (3) In
thermal infrared wavelengths, snow appears ‘black’
as it emits almost no thermal radiation. These charac-
teristics are ex ploited in remote sensing techniques to
gain strong delineations in relation to other surfaces
(Domine et al. 2008). Furthermore, the low thermal
conductivity, low roughness and unique spectral re-
flectance of snow influence the global energy bal-
ance, e.g. due to rapid changes in albedo after snow
events or melting processes (Shrestha et al. 2012,
Hernández- Henríquez et al. 2015). As a consequence
of these changes in snow cover, feedback effects,
such as stronger surface heating and higher water
availability through snow melt (Stieglitz et al. 2001),
can occur within the whole climate system and its
sub-systems. Well known examples for snow-influ-
enced circulation patterns are the monsoon circula-
tion or local mountain−valley wind systems. 

However, not only large- or macro-scale (>103 km)
effects, such as a high degree of snow coverage over
the Tibetan Plateau affect climate, but also, in partic-
ular, aspects from minor meso-γ-scale (<101 km) to
micro-γ-scale (<10−3 km), have significant effects on
plant ecology, soil properties and topo-climate (Böh-
ner & Antoni  2009, Vesterdal et al. 2013). At this
scale, snow cover has an insulating function, supplies
water, regulates permafrost, protects soil and shel-

ters vegetation against late frost events (Domine et
al. 2008, Grimm et al. 2013). In high mountain re -
gions, these variations are particularly high due to
the complex topography and the related variation in
slope aspect, irradiation and related climatic pro-
cesses (Pedersen & Egholm 2013). In addition, snow
cover influences the microclimate, especially during
dry periods, in winter and at higher altitudes. Snow
cover diminishes the latent heat transfer and thus
increases radiative cooling, resulting in local kata-
batic wind systems and cold air pooling (Gerlitz et al.
2016a). Al though the processes leading to temporal
and spatial variations in snow cover, such as snow
melt (near surface temperatures >0°C) and variabil-
ity in snow fall (precipitation at air temperatures
<0°C) seem rather trivial, there are many aspects to
consider. For example, snow formation occurs above,
as well as below, 0°C in different fractions between
solid and liquid state (Auer 1974) and may form a
consistent layer of snow cover, provided the surface
temperatures are low en ough. In complex high
mountain environments, high insolation rates, as
well as strong topographic variations, have a strong
impact on snow cover dynamics (Stieglitz et al. 2001,
Böhner et al. 2015), and thus result in a strong spatio-
temporal variability of snow cover.

During recent decades, the development of reliable
precipitation, snow fall or snow coverage datasets at
high spatial and temporal resolutions has been a
major focus, since such data represent an important
input for climate impact models. In particular, models
to analyse and predict runoff or other hydrological
parameters, e.g. in Central Asian mountain regions
or Himalayan catchments, at a weekly or monthly
temporal scale are needed in order to asses and fore-
cast hydrological risk (Tekeli et al. 2005, Endrizzi et
al. 2014, Immerzeel et al. 2014, Apel et al. 2018, Pan-
day et al. 2014). Yet, the measurement of snow cover
and related parameters, such as snow height or water
equivalent, is still inherently complex and prone to
errors (Trnka et al. 2010). Therefore, the estimates of
snow coverage are often based on mete o rological
parameters, which are more accessible. Temperature
index or degree-day models, which ex ploit the
empirical relationship of melting rates and air tem-
peratures, have been used for over a century to
approximate snow (and ice) melt (Jení<ek et al. 2012)
and have been widely applied and refined over the
decades (Clyde 1931, Hoinkes & Steinacker 1975,
Braithwaite 1995, Hock 2003, He et al. 2014). They
represent the most common approach to quantifying
melt based on the following advantages: (1) broad
availability, easy interpolation and forecasting tech-
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niques of air temperature datasets; (2) computation-
ally modest; and (3) generally good model perform-
ance. Nevertheless, this approach has shortcomings
with increasing temporal resolution and spatial vari-
ability, and does not directly account for snow accu-
mulation (Hock 2003). Energy balance models re -
present another important branch of snow cover
models, which quantify snow melt as the difference
in energy balance equations (Blöschl et al. 1991,
Marks et al. 1999, Liston & Elder 2006, Shrestha et al.
2012). Many state of the art snow cover models con-
tain several other sub-parameter models, such as soil,
snow pack, meteorological or water-budget models,
to describe the energy and mass-balance equations
as accurately as possible (Liston & Elder 2006,
Shrestha et al. 2015).

Considerable progress has been made in the devel-
opment of complex modelling techniques such as
(coupled) multi-layer energy balance models (Daw-
son & Wilby 2001, Rastner et al. 2009, Sirguey et al.
2009, Alford & Armstrong 2010, Shrestha et al. 2012,
Bokhorst et al. 2016) fortified with in situ measure-
ments. The data assimilation method is an effective
technique to improve the results of spatio-temporal
snow cover models (Kwon et al. 2016). With this
method, remote sensing datasets, such as snow cover
fraction (Rodell & Houser 2004, Zaitchik & Rodell
2009), brightness temperatures (Durand et al. 2009,
Kwon et al. 2017) and terrestrial water storage (For-
man et al. 2012, Houborg et al. 2012), are assimilated
into land surface or snow dynamics models. Addi-
tionally, innovative and simple approaches have
been developed to grasp snow cover dynamics
(Stanzel et al. 2008, Trnka et al. 2010). Another ap -
plied method to describe and model snow cover is the
use of freely available reanalysis products, such as
ERA-Interim (Berrisford et al. 2009, Brun et al. 2013).
However, reanalysis products poorly represent the
local-scale variability of near surface climates in
complex high mountain terrain, due to their coarse
spatial resolution (Gerlitz et al. 2015). In particular,
meteorological micro-β- to meso-γ-scale atmo spheric
boundary layer processes — such as topographically
induced variations of orographic precipitation, noc-
turnal cold air drainage, solar insolation and surface
heating — are not explicitly resolved by large-scale
climate models or reanalysis products (Böhner &
Antoni  2009, Gerlitz 2015).

Steady amendments in snow cover modelling in
general (Loth & Graf 1988, Essery 1999, Martinec et
al. 2008, Franz & Karsten 2013, Endrizzi et al. 2014)
and especially on the Tibetan Plateau (Immerzeel et
al. 2009, Rohrer et al. 2013, Shrestha et al. 2015) —

mainly within physical top-down approaches and
with coarse resolution (>1 km) — were achieved in
the past decades. Nevertheless, little attention has
been paid to establish reliable statistical snow cover
models with high spatial and temporal resolution in
complex mountain terrains (Shrestha et al. 2015).
Geostatistical approaches have been implemented in
the field of topo-climatology and vegetation distribu-
tion modelling. However, spatially distributed statis-
tical models have thus far not been applied for snow
cover related problems. Given that physical models
are often prone to biases, particularly in complex
environments, a statistical model setup is a promising
alternative. Statistical models stand out due to their
ability to find important relationships in observed
data, and thus allow us to identify, quantify and pre-
dict the dynamics of a target variable based on
important predictors. Particularly in comparison with
physically based models, they are characterized by a
reduced demand for computational capacity and
input data.

This study presents and evaluates a geo-statistical
model for snow cover extent and recession in the
Central Himalaya Region (Rolwaling Himal), based
on a machine learning algorithm. Our goal was to
accurately model the main physical processes of (1)
snow accumulation and (2) snow recession resulting
from snow melt and sublimation. A random forest
algorithm was trained at a daily temporal and moder-
ate spatial resolution (ca. 500 m) based on meteoro-
logical in situ measurements, remote sensing data
(Moderate Resolution Imaging Spectroradiometer
[MODIS] and Shuttle Radar Topography Mission
[SRTM] products) and topographic parameters. The
model was calibrated with processed data covering
the period from 2013 until 2015 and tested against
independent verification data in 2016. Therefore, in
order to demonstrate the model’s capacity to accu-
rately predict the snow-covered area (SCA) on a
daily scale, the modelled SCA from January to June
2016 was crosschecked with MODIS observations.

2.  DATA BASE AND METHODICAL
BACKGROUND

2.1.  Study area

The research domain, shown in Fig. 1a, in the Cen-
tral Himalaya Region (Rolwaling Himal) is located be-
tween Nepal and the northern adjacent auto nomous
region of Tibet (27.713 to 28.079° N and 86.097 to
86.688° E). This area covers approximately 2400 km2
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of highly fissured mountain landscape and is partly
situated in the Gaurishankar Conservation Area
(Schickhoff et al. 2015). It covers steep terrain from ca.
1000 m up to 7250 m at the flanks of Cho Oyu (8188 m
a.s.l.). The main valley in the research domain
(Fig. 1a) is the Tama Koshi valley. Due to its windward
position along the southern slopes of the Himalayan
Arc and the direct impact of South Asian Monsoon
circulation, the area receives high precipitation from
mid-June until mid-September (Schwab et al. 2015;
Table 1). Precipitation is subject to strong interannual
variability, and occurs in solid form at higher altitudes,
particularly during winter (Put konen 2004, Anders et
al. 2006, Shrestha et al. 2012). In general, the climate
is characterized by warm and moist summers, due to
advection of warm air from the Indian lowlands. Dur-
ing the cold and dry winters (December− February),
occasional precipitation events are related to the pas-
sage of extra-tropical cyclones which follow the

southern branch of the frontal Jetstream at the
200 hPa level. Particularly at higher elevations, winter
precipitation falls predominantly as snow (Böhner
2006). The pre-monsoon season (March− May) is dom-
inated by hot and dry weather with occasional rain
events, whereas the post-monsoon season  (October−
November) is characterized by dry conditions
(Shrestha et al. 2012). Besides large scale atmospheric
controls and their seasonal variations, the climate of
the target domain is strongly influenced by  topo-
climatic processes, which result in a strong spatial
variability of temperature and precipitation at the
 micro-scale (Böhner 2006). The local wind systems
within the valleys are particularly controlled by in-
coming solar shortwave radiation and thermal forcing,
resulting in mountain−valley wind systems with char-
acteristic nocturnal and diurnal air currents (Böhner
et al. 2015). Table 1 provides basic climatic parameters
for the described climatic patterns.

Fig. 1. (a) Modelling domain, (b) location of research area and (c) detailed positions of meteorological stations in the Rolwaling 
Himal. Glaciated areas (light blue) from Randolph Glacier Inventory, Version 6.0 (RGIC 2017)

                 Tmin (°C)    Tmean (°C)   Tmax (°C)    RH (%)  Rad (W m−2) Precsum (mm)
Season              Mean     SD           Mean      SD          Mean      SD          Mean      SD          Mean       SD           Mean      SD

Winter                −6.4      3.0             −1.9        2.9            4.6        3.8            53.3       19.4          303.4     76.2           0.3         1.2
Pre-monsoon     −1.1      3.3             3.2        3.0            8.6        3.0            79.2       15.0          408.1     123.2           2.2         3.9
Monsoon            6.6       1.6             9.1        1.0            12.9        1.6            98.0       3.0          296.7     112.1           7.7         7.0
Post-monsoon    −1.3      2.6             2.7        2.3            8.2        2.6            71.5       23.5          328.1     71.4           1.1         4.9

Table 1. Seasonal climatic averages measured at T1_bottom station at 3739 m a.s.l. Except for precipitation sums (Precsum), all
other observations (air temperature [T], relative humidity [RH] and incoming solar radiation [Rad]) were averaged on a daily 

basis. Rad was only aggregated over daytime
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2.2.  In situ measurements

As our aim was to develop a statistical model which
is able to explain the snow cover dynamics in a high
mountain area, suitable meteorological inputs are
crucial, especially for spatial analysis (Soria-Auza et
al. 2010, Immerzeel et al. 2014). Therefore, a recently
installed meteorological network was used to obtain
data of near surface air temperatures, global irradi-
ance and precipitation at high temporal resolution. All
7 automatic weather stations are deployed in the Rol-
waling valley (Fig. 1c). Global irradiance is monitored
using an Onset™ HOBO™ S-LIB-M003 py rano  meter,
calibrated between 0 and 1280 W m−2 (accuracy
±10 W m−2) and a spectral range from 300 to 1100 nm.
Near-surface air temperatures are measured via the
S-THB-M002, with a combined temperature and rela-
tive humidity sensor (accuracies ±0.21°C and ±2.5%)
from the same supplier. Since no direct snow de -
tection sensors were available, we used Onset™
HOBO™ S-RGB-M002 tipping-bucket rain gauges
with an effective range of 0 to 127 mm h−1 and an ac-
curacy of ±1.0% up to 20 mm h−1 (Syno tech, www.
synotech.de/produkte/datenblatt). For vo lu  metric pre-
cipitation records, all tipping events inside the rain
gauge were counted and summarised. The gauges
were sheltered from wind with a protection ring sur-
rounding the top opening. Since the network uses
non-heated tipping sensors, snowfall events might not
be traced correctly. Raised temperatures due to solar
radiation during the day leads to melting of frozen
precipitation in the buckets, and thus to delayed ob-
servations, which are removed from the dataset. All
parameters except fluid deposition are measured at 3
min intervals and logged as a single mean after 15
min. The meteorological network was set up in April
2013 (first 5 stations) and was ex tended in October
2013 (last 2 stations), and has been continuously oper-
ating since then. Even though all sensors are suitable
for high mountain regions, the rough environment of
the Rolwaling Himal and some acts of vandalism led
to several sensor failures and 2 station losses, which
could only be replaced in the subsequent field cam-
paign and thus caused several data gaps.

2.3.  Remote sensing observations

For continuous daily spatio-temporal climatic data,
MODIS/Terra Snow Cover Daily grids (L3 Global
500 m, Version 5), MODIS/Terra Land Surface Tem-
peratures and Emissivity Daily grids (L3 Global 1 km,
Version 5) and TRMM daily precipitation composites

(Version 7: 0.25°, equivalent to 27.8 km spatial reso-
lution) were resampled to the target resolution of the
snow cover product via nearest neighbour regionali-
sation (Riggs et al. 2006, Wan 2006, Huffman et al.
2007). The automated snow-mapping MODIS/Terra
snow cover algorithm is based on the satellite reflec-
tances in bands 4 (0.545−0.565 μm) and 6 (1.628−
1.652 μm) to calculate the normalised difference
snow index (NDSI) according to Hall et al. (1995):

(1)

Additionally, automatic cloud detection, atmos-
pheric correction and several pre-processings for dif-
ferent land cover types are included (Hall et al. 2002).

Land surface temperatures are generated from
measurements in the thermal infrared bands 31
(10.78 to 11.28 μm) and 32 (11.77 to 12.27 μm) using
the day−night split-window algorithm (Wan & Dozier
1996). For all MODIS datasets, the TERRA platform
products were used without additional AQUA data
due to better coverage of the research domain. Be -
tween 2013 and 2016, AQUA had approximately 20%
fewer observations than TERRA, which is slight ly
higher than Wang et al. (2015) found for the whole Ti-
betan Plateau.

The TRMM-3B42RT daily composites are derived
from passive microwave observations, which gener-
ally perform well for convective systems, but under-
estimate orographic rainfall induced by warm clouds
over mountainous regions in advective regimes (Din -
ku et al. 2010). Since precipitation data with daily
temporal resolution are needed for the model calibra-
tion, the TRMM product was implemented and inter-
polated to the spatial resolution of the MODIS snow
cover product, despite the mentioned shortcomings
(Huffman et al. 2007, Dinku et al. 2010).

In order to estimate the spatial distribution of topo-
climatic parameters, an SRTM-derived digital eleva-
tion model (DEM) (Jarvis et al. 2008) was resampled
and projected towards the modelling domain (500 m
horizontal resolution). Table 2 provides information
on all input variables based on remote sensing
 products. Inputs based on lower spatial resolution
than the MODIS snow cover product were interpo-
lated using a nearest neighbour approach, while in -
puts based on the DEM were aggregated deploying a
cubic spline approach (Conrad et al. 2015)

2.4.  Random forest based modelling approach

Random forest is a machine learning method de -
fined as an ensemble of tree predictors, where each

NDSI
band 4 band 6
band 4 band 6

= −
+
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tree is built based on the values of an independently
sampled vector (Breiman 2001). Random forests are
generally based on classification and regression trees
(CARTs), which can be either numerical (regression
trees) or categorical (classification trees), and enable
the identification of statistical patterns within data.
By maximizing the homogeneity of a predictor vari-
able at binary splits, datasets are gradually classified
(Breiman et al. 1984). CARTs offer many advantages:
(1) they are nonparametric; (2) they can be built with-
out the need for preliminary variable selection; (3)
their results are constant to monotone transforma-
tions of their predictor variables; and (4) they are not
sensitive to outliers. However, they tend to strongly
overfit the data without adjusted pruning (Timofeev
2004).

In random forests, two additional layers of random-
ness are added, by means of merging and bagging,
i.e. a selection of random subsets of split variables at
each node. Therefore, they perform very well in com-
parison to other state-of-the-art classifiers, such as
discriminant analysis, support vector machines or
artificial neural networks (Liaw & Wiener 2002, Yu et
al. 2011). Random forests are employed in various
research fields, such as speech recognition, species
distribution modelling and remote sensing, as well as
for predictions of future climate scenarios (Yu et al.
2011, Bechtel & Daneke 2012, Louppe et al. 2013,
Belgiu & Drăguţ 2016, Gerlitz et al. 2016). Allocated
in the emerging field of machine learning algorithms,
this non-parametric technique is an ensemble ap -
proach, since a large number of ‘weaker’ learners is
combined to form a stronger one. Random forests are
particularly used for data mining approaches, since
they are able to inductively generate a set of rules to
explain relationships and dependencies within the
inputs (Breiman 2001). In contrast to CART, trees in

random forests can no longer be examined sepa-
rately. Therefore, it seems that random forests tend to
be ‘black box’ approaches, similar to artificial neural
networks. However, to evaluate the performance of
random forests, and for quality assessment, several
metrics have been implemented. These allow ran-
dom forests to be declared as ‘grey boxes’, since rel-
ative variable importance and other predictor esti-
mates offer an insight into internal devolutions
(Breiman 2001, 2002, Prasad et al. 2006).

Through the initial bagging, a form of bootstrap
aggregation with replacement and left-out samples
(out-of-bag; OOB), of the training data at the begin-
ning of each single tree, an internal error rate verifi-
cation is added. By testing each final tree with the
OOB samples, it works as a surplus validation crite-
rion to the proposed modelling approach:

(2)

where Q(x,j) is the OOB estimate of error rate, k is
the number of trees, I is an indicator function, h is a
classifier for (x,Θk), where x is an input vector and Θk

is a random vector (y,x), j is the class resulting from h,
and Tk,B is the bagged (bootstrap) training dataset
(Breiman 2001).

To evaluate the relative importance of each vari-
able, 4 measures are implemented for classification.
In the presented case, these performance measures
allow us to evaluate the representation of the major
physical processes in snow accumulation and snow
recession. The 2 most essential random forest im -
portance measures are mean decrease in accuracy
(MDA) and mean decrease in node impurity (MDI),
also known as mean decrease Gini coefficient (Liaw
& Wiener 2002). The MDA is defined as the average
lowering of the margin across all cases (in-bags),

∑ ∑ΘΘ[ ] [ ]( ) ( ) ( )( )= = ∉ ∉x x y x y xQ j I h j T I Tk
k

k B
k

k B, , ; , / ,, ,

186

Input parameter                         Product and platforms                          Original spatial               Temporal                Remarks 
                                                                                                                   resolution (km)            resolution (h)
                                                                                                                                                                                                     
Surface temperature                  MOD11A1, Ver. 5, MODIS                       1.0 × 1.0b                          24c                      Dynamic
Warming ratea                            MOD11A1, Ver. 5, MODIS                       1.0 × 1.0b                          24c                      Dynamic
Precipitation                               TRMM 3B42 RT, Ver. 7, GPM                27.8 × 27.8b                        24c                      Dynamic
Digital elevation model             SRTM, Ver. 4.1, CGIAR-CSI                   0.09 × 0.09b                          –                           Static
Aspecta                                        SRTM, Ver. 4.1, CGIAR-CSI                   0.09 × 0.09b                          –                           Static
Convergence indexa                  SRTM, Ver. 4.1, CGIAR-CSI                   0.09 × 0.09b                          –                           Static
Solar insolationa                         SRTM, Ver. 4.1, CGIAR-CSI                   0.09 × 0.09b                        24c                         Static
Snow cover                                 MOD10A1, Ver. 5, MODIS                        0.5 × 0.5                           24                        Dynamic

aDerived from former main input; bResampled to MODIS snow cover product; cAvailable in higher temp. resolution

Table 2. Overview of remote sensing products used in this study and their combinations with in situ measurements
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compared to randomly permuted values in the OOB.
The margin is specified as the proportion of votes for
its actual class subtracted by the maximum of the
proportion of votes for each ‘false’ class. In contrast,
the MDI as a Gini-criterion is the sum of decreases of
the mth variable (Xm) in node impurity p(t)Δi(st,t) at all
nodes (t), normalised by the number of trees (NT)
(Breiman 2002, Louppe et al. 2013):

(3)

where Imp(Xm) is the MDI, p(t) is the proportion of
NT/N of all samples reaching t, x(st) is the variable
used in split (st) and Δi is the impurity measure (in this
case the Gini index). According to Louppe et al.
(2013), there are still several shortcomings in fully
understanding variable importance measures. While
Ishwaran (2007) gave a theoretical insight for the
MDA, Strobl et al. (2007, 2008) found evidence that
both variable importance functions are biased to -
wards correlated variables. However, this was not
confirmed in later experimental studies (Genuer et
al. 2010). For the evaluation of the random forest per-
formance, hit rates and overall accuracy are defined.
While the hit rates simply are correctly predicted val-
ues normalised over positive and false predictions,
the overall model accuracy is defined as:

(4)

where Aj is the overall weighted model accuracy for
all classes, xt,j are true positive predicted class re -
cords, and pj are all predicted values. Further, in
order to evaluate the performance of the developed
SDM, an unweighted Kappa coefficient is used. It
allows us to measure the agreement for the categori-
cal items ‘snow cover’ vs. ‘snow free’ between the
model’s predictions and observations. Hereby, the
Kappa coefficient permits the statistical considera-
tion of the accordance by chance (Cohen 1960). The
unweighted Kappa coefficient k is the remaining
proportion of agreement, after the agreement by
chance is removed:

(5)

Here po is the proportion of units with agreement,
pe is the hypothetical proportion of expected agree-
ment by chance, and k = 1 is a complete agreement
between all categories. Breiman (2001) summarised
the advantages of random forest as follows: (1) it
does not overfit data; (2) it is relatively robust to out-
liers and noise; (3) it is faster than bagging or boost-

ing; (4) it gives useful internal estimates of error,
strength, correlation and variable importance; (5) it
is simple and easily parallelised. Therefore, random
forests are considered to be one of the most ac -
curate general-purpose learning techniques avail-
able (Biau 2012).

To evaluate the effect of different input parameters
within the random forest approach, a sensitivity ana -
lysis is conducted. For this purpose, mean values for
each cell and parameter are calculated (and the sta-
tistical mode for the binary SNOWFALL para meter).
These cell means serve as reference inputs and are
used for one reference snow cover prediction of the
final model. Afterwards, every cell of each input
parameter is altered in the magnitude of the overall
standard deviation σ (−σ and +σ) of that parameter
within the whole modelling domain, to visualize its
effect on the random forest approach.

3.  MODEL DEVELOPMENT AND INPUT
 PARAMETER IMPLEMENTATION

3.1.  Training setup of random forest

The introduced physical principles driving snow
cover distributions and their seasonal characters re -
sult in a large spatio-temporal variability of snow
cover in a complex high mountain environment.
Aiming at a statistical representation of those pro-
cesses, a statistical analysis of spatial snow cover
dy namics was conducted using a random forest ap -
proach (R Core Team 2014, R Studio Team 2015).
An inductive bottom-up strategy was applied to
analyse spatio-temporal dependencies in raster data
and deviated parameters. All grids were resampled
to UTM zone 45 north within WGS84. To ac count
for the physical processes described in Section 1,
the predictor variables, as shown in Fig. 2, were se -
lected within the model set up. They are discussed
in detail in the following sections. Snow cover
changes were selected through comparison with the
identical cell of the following day. Only cells with
observations for both days were included, and cells
which did not change throughout the modelling
period (e.g. glaciated cells) were excluded. Addi-
tionally, all cells with no data values in any other
remote sensing grid were excluded to train a robust
random forest model. The date parameter (day of
the year) was implemented to account for the sea-
sonality of the monsoonal regime and seasonal vari-
ations in atmospheric conditions in the research
area.
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3.2.  Orographic effects and radiation

The Himalayan orogen and the northern adjacent
Tibetan Plateau have a large impact on climate, and
the mountain belt is a barrier for (moist) monsoonal
air masses resulting in very high orographic precipi-
tation (Böhner et al. 2015). The successive mountain
ridges are the cause of an intensified lee effect, and
thus favour northern shielded areas with higher net
shortwave radiation due to reduced cloud cover,
higher altitudes and a smaller vertical atmospheric
dilation (Böhner 2006). While large-scale gradients
between the Indian subcontinent and the Tibetan
Plateau are sufficiently resolved in regional climate
models or in reanalysis data, small-scale topo-cli-
matic variations are not represented (Gerlitz 2015).
To account for these variations, a digital terrain
model with an adequate resolution is crucial. Böhner
& Antoni  (2009) proposed several additional topo-
graphic parameters specific to boundary climate
 processes; however, computing capacity during the
modelling process limits the number of additional
dimensions for each raster cell. Therefore, a conver-
gence index (radius = 10 raster cells) was calculated

in SAGA GIS (Conrad et al. 2015) to identify exposed
higher areas and to distinguish these from more
 protected valley bottoms. Since significant disparity
in ablation times of different exposed slopes was
observed (and can be expected due to differential
incoming shortwave radiation), the aspect parameter
with geographic directions was incorporated in the
model. Not only direct shortwave insolation, but also
diffuse radiation is highly relevant for the micro cli-
mate (Domine et al. 2008, Grimm et al. 2013), so the
daily global radiation was selected as an additional
predictor. Extra-terrestrial solar radiation can be eas-
ily calculated using orbital parameters of earth and
sun, but actual incoming terrestrial solar radiation is
highly dependent on atmospheric and topographic
conditions (Böhner et al. 2015). Therefore, several
processing steps were applied in order to correct in
situ measurements of global irradiance and generate
spatially complete radiation fields: (1) clearing obvi-
ous outliers and measurement errors; (2) generating
hourly means and daily totals; (3) calculating daily
extra-terrestrial solar radiation for all stations via the
R package SIRAD (Bojanowski 2015); (4) estimating
mean atmospheric transmissivity (Tau) for each day
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Fig. 2. Delineation of model implementation (Training–random forest), input parameters (remote sensing data and in situ
measurements), abbreviations and final modelling setup (Inputs snow cover model). EM: elevation model, Conv.: convergence
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by normalising observed incoming solar radiation
with extra-terrestrial solar radiation; (5) averaging
Tau over all stations as input for regionalisation; and
(6) calculating incoming solar radiation grids with the
help of the sky view factor and shadowing derived
from the DEM (Conrad et al. 2015).

3.3.  Surface temperatures and warming rates

Among the driving factors for dynamic shifts of
snow cover in high mountain areas are near-surface
air temperatures. While in general, spatial tempera-
ture anomalies are largely explained by underlying
elevation, especially at the meso-scale, many over-
laying topographic induced factors are vital (Böhner
& Antoni  2009, Immerzeel et al. 2009). These are dif-
ficult to account for solely by in situ measurement,
since the distribution and number of the meteorologi-
cal stations are limited. To maintain necessary spatial
temperature model input, daily land surface tempera-
ture (LST) data were derived as a substitute from the
MODIS/Terra Land Surface Temperatures and Emis-
sivity products (MOD11A1). In addition, this dataset
contains night-time LSTs, which allow the calculation
of diurnal warming rates (WRs) from the night tem-
peratures of the previous day. WRs provide the ad-
vantage of covering swift atmospheric changes, such
as sudden clear sky conditions with strong long-wave
emissions through the night, and high incoming
shortwave radiation on days with less cloud cover or
temperature inversions at valley bottoms.

3.4.  Precipitation and snowfall

Snowfall is a fundamental input in SDM; however,
high spatial robust snowfall estimates are difficult to
obtain (Paudel & Andersen 2011, Zhang et al. 2012).
To find a sufficient solution for the study period,
the TRMM-3B42RT daily precipitation composites
(Version 7) were chosen and resampled to the model-
ling grid. Furthermore, the in situ measurements
were analysed as well, to add a higher level of
endorsement. The meteorological network in the Rol-
waling Himal is equipped with tipping rain gauges,
which only record fluid depositions but not solid
snowfall. The latter is underestimated in principle, as
is precipitation during winter months, be cause the
rain gauges are not heated and may freeze (Shres -
tha et al. 2012; and see www.synotech. de/ produkte/
datenblatt). Therefore, the in situ point measurements
are used and a logical (yes/no) snowfall parameter -
isation is employed. Hereby, suitable conditions, i.e.
precipitation and near-surface air temp eratures at
around 0°C, for potential snow fall are considered.

As shown in Fig. 3a, the MODIS snow cover obser-
vations are strongly limited due to clouds. The maxi-
mum cloud coverage reaches 94.3% during the ob -
served period. In general, valley slopes and ridges
are characterized by high rates of cloud coverage.
Lower rates are observed over the valley bottoms,
with minimum cloud coverage amounting to 42.9%.
This emphasizes the difficulties of accurate high
 spatio-temporal remote sensing observations in
mountain areas. The snow coverage shows a strong

Fig. 3. Days with (a) cloud coverage and (b) snow cover of detected cells during the research period (15 April 2013 to 31 December 
2015); data from MODIS (TERRA). Glaciated areas (grey lines) from RGIC (2017)
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relationship with altitude and aspect throughout the
modelling period (Fig. 3b). Highly snow-covered
areas only occur above 5000 m a.s.l. South and south-
east oriented slopes tend to have a significantly lower
snow coverage than north and north-west facing hill-
sides. This effect is mainly induced by differences
between the slopes in incoming solar radiation, and
is particularly pronounced in the central Rolwaling
valley.

4.  RESULTS

4.1.  Model performance

The performance of the developed snow distribution
model is assessed with several statistical ap proaches.
Although the OOB estimate of error rate in the estab-
lished random forest is low at 9.22%, the data are split
into 80% for training of the random forest model and
20% for the validation. The confusion matrix in
Table 3, comparing observed and predicted snow
cover, indicates hit rates above 85.0% for both snow-
covered and snow-free cells and a highly significant
overall model accuracy as well as an unweighted
Kappa coefficient of 0.79. The latter was chosen as a
performance measure for categorical data because of
the high class unbalances within the analysed data -

sets, resulting in a lower number of snow-covered cells
(fewer than 190 × 103) in contrast to snow-free cells
with slightly over 400 × 103 (Kuhn 2008).

To assess the model’s capacity to provide robust
predictions, the winter and pre-monsoon season of
2016 (starting with 1 January 2016) was used to eval-
uate model performance. This independent evalua-
tion period was excluded from the model set up, and
the developed model was run over all days of this
evaluation period. For each day, snow-covered and
snow-free areas were predicted and compared to the
MODIS observations. Overall accuracies (OA) of all
predicted cells and unweighted Kappa coefficients
are illustrated in Fig. 4 for each day. Both perform-
ance measures show an upward trend throughout
the independent test season. The missing bars repre-
sent 26 days without remote sensing observations on
consecutive days. Additionally, 24 days with <10%
detected cells in the MODIS snow cover data were
excluded to avoid an overfitting in OA due to the
class unbalance in favour of snow-free cells, which
are thus easier to predict accurately. For the whole
test period, the mean OA is 83.7% and the mean
Kappa is 0.51.

The comparison of the SDM results for the inde-
pendent validation period from 2016 with the MODIS
observations for different elevation belts shows good
performance in general, but a slight underestimation
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Table 3. (a) Confusion matrix of predicted (dark grey) and observed classes (light grey), (b) hit rates and class statistics and (c) 
overall model measurements of the snow distribution model. ***Level of significance >99.99%

Fig. 4. Overall accuracies (blue) and unweighted Kappa coefficients (grey) from 1 January to 3 June 2016

(a) (b) (c)

Snow Snow-free Class Hit rates (%) No. of cells Overall accuracy Kappa

Snow 165101 24723 Snow 86.98 189824 90.85*** 0.79

Snow-free 29553 373976 Snow-free 92.69 403529
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of cumulative snow cover by the model (Fig. 5). Alti-
tudes <3500 m a.s.l. and >7500 m a.s.l. are excluded,
as they account for <0.2% of total snow cover during
the validation period. Most of the underestimates
occur between 4500 and 5500 m a.s.l. throughout the
whole period, whereas the best modelling results are
found in March and April followed by the least accu-
rate cumulative snow cover in May and June with a
deviation of ~5% below the ob served snow coverage.

Fig. 6 shows the performance of the SDM for each
elevational belt. Only cells with observed snow cover
(MODIS) are compared with the modelled cells. The
highest altitudes show the best results, with almost
always a full representation of snow-covered areas.
Below 4500 m a.s.l., there are several days in the
2016 test season which often do not have any snow
observations at all from the onset of the pre-monsoon
season. For instance, between 3500 and 4000 m a.s.l.,

snow coverage is completely ablated after March.
The following elevational belt shows a strong reduc-
tion of snow cover after April, clearly representing
the seasonal cycle of the snow line. This is well cap-
tured by the modelling results. Nevertheless, in the
lower belts, snow coverage is detected by MODIS
but is not accurately resolved in the model for several
days. As demonstrated in Fig. 4, these lower-located
cells only have a minor share of total snow coverage.

4.2.  Sensitivity analysis

The most relevant variables driving the model are
shown in Fig. 7. The analysis of the MDA indicates
the seasonality proxy DATE as the main input
parameter with the largest potential loss in model
accuracy if left out, followed by remote sensing de -
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Fig. 5. Cumulative snow cover (%) per month along altitudinal belts in the validation period in 2016
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rived rainfall estimates (TRMM) and LSTs (TEMP).
Subsequently, all variables related to the local topog-
raphy are of importance. High MDA values are
detected for insolation (RAD) and the convergence
index (ConIND) followed by elevation (DEM) and
slope exposition (ASPECT). The WR and snowfall
indicator (SNOWFALL) tend to have lesser relevance
for the model, caused by the simplified snow parame-
terisation and the strong dependencies between
monsoonal seasonality, nocturnal LSTs and daytime
LSTs already implemented in previous inputs (Ish-

waran 2007). Based on the MDI, LSTs (TEMP) are of
importance to form nodes with homogenous snow
cover characteristics. LSTs are followed by elevation
(DEM) and the seasonality indicator DATE. This
demonstrates that the model’s ability to classify each
cell accurately over the whole heterogeneous re -
search domain is mainly based on these 3 input vari-
ables. Particularly for the transition area of classifica-
tion, ConIND, WR, RAD and ASPECT show an added
value, although for most of the cells they do not pro-
vide any useful information. The lowest MDI is found
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Fig. 6. Ratios of modelled vs. observed snow cover during the independent evaluation season (January−June) in 2016 for 
elevational belts from 3500 up to 7500 m a.s.l.
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for remotely sensed rainfall estimates TRMM and
SNOWFALL.

In order to evaluate the response of the statistical
model, a sensitivity analysis is shown in Fig. 8. Here
variations of all input parameters regarding their
MDI ranks are displayed (the TRMM and the SNOW-
FALL parameter are excluded due to their poor abil-
ity to reduce node impurities of the random forest).
The reference snow-covered area under mean condi-
tions (centre column Fig. 8 and black outlines in the
neighbouring maps) is given in each row to compare
the changes in snow cover by deducted (left column)
and added (right column) standard deviations. The
LSTs (TEMP) have the strongest influence on the
model results, followed by the elevation (DEM).
The MDI ranking is consistent with the provided
sensitivity analysis, except the topographic expo-
sure to wind (ConIND), which has no clear visible
impact on the spatial snow cover distribution.

4.3.  Clear sky validation days

To visualize the model’s capacity to accurately map
snow cover dynamics in high mountain regions, 2
days of the test period were spatially analysed. In
Fig. 9, a snow recession event occurring from 9 to 10
February 2016 is shown to demonstrate the SDM’s
capacity to predict snow cover dynamics at high spa-
tial resolution and on a daily scale. Both days show
high prediction accuracies with 87.0 and 84.7% for 9
and 10 February, respectively. Nevertheless, on both
days the SDM’s minor underestimation of snow cover

is visible. Visually there is a high agreement between
the SDM’s predictions and the MODIS observations,
which is supported by unweighted Kappa values of
0.71 (9 February) and 0.60 (10 February). The model
forms a rather cohesive snow line, but still predicts
sheltered snow-free areas within the mountain range
(9 February, central-north). Lower elevated slopes
and valley bottoms are adequately predicted as snow
free in both example days. The snow-covered areas
are well represented, although some minor devia-
tions are found. For instance, snow patches on 9 Feb-
ruary along the slopes of the central Tama Koshi val-
ley are very heterogeneous, whereas the predicted
snow cover edge is rather abrupt. The brighter cells
in the SDM prediction represent modelled cell char-
acteristics for cloud covered cells in the original
MODIS product. As the figures show, our approach is
able to close data gaps in the MODIS snow cover
products. Compared to the observations, the SDM
has a higher average information content of 6.6% (9
and 10 February 2016).

5.  DISCUSSION

The performance of the presented statistical snow
distribution model is comparable to physical top-
down approaches. Shrestha et al. (2012) applied a
distributed hydrological model containing a 3-layer
energy-balance snow physics module to the Khumbu
Himal region and achieved a mean overall accuracy
in predicting snow cover correctly of approximately
90% compared to the MODIS 8 d composite snow
cover product (MOD10A2). As the Khumbu Himal is
very close to the Rolwaling Himal, it is well suited for
comparison. In addition, in contrast to Shrestha et al.
(2012), the monsoon months were taken into account,
which are more challenging in terms of both obser-
vation and modelling. High cloud coverages, low
snow detection rates by MODIS and an elevated oro-
graphic snow line only provide a limited set of train-
ing data during the monsoon (Gao et al. 2010). Thus,
reliable inputs for statistical modelling are not equally
available during all seasons, which leads to different
levels of modelled snow cover quality throughout
the seasons. Nevertheless, hit rates and presented
seasonal analysis fortify proper model behaviour.

We found the accuracy of modelled snow cover to
be around 91% for the SDM (Table 3). Considering
the lower error rate and the lesser cloud coverage in
the 8 d MODIS composites used by Shrestha et al.
(2015), a better performance can be assumed due to
better model calibration conditions compared to the
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Fig. 7. Mean decrease in accuracy (MDA) and mean de-
crease in impurity (MDI) of the snow distribution model. 

Abbreviations as in Fig. 2
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daily snow cover product implemented in our ap -
proach (Tekeli et al. 2005). The very high corre-
lation of cumulative snow cover over altitudinal
belts with the observed snow distribution during
the winter and pre-monsoon season (Fig. 5) can
partly be explained with the availability of train-
ing data for the random forest. The superior
atmospheric conditions allow a higher number of
actual observations (e.g. March with 116 558
compared to May with 25 139) by all dynamic
remote sensing products (Table 2). This larger
number of observations permits the random for-
est to represent the snow distribution much more
accurately for months in the winter, pre- and
post-monsoon season. While the elevational dis-
tribution of snow coverage in May and June is
still adequately resolved, the error rate espe-
cially at altitudes below 4500 m a.s.l. (Fig. 6) is
high during these months. Nevertheless, the lim-
ited data coverage and a larger detection error in
MODIS snow cover products leads to a lower
model accuracy during the summer monsoon
season (Paudel & Andersen 2011, Shrestha et al.
2012). Therefore, a larger research domain and a
temporal weighted input selection is a promising
way for further enhancements, particularly with
regard to an extension of the training data set.

In contrast to other studies, which suggested a
combination of snow cover with both MODIS
platforms, TERRA and AQUA (Rodell & Houser
2004, Gao et al. 2010, Paudel & Andersen 2011,
Rittger et al. 2013), the inclusion of AQUA data
did not improve our results. This might partly
result from the large temporal difference in
satellite orbits and overpass times (approxi-
mately 3 h, e.g. 17 April 2013, TERRA 11:30 h
and AQUA 14:40 h local time GMT+05:45, for
the research domain) between both platforms.
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Fig. 8. Sensitivity ana lysis according to mean decrease in
impurity (MDI; above 50 × 103) values and their effect on
mean cell values of all inputs (for snowfall, the mode of
each cell is used). In each row, only the parameter
headed is altered from the mean cell values, where the
left column shows a negative offset of each cell with the
overall standard deviation (−σ) of all training data and
the right column shows a positive deviation (+σ). Black
lines: model output for means of all parameters for each 

individual cell
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This leads to strong dissimilarities in actual snow
coverage in the Rolwaling Himal. The fast snow
depletion at southern and eastern slopes from sunrise
till noon potentially ablates minor snow layers of only
a few centimeters be tween the 2 overpasses, and
introduces a substantial source of error in combining
both platforms.

Although the accurate prediction of snow cover at
higher altitudes (>5500 m a.s.l.) is less challenging
than close to the snow line elevation, the modelling
approach is very accurate over time in these areas
(Fig. 6). The seasonal variability of the orographic
snow line is traceable up to 5500−6000 m a.s.l., where
it is apparent at the beginning of April and even up to
6000−6500 m a.s.l., at the beginning of May. Thus,
the developed modelling approach is capable of
accurately predicting snow cover distributions at a
daily resolution.

Besides our modelling focus, the binary snow
cover, there are several other important snow param-
eters, such as snow water equivalent (SWE) or snow
cover fractions. These are of special interest, as they

contain more information on snow conditions, and in
case of SWEs are crucial inputs for hydrological
applications. Nevertheless, data availability, data
quality and spatio-temporal resolutions are limited
(Zhang et al. 2012, Shrestha et al. 2015). Thus, for our
statistical approach, we decided to investigate the
basic snow cover derived by MODIS.

The sensitivity analysis emphasizes the hierarchi-
cal model structure as indicated by the MDIs of all
input parameters. The highest influence of the TEMP
parameter is visually traceable for both directions of
the standard deviations (Fig. 8), followed by the ele-
vation (DEM). Each split of each single tree of the
random forest might have unique threshold values
for the cell classification due to bagging. The model-
ling approach is able to capture non-linear relation-
ships and variable interactions. Thus, asymmetrical
snow cover distributions can occur for positive and
negative deviations of the considered input parame-
ters. This is, for example, the case for intraday WRs,
where reduced WRs show a strong effect on the snow
cover distribution, whereas no effect could be de -
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Fig. 9. Snow recession event during February 2016 with MODIS observations (left) and snow distribution modelling (SDM) re-
sults (right). Light grey (snow-free) and light blue (snow-covered) cells on the right side are the modelled surface characteristics 

where no observation was available from MODIS. Glaciated areas from RGIC (2017)
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tected for positive anomalies. The maximum WRs
(between night and daytime) occur on snow-free
rock surfaces on southerly slopes (ASPECT) due to
high nocturnal radiative cooling and a steep rise in
surface temperatures during daytime due to solar
insolation. Lower warming rates occur during mon-
soon because of high rates of cloud coverage during
the night (Domine et al. 2008, Engel et al. 2017).
Therefore, lower warming rates can be an indicator
for snow melt, which is adequately represented in
the sensitivity analysis (Fig. 8, row 5). The sensitivity
of the seasonality parameter (DATE) reveals the
importance of topographical parameters for snow
distribution modelling in a high mountain environ-
ment. For instance, lowered DATE cell mean values
show a correlation with an increased snow cover on
north- and northwest-facing slopes (ASPECT) but
stable conditions in all other parts. High mountain
ridges are characterized by shadowing effects on
north-facing slopes, which protects snow patches
from melting and sublimation.

The convergence index (ConIND) shows great rel-
evance in either MDAs and MDIs, but only minor
changes within the sensitivity analysis (Fig. 8). A
static topographic parameter has the highest influ-
ence at the minimum −35.0 (sheltered valley bot-
toms) and at the maximum +35.0 (mountain tops ex -
posed to strong winds). Therefore, smaller changes
around the mean without the combination of other
variables have almost no effects on the modelling.
The static exposure parameter (ASPECT) influences
the lower elevated north-facing slopes, where it
shows the highest influences in the sensitivity analy-
sis. Again, shadowing and incoming solar radiation
contribute to this effect.

Although the TRMM parameter provides the sec-
ond lowest MDI, it is important for the modelling
accuracy constrained by the second highest MDAs.
Because of its coarse spatial resolution with ca. 27.8 ×
27.8 km2, it only contributes limited information to
the model, with its low spatial variance for each day.
However, in combination with other inputs in earlier
splits of the random forest, such as DATE, it enables
the model to accurately predict cells with no clear
tendency. Thus, according to the MDAs, TRMM has
the highest loss of model accuracy, if left out. An
important factor for snow cover modelling is the land
cover type (Zaitchik & Rodell 2009, Shrestha et al.
2015). However, as cover types were already used
during pre-processing for MODIS LSTs and snow
cover, they were not included during this modelling
setup, to avoid multicollinearities (Riggs et al. 2006).

Considering the model input variables, develop-

ment of a setup consisting solely of remote sensing
and topographic products is currently in progress, as
only the global irradiance values add a significant
additional benefit towards the model’s performance,
whereas the snowfall parameterisation is the least
important input as demonstrated in the sensitivity
analysis. However, a minor decrease in quality is
expected, since atmospheric transmission has to be
compensated with additional remote sensing prod-
ucts, for instance the MODIS MOD05_L2 column
water-vapour amount products or MOD06_L2 with
cloud cover fractions.

6.  CONCLUSIONS

Prior work has documented the feasibility of physi-
cal top-down approaches to model snow cover and
snow-related parameters in high mountain regions of
the Himalayas. These are basically implemented in
comprehensive hydrological models, such as GEOtop
2.0 (Endrizzi et al. 2014). Due to the fundamental im-
pacts and feedbacks of snow (cover) in high mountain
environments, such as changes in albedo and water
storage, as well as protection for soil and biota, infor-
mation about snow properties is crucial to multiple
scientific interests (Berrisford et al. 2009, Immerzeel
et al. 2009). However, these physically based model-
ling approaches or reanalysis datasets have short-
comings in spatial and/or temporal resolution.

The focus of this study was to evaluate the perform-
ance of a prevalent machine learning algorithm, a
random forest, trained with daily MODIS snow cover
maps in order to decrease known deficits in top-down
approaches and provide a computationally extensive,
statistically robust and transferable method to predict
snow cover in the Central Himalayan region. This sur-
vey found strong relationships and dependencies be-
tween spatio-temporal climatic variations, topographic
parameters and snow cover dy namics. The presented
model’s capacity to predict daily snow distributions
accurately on a 500 × 500 m raster grid throughout
winter, pre- and post- monsoon seasons shows a sound
conformity with state-of-the-art approaches. Com-
pared to Shrestha et al. (2012), the present method
achieved slightly better performances in model accu-
racy, with 90.85% (compared to 90.0%) and had a
higher temporal resolution (daily vs. 8 d evaluation).
The main physical processes re garding snow cover
dynamics are reproducible with a training data set
covering around 3 years of meteorological data and
remote sensing ob servations combined with GIS-de-
rived topographical parameters.
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