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H0 when it is true is lower than 0.01%. In contrast to
CDD, consecutive wet days (CWD) are projected to
decrease over Zambia.

Fig. 6b shows the temporal distribution of days when
rainfall is≥10 mm. These results indicate a re duction in
the trend with slopes of −0.5 (RCP 4.5) and −0.6 (RCP
8.5). It is important to note that R10 mm and R1 mm
both refer to the number of days; therefore, when the
number of days receiving extreme precipitation re -
duces, the intensity increases, as shown in Section 3.3.

Spatially, the intensification of CDD under RCP 4.5
is observed only over Eastern, Lusaka and parts of
Southern Province for the period 2021−2050 (Fig. 7a).
Towards the end of the century (Fig. 7b), more areas,

including parts of Northern and Central Pro vince, be-
come affected. This will have a negative im pact on the
Mkushi farming block, one of the country’s major pro-
ducers of Zambia’s staple food (maize). Under RCP 8.5
(Fig. 7c,d), CDD intensifies further to cover the whole
of Southern, Central and Western Pro vince and ex-
tending to Luapula Province towards the end of the
century. Taken together, these results (Fig. 7) show
that the spatial intensification of CDDs will exhibit a
north to southeast pattern, i.e. the northern half, espe-
cially over the boundary be tween Congo and Zambia,
will have less reduction (more rainfall) than the south-
eastern part. Eastern Province will be more affected
than Southern. Therefore, the downward trend of

Fig. 7. Anomalies of consecutive dry days (CDD). (a,b) RCP 4.5 and (c,d) RCP 8.5 simulations relative to the 1961−1990 refer-
ence period
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precipitation from the north to the south of the country
that has been ob served in previous studies (e.g.
Hachigonta et al. 2008, Libanda et al. 2015b) using
rain gauge data is projected to continue through the
middle to the end of the century. These results are
presented as dif ferences between (1) the middle of
the century (2021−2050) and the baseline period

(1961−1990), and (2) the end of the century
(2071−2100) and the baseline period (1961−1990).

A significant downward trend is projected in the
frequency of days with at least 1 mm of precipitation.
On Sen’s slope estimator, this downward trend is
graded as −0.225 under RCP 4.5 and −0.275 under
RCP 8.5. Under both concentration pathways (RCP
4.5 and RCP 8.5), the risk of rejecting the null hypo -
thesis H0 when it is true is lower than 0.01%. A sum-
mary of the frequency results is given in Table 4.

3.3.  Temporal and spatial variability of
 precipitation intensity

Annual total rainfall in wet days (daily precipita-
tion > 1 mm) ex hibits a declining trend (Fig. 8a,b).
The variance decreases significantly, especially dur-
ing the 2071− 2100 period; the tails of the PDFs
extend towards lower precipitation amounts during
this period. These findings are in agreement with
those of Shongwe et al. (2011), who projected a de -
cline in annual precipitation over the broader south-
ern African region.
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Variable RCP Sen’s Risk of rejecting 
slope H0 when true (%)

R1 mm 4.5 −0.225 0.01
R1 mm 8.5 −0.275 0.01
R10 mm 4.5 −0.525 2.22
R10 mm 8.5 −0.631 3.99
R20 mm 4.5 −0.018 38.22
R20 mm 8.5 −0.028 5.42
CWD 4.5 −0.074 6.24
CWD 8.5 −0.082 23.43
CDD 4.5 0.323 0.03
CDD 8.5 0.439 0.04

Table 4. Statistical summary of precipitation frequency over
Zambia for the period 2020−2100 computed in respect to α =
0.05. Significant results are given in bold. See Table 2 for 

definition of variables

Fig. 8. Probability density functions of (a,b) annual total rainfall in wet days (mm yr−1) and (c,d) extremely wet days (mm yr−1) 
relative to the 1961−1990 reference period. (a,c) RCP 4.5 and (b,d) RCP 8.5 simulations
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Overall, while the frequency of precipitation is pre-
dicted to reduce over the country, the intensity ex-
hibits an upward trend. For instance, the wettest day
of the season (Fig. 8), i.e. the 99th percentile of daily
maximum precipitation in any given season, is pro-
jected to increase with a Sen’s slope of 0.424 under
RCP 4.5 and 0.479 under RCP 8.5. Although sig -
nificant change in rainfall variance at the 5% signifi-
cance level is observed in both R99p and PRCPTOT,
the negative shifts of PDFs observed in PRCPTOT
(Fig. 8a,b) are reversed here. These heavy rain falls
will result in flooding that poses risk to properties and
lives because changes in variance exert greater influ-
ence on extremes than mean rainfall changes (Katz &
Brown 1992). Many studies have shown that when
daily accumulated total precipitation exceeds the

90th, 95th or 99th percentiles of the rainfall climatol-
ogy of the area of study, this results in pluvial and flu-
vial floods that cause damage and significant losses.
For instance, Christensen & Christensen (2003) found
that precipitation that exceeded the 95th percentile
over continental Europe resulted in catastrophic
flooding. In Fig. 8c,d, results are presented as PDFs
and both RCP 4.5 and 8.5 projections exhibit a shift to-
wards more intense precipitation com mensurate to an
increase in radiative forcing over time.

With an increase in radiative forcing, extremely
heavy precipitation (R99p) is projected to intensify
in the central parts of the country stretching from
Northern and Luapula Province, especially under
RCP 8.5 (Fig. 9c,d). The Northern and Luapula re -
gions are home to some of Zambia’s major water bod-

Fig. 9. Anomalies of R99p (a,b) RCP 4.5 and (c,d) RCP 8.5 simulations relative to the 1961−1990 reference period
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ies, e.g. Lake Bangweulu, Mweru and Mweru Wan-
tipa (Libanda et al. 2018). With intensified precipita-
tion, adaptive strategies against flooding around this
area will be of major importance. Inundation of flood-
water into homes, displacement of people, mudslides
and erosion of stream banks and lakeshores are com-
mon in the wake of intensified precipitation (Shon-
gwe et al. 2011). Fig. 9 shows the spatial patterns of
R99p. Again, these results are presented as differ-
ences between (1) the middle of the century (2021−
2050) and the baseline period (1961−1990), and (2)
the end of the century (2071−2100) and the baseline
period (1961−1990).

Trends of precipitation intensity, both significant
and insignificant, are summarised in Table 5. These
conclusions are consistent with the findings of Pinto
et al. (2016) who used CORDEX models to project ex -
treme precipitations over the whole southern African
region. Although they used a different reference
period (1976−2005), they showed conclusively that
annual total precipitation will decrease, CDD will
increase and R95p will increase towards the end of
the 21st century.

4.  CONCLUSION AND SUMMARY

Climate change is a global phenomenon, but its
impacts are mainly felt at the local scale. This neces-
sitates research that contributes meaningful under-
standing of future climate variations at the local or
country level. This study investigated future (2021−
2100) trends of extreme precipitation over Zambia
using ETCCDI indices. Broadly, an in crease (decline)
in precipitation intensity (frequency) is predicted.

Specifically, a significant increase in the number of
CDD is projected over Zambia, especially beginning
from the year 2050 to the end of the century. An
increase in the number of CDD will negatively im -
pact the agricultural sector, ecosystem services and
water resources management. Under RCP 4.5, Sen’s
slope for CDD is 0.323, but steepens to 0.439 under
RCP 8.5. In both cases, the risk of rejecting the null
hypothesis H0 when it is true is lower than 0.05%. In
contrast to CDD, CWD are projected to decrease over
Zambia. A significant downward trend is projected
for the frequency of days with at least 10 mm of pre-
cipitation. This decrease is apparent beginning from
around 2040 up to the end of the century. Sen’s slope
for this downward trend is graded as −0.525 under
RCP 4.5 and −0.631 under RCP 8.5. In similar pattern
to R10 mm, R1 mm is observed to decline under RCP
8.5 with a Sen’s slope of −0.275. Spatially, the intensi-
fication of CDD under RCP 4.5 is observed only over
Eastern, Lusaka and parts of Southern Province, but
under RCP 8.5, the number of CDD intensifies further
to cover the whole of Southern, Central and Western
Province.

The wettest day of the season, i.e. the 99th per-
centile of daily maximum precipitation in any given
season, is projected to increase with a Sen’s slope of
0.424 under RCP 4.5 and 0.479 under RCP 8.5. These
heavy rainfalls will result in flooding, posing risk to
properties and lives.

The results described here give an overview of the
expected trends in Zambia. These results can act
as guidelines for strategic planning for flood and
drought prevention. This work also forms a baseline
for future, more robust, climate research in Zambia.
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