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1.  INTRODUCTION

Many different natural hazards exist, but drought is
recognized as one of the most costly and catastrophic
(Andreadis & Lettenmaier 2006, Blauhut et al. 2016).
Drought can cause a decrease or complete failure of
crop yields in agricultural systems (Wilhite 2000,
Quiring & Papakryiakou 2003, Lobell & Field 2007,
Udmale et al. 2014). Crops are unable to meet their
water requirements if insufficient water supplies are

available as a result of weather conditions that deter-
mine water availability (decreased rainfall, increased
atmospheric evaporative demand, or deficient topsoil
moisture) during periods in which there is a demand
for water by plants (Meze-Hausken 2004, Mishra &
Singh 2010, Lobell et al. 2011). The impact of
droughts on crop yields depends on the crop type, the
stage of crop development and the biological charac-
teristics of the specific crop and soil (Karim & Rahman
2015). Droughts usually reduce the capacity for active
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radiation absorption by the canopy (Earl & Davis
2003); thus the impact of droughts on crop yields de-
pends on the crop type, the stage of crop development
and the biological characteristics of the specific crop
and soil (Karim & Rahman 2015).

The adverse impacts of drought on crop yields are
unequally distributed geographically (Howitt et al.
2015). Natural hazards, including droughts, induced
food crop disasters between 2003 and 2013 affecting
more than 1.9 billion people in developing countries,
causing over US$494 billion in estimated crop dam-
ages. In addition, these disasters slowed the eco-
nomic growth in countries where agriculture is the
main sector (30% of the GDP in most countries of
Africa and 30% of the labor force in India, for exam-
ple). On average, about 22% of the total economic
impact caused by natural hazards, especially by
droughts, occur in the agricultural sector (FAO 2015).

There are signals of increasing interannual vari-
ability in crop yields due to changes in drought fre-
quency and severity (Rossi & Niemeyer 2010, Lobell
et al. 2011, Olesen et al. 2011). However, quantifica-
tion of the direct crop yield impacts due to drought is
difficult given the complexity of drought events (Wil-
hite 1993, Wilhite et al. 2007, Geng et al. 2016). In
addition, each crop has a differing degree of resili-
ence to drought stress (Wilhelmi et al. 2002, Lobell et
al. 2011, Tack et al. 2015, Liu et al. 2016). For these
reasons, the quantification of the drought impacts on
crop yields is very important.

Drought indices represent a reliable tool for moni-
toring and studying the impacts of droughts on differ-
ent sectors, such as crop yields (Wilhite & Glantz
1985). Several studies have used drought indices to
identify these impacts at different spatial scales in Eu-
rope (Mavromatis 2007, Ceglar et al. 2012, Di Lena et
al. 2014, Páscoa et al. 2017), Australia (Lobell et al.
2015), Asia (Arshad et al. 2013, Sahoo et al. 2015, Kat-
telus et al. 2016, Wang et al. 2016), Africa (Blanc 2012,
Elagib 2013), America (Kim et al. 2002, Quiring & Pa-
pakryiakou 2003) and at the global scale (Vicente-
Serrano et al. 2012, Wang et al. 2014). In general, past
research has shown that drought indices can be used
to quantify reductions in yield that are associated with
drought. Many drought indices have been developed
since early last century (Zargar et al. 2011, Wilhite et
al. 2014). However, not all drought indices perform
equally well in accurately quantifying drought sever-
ity because of the different variables involved in their
calculations (Morid et al. 2006, Vicente-Serrano et al.
2011). Therefore, it is necessary to compare the per-
formance of different drought indices to determine
which are most appropriate for assessing the impacts

of drought for different crop types and in different re-
gions. Although some studies have addressed this
question at the regional scale (Keyantash & Dracup
2002, Quiring & Papakryiakou 2003, Wang et al.
2017), we are unaware of any studies comparing a
 variety of drought indices across different crop types
and large regions (national to continental scale).

Some studies have suggested that drought vulner-
ability in the US is increasing (Mishra & Singh 2010,
Carrão et al. 2016, Geng et al. 2016). For example,
extreme droughts in the US (i.e. those covering
>25% of the country) accounted for $6.7 billion in
crop losses for 2000−2004 (Wilhite et al. 2007).
Extreme drought events have been recorded in the
past 2 decades in the southern Great Plains and
Southwest (Hayes et al. 1999), the north-central US
(McNeeley et al. 2016), South Carolina (Mizzell et al.
2010), California (Rippey, 2016), Midwest and the
Great Plains (NOAA 2017, USDM 2017), causing
widespread impacts across multiple sectors. Ross et
al. (2003) reported that between 1980 and 2003, the
US experienced at least one billion-dollar disaster in
20 of 23 years, including 10 major drought/heatwave
episodes. NOAA’s National Centers for Environmen-
tal Information (NCEI) (https://www.ncdc.noaa.gov/
billions/) estimated that US losses from drought were
$4.1 billion in 2014, US$4.6 billion in 2015, $10.7 bil-
lion in 2013 and $31.5 billion in 2012.

The objective of this study was to determine which
drought indices are most suitable for monitoring
agricultural drought impacts for different crop types
at the regional level. Presently, there is no clear con-
sensus about which index is the most appropriate for
this purpose (Quiring 2009, Esfahanian et al. 2017).
Here we compare the Standardized Precipitation
Evapotranspiration Index (SPEI), the Standardized
Precipitation Index (SPI), the Standardized Precipita-
tion Drought Index (SPDI) and 4 Palmer-related
drought indices (Palmer Drought Severity Index
[PDSI], Palmer Hydrological Drought Index [PHDI],
Palmer Moisture Anomaly Index [Z-index] and Pal -
mer Modified Drought Index [PMDI]).

2.  DATASETS AND METHODOLOGY

2.1.  Crop data

Our analysis of drought indices focuses on the 5
crops with the broadest geographic distribution and
highest production in the US: barley, corn, cotton,
soybean and winter wheat (Fig. 1). Data on crop pro-
duction for each county are collected by the United
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States Department of Agriculture (USDA) and made
available by the National Agricultural Statistics Serv-
ice (https://quickstats.nass.usda.gov). Only crop sta-
tistics under non-irrigated conditions were consid-
ered in this study. We created 5 masks based on the
5 crops considered in this analysis in order to identify
the counties where there are representative areas
of cultivation of these different crops. For this pur-
pose, the available crop county maps were taken
from the USDA (https://www.nass.usda.gov/ Charts
_and_ Maps /  Crops _County). Yield (t ha−1) is based on
the harvest in each county. The final data set used in
this analysis comprised 373 counties for barley, 1542
counties for corn (maize), 388 counties for cotton,
1314 counties for soybeans and 1321 for winter wheat
(Fig. 1). These counties have at least 25 years of data
between 1961 and 2014.

Considering the importance of technology in en -
hancing efficiency in agriculture, but without know-
ing the weight of each technological advance that
has occurred during the period of time analyzed in
this work, crop yield series were de-trended to re -
move these non-climatic trends from yield data
(Lobell & Field 2007, Xu et al. 2013). Based on the
assumption that these improvements have changed
linearly over time, the de-trending process was
achieved by fitting a linear regression to obtain the
yield data and calculating the residuals (e.g. Tigkas
& Tsakiris 2015, Poudel & Shaw 2016, Zipper et al.
2016, Páscoa et al. 2017). These residuals were used
in the subsequent analyses.

2.2.  Climate data

To calculate the different drought indices at the
county level, we used gridded data of monthly pre-
cipitation and maximum and minimum temperature,

which were obtained from the Parameter-elevation
Relationships on Independent Slopes Model (PRISM)
gridded dataset (http://prism.oregonstate.edu). This
dataset was developed and validated by Oregon
State University (Daly et al. 2008) and has been used
in many different climatological and environmental
studies (Tilman et al. 2002, Loarie et al. 2009, Mayer
2012, Sanford & Selnick 2013, Wei et al. 2016).

Available water holding capacity of the soil is a
necessary variable to calculate the Palmer drought
indices. The National Resources Conservation Serv-
ice (NRCS) State Soil Geographic (STATSGO) Data-
base was used to determine the mean available
water holding capacity of the soil for each county
(https://water.usgs.gov/GIS/metadata/usgswrd/XML
/ussoils.xml#stdorder).

2.3.  Methods

2.3.1.  Drought index calculations

Eleven drought indices were calculated: 8 versions
of the Palmer Drought Indices suite and 3 drought
indices that are generated at different timescales:
SPI, SPEI and SPDI. These indices were selected be -
cause they are widely used in quantifying and moni-
toring droughts at both regional (Keyantash & Dra -
cup 2002, Bonaccorso et al. 2003, Lorenzo-Lacruz et
al. 2010, McEvoy et al. 2012, Rohli et al. 2016, Yan et
al. 2016) and global scales (Dai et al. 2004, Vicente-
Serrano et al. 2012, 2015, Trenberth et al. 2014, Geng
et al. 2016).

(1) Palmer drought indices. The PDSI is a popular
meteorological drought index that is commonly used
in the US, as are the PHDI and the Z-index. Using
precipitation and air temperature as inputs, the
Palmer indices compute an estimation of moisture

223

Fig. 1. Spatial distribution of selected
counties where the 5 different crops
investigated in this study are culti-
vated across the United States (source:
US Department of Agriculture Na-
tional Agricultural Statistics Service)
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supply and demand within a simple 2-layered soil
moisture simulation. The PDSI has some issues re -
lated to the lack of comparability between regions
(Alley 1984, Doesken & Garen 1991, Hayes et al.
1999, Heim 2002). To address this problem, Wells et
al. (2004) developed self-calibrated (sc) Palmer in di -
ces to automatically determine appropriate regional
coefficients. This scPDSI makes the Palmer indices
more spatially comparable. Another limitation of the
Palmer indices is that they are calculated at a fixed
timescale, which limits their ability to accurately
monitor and quantify different types of drought
(Vicente-Serrano et al. 2011).

(2) SPI. Developed by McKee et al. (1993), the SPI
quantifies and assesses precipitation shortages on
multiple timescales. It is based on the conversion of
the precipitation series using an incomplete Gamma
distribution to a standard normal variable with mean
= 0 and variance = 1. The SPI has been recommended
by The World Meteorological Organization as the
universal meteorological drought index (WMO 2012).

(3) SPEI. Proposed by Vicente- Serrano et al.
(2010), the SPEI calculation rests on a monthly cli-
mate water balance (precipitation minus reference
evapotranspiration, ETo), which is accumulated at
different timescales and transformed to a normal
standardized variable using a 3-parameter log-logis-
tic distribution. Here the ETo was computed using
the Hargreaves and Samani equation (Hargreaves &
Samani 1985), which is recommended by FAO for
data-scarce regions.

(4) Standardized Palmer Drought Index (SPDI). De-
veloped by Ma et al. (2014), the SPDI is based on
combining the methods of PDSI and SPI. This index
shares the multiscalar concept and the statistical na-
ture of the SPI and SPEI (Vicente-Serrano et al. 2015)
and the water balance defined by Palmer (1965). The
SPDI is transformed to a standard normal variable us-
ing a generalized extreme value distribution.

The different drought indices were calculated from
the mean climate series generated for each county.
The multiscalar indices (SPEI, SPI and SPDI) were
calculated at timescales from 1 to 12 mo. The monthly
drought indices for each county were de-trended us-
ing the same method that was applied for de-trending
the crop yield data.

2.3.2.  Relation between crop yields and
drought indices

To analyze the relationships between the drought
indices and crop yields in each county, we calculated

Pearson correlation coefficients (Pearson’s r). Since
the month of the year when the highest correlation
be tween the drought index and the crop yield were
not known a priori, we correlated all 12 monthly
series for each index with the annual yields.

Therefore, we obtained 12 correlations per index
and crop. In addition, for the 3 multiscalar drought
indices calculated from 1 to 12 mo timescales (SPI,
SPEI and SPDI) we obtained 12 correlations (1 for
each of the monthly series) for each timescale, result-
ing in a total of 144 correlations for each of the 3
drought indices for each crop type and each county.
In addition, we also identified the timescale (in the
case of multiscalar indices) and month in which the
highest correlation was found within each county.

3.  RESULTS

Fig. 2 shows the maximum Pearson’s r correlations
recorded in each county between the annual crop
yields and the monthly drought indices used in this
study. Generally, and independently of the crop type,
Pearson’s r coefficients showed higher values for the
SPI, SPEI and SPDI. Among the 5 crop types, correla-
tions tended to be higher for soybeans than for the
other crop types. The lowest correlations tended to be
obtained for cotton. The correlations between the Z-
index, SPI, SPEI and SPDI and crop yields tended to
be statistically significant in the majority of counties.
The highest mean correlation for soybeans was about
0.56 for the SPEI, SPI and SPDI, and for wheat it was
around 0.46 using the same indices. Moreover, we
found that r = 0.44 for corn, 0.43 for barley and 0.38
for cotton. The Palmer drought indices, with the ex-
ception of the Z-index and the scZ-index, generally
did not have statistically significant correlations with
yield, regardless of the month of the year. Table 1
shows the percentage of counties in which significant
correlations between crop yields and drought indices
were found. In general, the different crop types have
similar values; however, there are large differences
between the drought indices. The Palmer indices are
significantly correlated with crop yields in about 50%
of the counties. The self-calibrated Palmer indices
have a higher percentage of counties with significant
correlations than the original (non-calibrated) Palmer
indices for all crops. For this reason, we show only re-
sults of the self-calibrated version of the Palmer in-
dices. In general, the 3 multi scalar indices used in this
study performed much better than the Palmer
indices. The SPI had the highest percentage of coun-
ties with significant correlations for barley and soy-
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Index                            Abbreviation       Barley        Cotton         Corn      Soybean      Wheat

Palmer Drought Severity Index                                            PDSI                 58.45          46.89          44.79         52.89          56.55
Self-calibrated PDSI                                                              scPDSI              58.71          47.02          47.40         54.11          58.06
Palmer Hydrological Drought Index                                    PHDI                53.89          46.95          45.83         42.77          47.69
Self-calibrated PHDI                                                             scPHDI             51.47          47.02          45.83         44.29          48.60
Palmer Moisture Anomaly Index                                         Z-index            90.62          92.93          85.42         97.34          90.01
Self-calibrated Z-index                                                         scZ-index         90.88          93.00          85.16         97.34          90.16
Palmer Modified Drought Index                                          PMDI                62.73          58.50          50.30         59.20          61.10
Self-calibrated PMDI                                                            scPMDI            63.27          60.05          51.30         61.19          62.91
Standardized Precipitation Evapotranspiration Index       SPEI                  98.12          98.18          97.14         99.47          99.32
Standardized Precipitation Index                                        SPI                    99.20          97.54          95.83         99.54          99.17
Standardized Palmer Drought Index                                   SPDI                 95.44          94.36          93.23         98.17          97.05

Table 1. Percentage of US counties with significant correlations between crop yields and drought indices

Fig. 2. Highest Pearson correlation coefficients found be-
tween crop yields and the 11 drought indices assessed in this
study. Indices are defined in Table 1. Boxplots — midline: me-
dian; red plus signs: mean; top and bottom of box: first (25%)
and third (75%) quartiles, respectively; dashed blue line:
 significance level at p < 0.05; whiskers: range; dots: outliers
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beans, while the SPEI did best for cotton, corn and
wheat. The SPDI performed quite similar to the SPI
and SPEI. The scZ-index also did relatively well.

The results are described separately for each crop.
Fig. 3 shows the geographical distribution of the
highest correlations between the drought indices and
yield for the 5 crops. Fig. 4 displays the correlations
between the different monthly series of drought
indices and crop yields. Table 2 and Fig. A1 in the
Appendix shows the seasonal differences in the

 performance of the drought indices to assess crop
impacts. Fig. 5 and Fig. A2 illustrates the drought
timescales that were found more useful for the SPI,
SPDI and SPEI.

3.1.  Barley

Barley yields show the highest correlations (r > 0.7)
in the state of Montana and in eastern North Dakota.

228

                      Jan         Feb         Mar         Apr         May         Jun          Jul         Aug         Sep         Oct         Nov         Dec

Barley                                                                                                                                                                                           
SPEI               5.90         4.56       3.49         2.68       1.61       14.75       21.72         8.04       10.72         6.70         6.43       13.40
SPI                 5.90         4.29       3.22         5.36       1.07       15.01       23.59         9.12         7.51         5.63         5.36       13.94
SPDI               4.83         4.02       4.29         3.75       2.68       15.55       23.06         9.38         9.12         7.51         6.97         8.85
scPDSI           5.36         3.49       2.41         2.95       2.14         3.22       14.48       15.55         7.51         4.83         5.36       32.71
scPHDI        18.77         3.22       4.29         2.68       1.88         2.95         4.83         7.77         5.63         7.77         5.36       34.85
scZ-index      3.49         2.95       3.75         3.22       4.29       32.17       15.28         5.63         6.97         6.97         6.17         9.12
scPMDI       16.09         3.49       2.68         3.49       1.88         2.14         8.04       11.53         5.36         9.12         5.36       30.83
                                                                                                                                                                                                      

Corn                                                                                                                                                                                              
SPEI               3.11         1.56       2.27         1.30       2.66         7.07       33.20       25.16         3.44         2.72       13.42         4.09
SPI                 3.05         1.43       2.92         0.91       2.98         7.20       31.58       26.39         3.57         3.24       12.84         3.89
SPDI               2.14         1.30       2.27         0.52       2.01         6.49       30.61       29.51         3.76         2.59       15.05         3.76
scPDSI           4.35         1.62       2.79         0.58       1.43         1.49         4.67       12.39         7.72         4.73       17.38       40.86
scPHDI          4.35         1.88       2.27         0.45       0.84         0.71         2.53         6.36         4.41         4.35       15.95       55.90
scZ-index      2.08         1.49       2.59         0.65       2.98       11.41       41.12       13.68         2.08         2.59       16.67         2.66
scPMDI         3.31         1.56       3.05         0.58       1.17         0.52         3.05         8.43         6.55         3.76       17.90       50.13
                                                                                                                                                                                                      

Cotton                                                                                                                                                                                           
SPEI             13.92       10.31       3.61         8.51       2.06         3.35       19.59       22.68         4.90         1.55         3.35         5.15
SPI               14.18       11.08       3.87         8.51       3.35         4.38       17.27       20.88         5.93         2.06         3.35         4.12
SPDI             15.72       11.60       3.87         8.76       2.32         2.58       17.78       20.88         6.19         2.06         2.06         4.38
scPDSI           9.54         8.51       3.87         8.76       2.58         3.61         9.02       23.45         5.93         6.96         6.44       11.34
scPHDI        10.31       10.57       5.67         4.90       2.84         2.06         5.41       15.98         8.76         6.44       10.57       15.46
scZ-index    12.37         8.76       6.44         7.47       2.84         4.38       25.77       14.95         5.41         2.58         1.55         6.44
scPMDI       11.60       10.57       3.87         7.47       2.58         2.32         5.67       23.20         7.99         5.15         5.93       12.63
                                                                                                                                                                                                      

Soybeans                                                                                                                                                                                       
SPEI               1.07         1.45       0.99         0.99       0.68         0.15         3.58       68.42       10.20         6.09         2.97         3.20
SPI                 1.37         1.29       0.76         0.46       0.99         0.68         3.65       68.57         9.21         5.86         3.50         3.65
SPDI               1.67         2.51       0.53         0.15       0.53         0.15         2.28       69.94       12.86         4.49         2.05         2.21
scPDSI           5.18         2.59       1.90         1.60       0.99         0.15         1.52       17.50       12.18         9.67       15.53       31.20
scPHDI          4.11         1.37       1.60         0.46       0.23         0.08         0.61         5.33         6.32         6.24       12.56       61.11
scZ-index      0.53         2.74       0.61         0.38       0.76         0.91       19.25       67.12         1.37         3.20         1.45         1.67
scPMDI         4.49         1.67       1.83         0.38       0.23         0.08         0.76         9.21       10.05         6.39       16.44       48.48
                                                                                                                                                                                                      

Winter wheat                                                                                                                                                                               
SPEI               3.56         4.69     10.07       14             6.81         2.04         9.92       16.5           5.83         6.43       13.32         6.74
SPI                 3.48         5.00       8.33       16.28       7.04         2.35         9.84       16.43         5.53         6.06       13.02         6.66
SPDI               4.01         4.62       9.99       13.7         9.69         2.73         9.08       16.58         6.43         7.8           9.77         5.60
scPDSI         14.00         5.6         5.37         6.81       7.19         3.48         5.00         5.83         5.00         5.00       12.94       23.77
scPHDI        28.84         9.84       6.81         5.68       4.16         2.95         6.66         5.22         2.95         3.56         9.16       14.16
scZ-index      3.10         7.12     13.78       13.55       6.28         2.65       10.37       14.99         4.54         7.87       10.98         4.77
scPMDI       20.36       10.52       6.89         5.9         7.57         3.26         6.51         5.15         4.31         3.48         9.08       16.96

Table 2. Percentage of the 373 analyzed US counties where barley, corn, cotton, soybeans and winter wheat are cultivated,
and in which the maximum correlations with the 7 drought indices were found. Indices are defined in Table 1. Yearly totals are 

100% in all cases
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High correlations are recorded in these areas with
the SPEI, SPI and SPDI. In contrast, the lowest corre-
lations are found in the north central and eastern US
barley-cultivated lands. Generally, the self-cali-
brated Palmer drought indices show lower correla-
tions (r < 0.5) in the counties where the multiscalar
indices show better results. The Z-index shows simi-
lar results to the multiscalar indices, but is character-
ized by lower r values (Fig. 4). Correlations tend to be
higher in the summer months, and this pattern is
identified with the SPEI, SPI, SPDI and Z-index
(Table 2). In addition, barley is most sensitive to
drought conditions on short timescales (1 to 3 mo)
(Fig. 5a).

3.2.  Corn

The highest correlations are found in the eastern
Corn Belt (Illinois, Indiana and Ohio), southern
Texas, southern Pennsylvania and southeastern
Georgia and South Carolina, whereas the lowest cor-
relations are found in central-northern states and
Michigan. The drought indices with higher correla-
tions are the SPEI, SPI, SPDI and scZ-index. The
scPDSI, scPHDI and scPMDI show large areas with
no statistically significant correlations with corn yield
(Fig. 3). July and August are the months with the
highest correlations for corn yields using the differ-
ent multiscalar indices and the scZ-index. The
scPDSI does not show as clear a pattern as the other
indices (Fig. 4, Table 2). In general, the strongest
response for multiscalar drought indices is found
when considering the shorter (1 to 3 mo) timescales
(Fig. 5b).
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Fig. 5. Percentage of US counties analyzed for each crop
type and timescale at which the maximum correlation be-
tween drought indices and crop yields was found. Indices 

are defined in Table 1
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3.3.  Cotton

The areas where cotton is planted are more geo-
graphically concentrated than the other crops. Corre-
lations are low, in general, for all of the indices ana-
lyzed. Only the counties from northern Texas and
Kansas present high correlations (Fig. 3). July and
August have the highest correlations for all of the in-
dices analyzed, although there is less seasonality than
for the other crops (Fig. 4). The multiscalar indices, as
well as the Palmer drought indices, also show maxi-
mum correlations in summer (Table 2). The highest
correlations are found at shorter timescales (Fig. 5c).

3.4.  Soybeans

North and South Carolina and the Central and
Northern Plains of the US are the areas where the
highest correlations are found between the multi-
scalar indices (along with the scZ-index) and soy-
bean yields. These correlations present the same
spatial distributions for the SPEI, SPI and SPDI
results, while the area with correlations of r > 0.7 for
the scZ-index is smaller. In general, these indices
record lower correlations across northeastern Iowa,
Minnesota, Michigan and eastern North Dakota. The
results for the scPDSI, scPHDI and scPMDI show low
significant correlations in most of the counties except
for some counties in Nebraska, Kansas and Pennsyl-
vania (Fig. 3). According to the months in which soy-
bean crops are more vulnerable to drought, August
and September clearly have the highest correlations
(Fig. 4, Table 2). Again, the Palmer drought indices
show lower correlations and no well-defined sea-
sonal patterns. The 2 mo timescale has the greatest
concentration of high correlations (Fig. 5d). The SPEI
and SPDI agree with this pattern, while the SPI indi-
cates that a 1 mo timescale is optimal. In 91% of
counties in which soybeans are planted, the shorter
timescales (1 to 2 mo) are optimal.

3.5.  Winter wheat

Winter wheat presents a well-defined area in the
Southern Plains with highest correlations between
annual yields and the drought indices, while in the
Atlantic Coastal Plains, West and the Midwest areas,
the lowest correlations are found in the cases of the
SPEI, SPI and SPDI. The correlation values of the
SPEI are slightly higher than those of the SPI and
SPDI. The scZ-index shows lower correlations in

comparison with the multiscalar indices, but it per-
forms better than the other Palmer drought indices.
The scPDSI and scPMDI have higher correlations
than the scPHDI (Fig. 3). March, April and May have
the strongest response to moisture conditions, al -
though the seasonal pattern for winter wheat is less
defined than for the other crops (Fig. 4, Table 2). The
best timescale is also more variable than in other
crops (Fig. 5e). The 12 mo timescale for the SPEI and
SPI was found to be the most suitable in ~15% of
counties, while for the SPDI, the 1 mo timescale had
the highest correlations in 12.5% of the counties. In
general, only 40% of the counties show that shorter
timescales (1 to 3 mo) are most suitable.

3.6.  County response to drought indices

Fig. 6 identifies the drought index with the highest
correlation in each county and for each crop. Table 3
shows the percentage of counties where each
drought index has the highest correlation with crop
yield for each crop. The SPDI is the best drought
index for barley in ~30% of counties and these are
mainly located along the Canada−US border. The
SPI is the best index for barley in ~28% of counties.
The SPEI is best in ~20% of counties, which are pri-
marily located in North Dakota and North Carolina.
The Palmer drought indices are much less important.

Corn has a well-defined area in the Midwestern US
where SPDI has the highest correlation. In total, the
SPDI is the best drought index for corn in nearly 51%
of counties. The SPEI and SPI have similar numbers
of counties where they are most strongly correlated
with corn yield (12.97% and 12.65% respectively),
and these regions are mainly located in southern and
northern Texas, the South Atlantic region, and the
states of North and South Dakota, Minnesota and
New York. The scPHDI is the best drought index for
corn in ~9% of counties, and these are primarily
located in northwestern and central Iowa and Michi-
gan. The scZ-index is the best index in only ~6% of
counties and lacks a spatially coherent pattern.

For cotton, the SPEI is the drought index that was
best in the largest proportion of counties (29.95%),
followed by the SPDI (26.82%) and the SPI (19.79%).
The scPHDI is the best drought index ~8% of coun-
ties, which are located principally in western Ten-
nessee.

Soybeans and winter wheat show similar patterns,
with 95% and 90% of the counties being highly cor-
related with 1 of the 3 multiscalar indices, respec-
tively. In general, the SPDI is the best drought index
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for soybeans, and the SPEI is the best drought index
for winter wheat. Kernel density curves for each crop
and the correlations with drought indices are shown
in Fig. 7. The scPDSI clearly stands out as the least
correlated index (e.g. soybeans), while the multi-
scalar indices show greater variability. Fig. 8 shows
maximum correlation scatterplots between pairs of
drought indices (SPEI, SPI, SPDI and scZ-index) for
the different crops, including the coefficient of deter-
mination (r2) for each. The correlation differences
between the 3 multiscalar drought indices are small

(Fig. 8). The correlations for the multi-
scalar drought indices are significantly
higher than the Palmer drought indices.
There are minimal differences in the
maximum correlation values between
the 3 multiscalar indices. The scZ-index
is also relatively similar.

The SPEI and SPI have the highest r2

values (above 0.95) for the 5 crops, while
the scZ-index and SPEI and scZ-index
and SPDI have the lowest r2 values (0.7).
Based on the r2, the multiscalar indices

(SPEI, SPI and SPDI) are similar, and any one of these
indices is suitable for monitoring drought and its
impacts on crop yield.

4.  DISCUSSION

In this study, we assessed the appropriateness of 11
drought indices for monitoring agricultural drought
affecting the 5 main crops grown in the US. We iden-
tified spatial patterns illustrating the relationship
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Fig. 6. Spatial classification of the US counties and crop types according to the drought indices that recorded the highest 
Pearson r correlation coefficient independently by timescale and month. Indices are defined in Table 1

                    SPEI      SPI     SPDI   scPDSI   scPHDI  scPMDI   scZ-index

Barley          20.38    27.61   30.29     7.77        4.83        4.29           4.83
Corn            12.97    12.65   50.97     5.25        9.53        2.85           5.77
Cotton         29.95    19.79   26.82     4.69        7.81        4.43           6.51
Soybeans    11.26    22.68   61.19     1.07        0.91        0.61           2.28
Wheat          30.66    31.04   28.61     2.65        2.73         2.2            2.12

Table 3. Percentage of US counties where each index recorded the highest
correlation values between the drought index and crop yield. Values are
expressed in percentages of the total of all counties. Indices are defined in 

Table 1
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between crop yields and drought indices within the
contiguous USA. For this, we used some of the most
widespread drought indices employed for monitoring
and scientific purposes, including different versions
of the PDSI, the SPI, the SPEI and a recent multi-
scalar index based on the PDSI, the SPDI. The last 3
indices were obtained at several different timescales.

The Palmer drought indices have lower correla-
tions with crop yields than the multiscalar drought
indices, although the self-calibrated versions of the
Palmer indices marginally improve their perform-
ance. In northern and central Greece, Mavromatis
(2007) carried out an evaluation of the SPI and varia-
tions of the PDSI (the PDSI, the scPDSI and the
scZ-index) for assessing common and durum wheat
rain-fed yields. The results obtained suggested that
drought indices based on Palmer’s procedure have a
weaker capacity for predicting yield losses than the
multi-scalar ones. Nonetheless, the results also show
that the self-calibrated PDSI versions performed best

for wheat yields, and in general showed higher cor-
relations than the non-calibrated ones.

Among the Palmer drought indices, the Z-index
was more responsive to crop yields, recording more
significant and higher correlations. These results are
supported by previous studies; for example, Karl
(1986) recommended the use of the Z-Index over the
PDSI or PHDI in the USA. Quiring & Papakryiakou
(2003) compared 4 drought indices (SPI, PDSI, Z-
index and NOAA Drought Index) for estimating
spring wheat yields on the Canadian prairies. They
found that the Z-index was the most appropriate
index for predicting yield when moisture stress oc -
curs during the growing season, outperforming the
PDSI. Sun et al. (2012) also found in the Canadian
prairies that the PDSI was less relevant during the
early stages of spring wheat growth than the Z-
index. Finally, in the Czech Republic, Hlavinka et al.
(2009) showed that the Z-index explained 81, 57 and
48% of the variability in barley, winter wheat and
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Fig. 7. Kernel density plots of the highest correlations found per index and for each crop. Indices are defined in Table 1



Peña-Gallardo et al.: Drought indices for US crops 233

F
ig

. 8
. M

ax
im

u
m

 c
or

re
la

ti
on

 s
ca

tt
er

p
lo

ts
 o

f 
in

d
ex

 p
ai

rs
 (

S
P

E
I,

 S
P

I,
 S

P
D

I 
an

d
 s

cZ
-i

n
d

ex
; i

n
d

ic
es

 a
re

 d
ef

in
ed

 in
 T

ab
le

 1
) 

fo
r 

ea
ch

 o
f 

th
e 

cr
op

s 
an

al
yz

ed
. E

ac
h

 p
oi

n
t 

co
rr

e-
sp

on
d

s 
to

 t
h

e 
m

ax
im

u
m

 c
or

re
la

ti
on

 b
et

w
ee

n
 d

ro
u

g
h

t 
in

d
ex

 a
n

d
 c

ro
p

 y
ie

ld
 r

ec
or

d
ed

 w
it

h
in

 e
ac

h
 c

ou
n

ty
. 

T
h

e 
co

ef
fi

ci
en

t 
of

 d
et

er
m

in
at

io
n

 (
R

2 )
 i

s 
n

ot
ed

 i
n

 e
ac

h
 p

lo
t



Clim Res 75: 221–240, 2018234

corn, respectively. In our results, the highest percent-
age of counties where the scZ-index was found as the
most suitable index was attained for cotton crops
(6.51%).

We have shown that in general, independent of the
type of crop, the 3 different multiscalar drought in -
dices used in this study have higher correlations with
crop yields than the Palmer drought indices. Al -
though Palmer drought indices are used in current
drought monitoring systems in the USA (e.g. US
Drought Monitor, National Integrated Drought Infor-
mation System and the Natio nal Weather Service’s
Climate Prediction Center), they still lack of the flex-
ibility of the multiscalar indices (Vicente-Serrano et
al. 2011). Our study demonstrates that multiscalar
indices, such as the SPI, SPEI and SPDI, are better
suited for quantifying drought impacts on a variety of
crop types in the USA. The highest correlations
between crop yields and drought indi ces ranged be -
tween 74 and 92% for multiscalar in di ces, whereas
the Palmer indices had percentages ranging from 8
to 26%, depending on the crop. Several previous
studies have noted the underperformance of the
drought indices that are calculated on a single time-
scale. For example, Mc Evoy et al. (2012), Vicente-
Serrano et al. (2012) and Q. Wang et al. (2017) high-
lighted the advantages of using multiscalar indices to
identify crop failure and/or yield reductions associ-
ated with drought. This pattern can be explained by
 diverse environmental conditions (e.g. soil, climate,
agricultural practices, disease and pests) that affect
the direct  re sponse of crop yields to drought severity.
For this reason, it is preferable to work with flexible
indices, which may adapt to the different time lags of
response between climate conditions and crop re -
sponses, mostly during the key stages of crop devel-
opment.

In this study, we have re vealed significant spatial
va ri ability in drought index performance, but also
solid dif ferences in the response to the drought
indices amongst the different crop types. Thus, deter-
mining the best-suited drought index for a specific
crop region is particularly difficult, since the
response to drought varies depending on the crop’s
sensitivity to moisture shortage and the environmen-
tal characteristics of the study region (Mavromatis
2007). In addition, the response of the crop to drought
indices also shows strong seasonality.

Non-irrigated crop moisture requirements, and for
instance, the most sensitive stage to soil dryness, usu-
ally covers the vegetative growth stages (approxi-
mately the first 3 mo after planting), which would ex -
plain why meteorological drought is the main

ex planation for the strongest correlation values found
at short timescales which, contrary to longer time -
scales, do not tend to have a smooth drought time se-
ries. As shown in the results, different types of crops
are more sensitive, in general, to 1 to 3 mo timescale
droughts in July (e.g. corn and barley) and August
(e.g. soybean). This agrees with the planting times of
the crops analyzed; for corn, these dates go from late
March in some counties to May, while barley and soy-
bean are planted between April and May. The results
for cotton also indicated that a 1 mo timescale had the
highest correlation, although longer timescales were
found in ~30% of counties. The response of the month
with the highest correlation was less clear, but it
mainly corresponded to July and August. In contrast,
winter wheat, planted in October and mostly active
during spring months, presented a more hetero -
geneous response to time scales but a well-defined
pattern of response to months as seen in the Great
Plain where spring months are the most correlated at
3 to 4 mo time scales corresponding with the critical
soil moisture recharge state during winter months.

In short, the moisture conditions during summer
are important determinants for barley, corn, cotton
and soybean yields. Summer months correspond to
heading and reproductive stages of these crop types,
and in these stages, the plants are more sensitive to
water stress (Denmead & Shaw 1960, Çakir 2004,
Zipper et al. 2016). In contrast, winter wheat showed
a higher sensitivity to drought conditions during the
spring, which corresponds to the period when winter
wheat is more sensitive to water availability.

Generally, moisture conditions during shorter
timescales (1 to 3 mo) were more important, except
for winter wheat. These conclusions are consistent
with the results of previous studies. For example,
Moorhead et al. (2015) found that crop production of
corn, soybeans and cotton was negatively impacted
by drought conditions during July, suggesting a fast
response to short-term precipitation deficits. Winter
wheat responds in a different way since its growing
season is different from the crops mentioned above.
In a study carried out on the Iberian Peninsula, Pás-
coa et al. (2017) found that the months that showed
the strongest control of drought on wheat yield were
May and June, the period that corresponds to the
grain filling and ripening phases. They also showed a
response to longer SPEI timescales, since soil water
availability in spring and early summer is strongly
determined by winter soil moisture recharge given
low evapotranspiration rates during the cold season
(Austin et al. 1998). Wang et al. (2016) and H. Wang
et al. (2017) showed a similar pattern in Northern
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China and the Huang Hui Hai Plain, respectively,
and noticed that the highest correlations between
soil moisture and winter wheat yields were found in
the months prior to the harvest season (i.e. October−
December).

Zipper et al. (2016) examined the impact of drought
on corn and soybeans in the US and confirmed our
findings. Thus, corn results show the most sensitivity
to drought occurring during July at a 1 mo timescale,
while soybeans are most sensitive to droughts occur-
ring in August at a 2 mo timescale. Similar results for
soybeans using the SPEI were also found in Liaoning
Province in China (Chen et al. 2016) and within the
Elbe River Lowlands in Eastern Europe (Potopová et
al. 2016).

Here we stress that agricultural drought impacts
are directly dependent on the specific characteristics
of each crop, its timing and sensitivity periods
(Hlavinka et al. 2009). Thus, overall our results show
that droughts are more prone to affect winter crops
during the spring growing season (May through June
in the US). Short timescales (1 to 3 mo) in agricultural
systems respond to the state of the soil moisture lev-
els as the first trigger of crop stress.

The analysis of the performance of a drought index
to properly identify the derived drought impacts is
key for accurate management and monitoring of
drought risk. The indices selected for this study have
been applied in many different studies concerning
drought (Meyer et al. 1991, McEvoy et al. 2012, Feng
et al. 2017).

The advantageous flexibility of the multiscalar
drought indices calculated for different timescales
(SPEI, SPI and SPDI) to identify drought impacts has
been clearly identified in this study. Nevertheless,
among the 3 multiscalar indices analyzed, the SPEI
and SPDI showed higher correlations than the SPI for
most of the crops. Although the difference in the
magnitude of the correlation was small, the role of
the atmospheric evaporative demand on drought
severity and crop stress cannot be ignored. Different
assessment methods have been used to estimate tem-
perature impacts on different types of yields (Rosen-
zweig et al. 2014, Asseng et al. 2015). In a recent
study, Liu et al. (2016) estimated a decrease between
4.1 and 6.4% of wheat yields with a 1°C global tem-
perature increase, and it is suggested that in the US,
a decrease of 7.6% in the wheat production for the
period 1985−2013 may be associated with the in -
crease in temperature, especially during the growing
season (spring months) (Tack et al. 2015). Moreover,
Lobell et al. (2014) indicated that the sensitivity of
corn yields to drought stress in the USA increased in

crops associated with high vapor pressure deficits,
and stressed the need for considering the atmos-
pheric evaporative demand in drought quantifica-
tion. Therefore, the use of multiscalar drought in -
dices based on both precipitation and the atmo -
spheric evaporative demand (SPEI and SPDI) seems
to be a prudent recommendation, to better quantify
drought severity in comparison to the SPI, even more
so when considering state-of-the-art climate change
projections, which predict a significant drying in
some of the major agricultural areas of the USA
toward the end of this century, which will only be
enhanced by warmer conditions (Feng et al. 2017).

5.  CONCLUSIONS

The main results of this study are as follows:
(1) Differences exist between the performance of

various drought indices used to identify drought
impacts on crop yields, resulting in different tempo-
ral and spatial variations among crop types.

(2) Multiscalar drought indices outperform unis-
calar drought indices for monitoring the impact of
drought on crop yields.

(3) SPEI, SPI and SPDI all had very similar correla-
tions, and in most cases, all of these indices are suit-
able for monitoring the impact of drought on various
crops.

(4) Multiscalar drought indices have a high capac-
ity to identify the seasonality of drought impacts.
They can properly reflect drought conditions during
the critical phenological stages of various crops.

(5) In general, shorter drought timescales (1 to 3 mo)
are better at identifying drought impacts on crop
yields, with the exception of winter wheat, the growth
response of which is related to longer drought
timescales.

(6) Before applying a specific drought index for
agricultural drought monitoring, it is important to
review any previous assessments to determine which
indices and timescales are most suitable.
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Fig. A1. Spatial distribution of the months in which the highest Pearson correlation coefficients were obtained for the SPEI, SPI and 
SPDI and crop yields. Indices are defined in Table 1

Appendix. Additional data



Clim Res 75: 221–240, 2018240

Fig. A2. Spatial distribution of the timescales at which the highest Pearson correlation coefficients were obtained for the SPEI, SPI 
and SPDI and crop yields. Indices are defined in Table 1
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