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1.  INTRODUCTION

Precipitation is one of the most important meteoro-
logical variables, especially in developing countries
where economies are mainly dependant on rain-fed
agriculture (Nangombe et al. 2018). Other climate-
sensitive sectors like water resources, transport and
health are also dependent on the proper understand-
ing of precipitation variability. Many studies (e.g.
Davis 2011, Reason 2016) have described the climate
over southern Africa as semi-arid. Precipitation varies
in time and space, but the region generally ex -
periences its main rains from October/November to

March/ April (Hachigonta & Reason 2006). From
April to October, the region is generally dry. Thus,
the rainfall pattern is best described as unimodal
(Reason 2016).

Extremes in precipitation, whether positive (floods)
or negative (drought), tend to cause havoc in socio -
economic sectors. In a study on climate extremes
over southern Africa, New et al. (2006) noted that
there has been an increase in precipitation extremes
across the broader southern African region in recent
years. Recently, 44 people were feared dead and
79 000 were displaced across south-central Mozam-
bique following the extreme precipitation of January

© Inter-Research 2018 · www.int-res.com*Corresponding author: brigadier.libanda@ed.ac.uk

Projection of frequency and intensity of extreme
precipitation in Zambia: a CMIP5 study

Brigadier Libanda1,*, Chilekana Ngonga2

1School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK
2Ministry of Energy and Water Development, PO Box 53930, Lusaka, Zambia

ABSTRACT: Extreme precipitation exerts damaging impacts on both society and ecosystems.
Understanding projections of extreme precipitation is part of a resilient response to its impacts. To
avoid the generalities inherent in regional projections, projections focussing on an individual
country are necessary. However, studies focusing on Zambia are still limited and future climate
variability is poorly understood. Here, the frequency and intensity of extreme precipitation over
Zambia are analysed for the period 2021−2100 using an ensemble of 5 CMIP5 models from those
recommended by the Intergovernmental Panel on Climate Change (IPCC). Our analyses demon-
strate that there will be an increase in precipitation intensity and a decrease in frequency over
Zambia from the middle of the 21st century. Notably, there is a significant increase in the maxi-
mum number of consecutive dry days and significant decreases in the number of days with at least
1 and 10 mm of precipitation. Annual total precipitation significantly reduces while the frequency
of exceedance of the 95th and 99th percentile thresholds increases significantly. The annual max-
ima of 1 d and consecutive 5 d precipitation are also projected to increase. Results from the spatial
analysis show that the greatest increase in the number of consecutive dry days is around
Siavonga, Kasama and Isoka, up to the border of Zambia and Tanzania. The reduction in precipi-
tation is projected to be steepest over Northwestern Province and lessens southwards. The steep-
ness of these trends generally falls between −0.22 and 0.47 on Sen’s slope estimator at a signifi-
cance level of 5%. In nearly all cases the risk of rejecting the null hypothesis H0 when it is true is
lower than 1%. Our study provides a novel overview of expected climate trends in Zambia, which
can act as guidelines for strategic planning of flood and drought prevention.

KEY WORDS:  Precipitation · Intensity · Frequency · Projections · CMIP5 · Zambia

Resale or republication not permitted without written consent of the publisher



Clim Res 76: 59–72, 2018

2017 (ReliefWeb 2017). During the same season, over
35 000 people were documented as having been
affected in neighbouring Malawi (ACT Alliance
2017). Just before the close of the 2017 rainy season,
Zimbabwe also experienced severe flooding across
37 districts which damaged infrastructure and halted
transportation (ACAPS 2017). As a part of southern
Africa, Zambia also suffers the impacts of ex treme
precipitation. In fact, it has been shown that 3 quar-
ters of all disasters prevalent in Zambia are associ-
ated with extreme events (Republic of Zambia [RoZ]
2008, Libanda et al. 2015a). In a study on the impacts
of climate change on economies, Chinowsky et al.
(2015) found that the impact of extreme climate events
in Zambia is twice that experienced by neighbouring
Malawi and Mozambique. This therefore makes
studies on climate extremes in Zambia necessary.

Climate extremes are one of the ‘Grand Chal-
lenges’ proposed by the World Climate Research
Programme (WCRP) and documented by the World
Meteorological Organization (WMO; Zhang et al.
2014). This is because climate extremes—extreme
rainfall, extreme drought, extreme cold spells, or
even extreme heat waves—invariably lead to agri-
cultural losses, properties and houses being swept
away leaving people homeless and sometimes loss of
life. Therefore,  studies focussing on understanding
and projecting the spatio-temporal variability of
 climate extremes around the globe have become
necessary. However, climate change increases un -
cer tainty in un derstanding extremes (IPCC 2012),
especially over Africa, where models generally have
difficulties capturing the variations of atmospheric
convection in space and time (Pohl et al. 2017). Cur-
rent evidence shows that with climate change, the
occurrence of extremes is equally changing (IPCC
2014). Climate change will also cause more intense
storms and sea level rise (IPCC 2001) because of ther-
mal expansion of the oceans and melting ice in the
Antarctic and Arctic regions, thereby posing major
challenges for coastal cities (IPCC 2013). In fact, pro-
jections show that sea level rise will still occur even if
global temperatures do not cross the 2°C suggested
by many scientists as a reasonable target. This has
been described further by Hansen et al. (2016) who
simulated the rate of sea level rise in comparison to
the pre-industrial state.

With the use of climate models, climate variability
and change has become an active area of research
around the world in recent years, and this has led
to significant discoveries and advances in climate
change science. For example, Mason & Joubert
(1997) used models to study changes in extreme rain-

fall over the broader southern African region and
found that a doubling of CO2 can lead to an increase
in extreme precipitation owing to the sensitivity of
convection to a rise in temperature. Engelbrecht et
al. (2013) also used modelling to investigate the in -
fluence of anthropogenic forcing on closed-lows and
extreme rainfall events over the broader southern
African region. Their findings highlighted an in -
crease in extreme rainfall and a downward trend in
the frequencies of closed lows. The increase in ex -
treme rainfall was attributed to the formation of cloud
bands following intense convection.

Climate models generally employ mathematical
formulae to simulate the dynamics of the climate sys-
tem (Kaplan 2009). The relationships of the atmos-
phere, land surface, oceans, etc., are accounted for in
climate models (Lorenz et al. 2012) to give a balanced
representation of the climate system and/or to make
projections. The official international voice (the Inter-
governmental Panel on Climate Change, IPCC) on
all matters relating to climate change documents that
climate dynamics can be simulated using different
representative concentration pathways (RCPs; IPCC
2014). These RCPs describe 4 different possible future
climate states which depend on the amount of green-
house gasses emitted (Taylor et al. 2012). These
 classifications include RCP 2.6, which gives a mean
increase in global temperature of 1.0°C by the end of
the 21st century, RCP 4.5, which projects a mean
increase of 1.8°C, RCP 6.0, which projects 2.2°C, and
RCP 8.5, which projects 3.7°C. These projections are
relative to pre-industrial levels. In this study, RCP
4.5, a stabilisation scenario, is used in comparison to
RCP 8.5, a scenario characterised by an increase in
greenhouse gases or, as Ongoma et al. (2018c) refer
to it, a business as usual scenario, as it is based on the
exclusion of mitigating measures.

While it is understood that climate change is a
global phenomenon (Byg & Salick 2009), its impacts
are mainly felt at the local scale. For policy and deci-
sion makers to analyse the impacts of climate change
and plan for the future, local and country level pro-
jections of meteorological and climatological param-
eters are necessary. For this reason, many countries
are currently involved in the for mulation of national
climate change adaptation strategies (Greiving &
Fleischhauer 2012, RoZ 2016, Republic of South
Africa 2017). Robust country- specific climate infor-
mation is indispensable for this. The goal of this
paper, therefore, is to focus on Zambia and examine
patterns of extreme precipitation for the period
2021− 2100. To this end, the following outline has
been used: a brief background of the climate of Zam-
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bia is given in Section 2.1, Section 2.2 outlines the
data (and sources) used to carry out this work, Sec-
tion 2.3 describes the methods employed, results and
discussion are given in Section 3 and the paper closes
with a summary of the findings.

2.  METHODS

2.1.  The climate of Zambia

Using the Köppen-Geiger climate classification sys-
tem, Zambia (Fig. 1) is identified as humid subtropical
(Geiger 1954), experiencing average temperatures of
28°C in the summer and 5°C in the winter (Hachigonta
& Reason 2006, Libanda et al. 2015b). Although much
of the land mass is on a plateau (about 1200 m), the in-
tra- and inter-annual distribution of rainfall differs
markedly in time and space, with more wetness in the
northern half of the country (averaging 1200 mm), de-
creasing southwards (averaging 800 mm; Libanda et
al. 2017a). Large scale  circulation mechanisms like
the El Niño Southern Oscillation have been linked to
rainfall variability over Zambia, with El Niño (La Niña)
exerting drier (wetter) than normal conditions over
much of the country. Hachigonta et al. (2008) attributed

the onset and offset of the rainy season to the fluctua-
tions of the Inter tropical Convergence Zone (ITCZ).
This was also highlighted in a recent study by Libanda
et al. (2017b). The rainy season generally begins in
 October/  November and ceases in March/April.

2.2.  Data

Precipitation data from 30 meteorological and cli-
matological stations were obtained from the archives
of the Zambia Meteorological Department. These 30
stations were picked based on data availability at the
time of analysis. Fig. 1 shows the positions of these
stations. The observation data covers the period 1980−
2000, which is not long enough to be used to examine
the behaviour of models during the baseline period
(1961−1990). For this reason, monthly Global Precip-
itation Climatology Centre (GPCC) rainfall data and
Climate Research Unit (CRU) monthly rainfall data
were investigated for their ability to capture rainfall
data with the aim of using the best dataset to exam-
ine the performance of models. Both GPCC (Schnei-
der et al. 2016) and CRU TS3.23 (Harris et al. 2014)
are gridded at a spatial resolution of 0.5° × 0.5° and
are freely available in netCDF format.

Fig. 1. (a) Location of Zambia (grey) in southern Africa; (b) Zam-
bia (1° latitude-longitude resolution elevation data, sourced from
the Joint Institute for the Study of the Atmosphere and Ocean, 

JISAO); (c) meteorological stations used in this study
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The indices are based on data provided by the
Canadian Centre for Climate Modelling and Analysis
(www. cccma. ec. gc. ca); they cover the period 2021−
2100. This study em ploys 5 of the recommended
IPCC and WGCM models from the Coupled Model
Intercomparison Project Phase 5 (CMIP5). These
models are (1) CNRM-CM5 developed by Météo-
France/CNRS, (2) CanESM2 of the Canadian Centre
for Climate Modelling and Analysis, (3) EC-Earth, a
product of the Royal Netherlands Meteorological
Institute, (4) MPI-ESM-LR of the Max Planck Insti-
tute for Meteorology and (5) MPI-ESM-MR, also from
the Max Planck Institute for Meteorology. These
models were chosen from a pool of 20 CMIP5 models
(Table 1) based on their skill to reproduce GPCC
rainfall patterns over Zambia. A detailed description
of the approach used is provided in Section 2.3.
Many scientists (e.g. Sillmann et al. 2013b, Ongoma
et al. 2018a) have recommended the use of ensem-
bles as opposed to single models because  generally,
many models agree on the trend but not magnitude
of precipitation (Libanda et al. 2017a). Therefore,
taking the mean of a group of models gives better
results than using single models.

2.3.  Methodology

To pick the 5 models included in the ensemble,
percent bias (PBias; Gupta et al. 1999) was used to
analyse how well the models replicate GPCC data

over Zambia. PBias showed the positive or negative
behaviour of models relative to GPCC. PBias is a con-
venient approach because it returns the behaviour of
models in percentage. It is widely used in modelling
studies; for example, Ongoma et al. (2018b) success-
fully used PBias to examine how well models simu-
lated precipitation over equatorial east Africa in the
20th century. Standard deviation was also deployed
to check the chosen models relative to the GPCC
dataset. A Taylor diagram, as proposed by Taylor
(2001), was further used to analyse how closely GPCC
and CRU are associated with observations.

The models included in the ensemble are of vary-
ing resolutions. Therefore, the outputs were regrid-
ded to a common resolution using nearest neighbour
interpolation before any statistical analyses were
done. This reduced the influence exerted by resolu-
tion during comparative analyses. This method com-
putes the nearest neighbouring pixel and takes the
respective intensity value (Hsing 1999).

Table 2 shows the indices used to classify projec-
tions of extreme precipitation over Zambia. Based on
the data provided by the Canadian Centre for Cli-
mate Modelling and Analysis, the classifications con-
tained herein are what Ongoma et al. (2018c) termed
moderate extremes; therefore, R25 mm has not been
included. In a paper summarising the CLIVAR/GCOS/
WMO workshop on indices and indicators for climate
extremes, Karl et al. (1999) describes these indices
in detail. Many authors (e.g. Klein Tank et al. 2009,
Zhang et al. 2011) have also provided detailed
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Model name                 Modelling Institution                                                                                                              Lat. × Long.

BCC-CSM1-1-M          Beijing Climate Centre, China Meteorological Administration, China                             2.8º × 2.8º
BNU-ESM                    College of Global Change and Earth System Science, Beijing Normal University          2.8º × 2.8º
CanESM2                     Canadian Centre for Climate Modeling and Analysis, Victoria, Canada                          2.8º × 2.8º
CCSM4                         National Centre for Atmospheric Research, USA                                                              ~0.9º × 1.3º
CNRM-CM5                 Centre National de Recherches Météorologique, France                                                 ~1.4º × 1.4º
CSIRO-MK3.6.0           Commonwealth Scientific and Industrial Research Organization, Australia              ~1.875º × 1.875º
EC-Earth                      Royal Netherlands Meteorological Institute, Netherlands                                              1.125º × 1.125°
GFDL-CM3                  Geophysical Fluid Dynamics Laboratory, USA                                                                    2.5° × ~2.0º
GFDL-ESM2G             Geophysical Fluid Dynamics Laboratory, USA                                                                    2.5º × ~2.0º
GFDL-ESM2M             Geophysical Fluid Dynamics Laboratory, USA                                                                    2.5º × ~2.0º
GISS-E2-H                   NASA Goddard Institute for Space Studies, USA                                                                  2º × ~2.5º
HadGEM2-ES              Met Office Hadley Centre, UK                                                                                          1.875º × 1.275º
IPSL-CM5A-LR            Institut Pierre Simon Laplace, France                                                                                 3.75º × 1.8º
IPSL-CM5A-MR          Institut Pierre Simon Laplace, France                                                                                   2.5º × 1.25º
MIROC5                       Atmosphere and Ocean Research Institute, The University of Tokyo, Japan                   1.4º × 1.4º
MIROC-ESM                Japan Agency for Marine-Earth Science and Technology, Japan                                     2.8º × 2.8º
MPI-ESM-LR                Max Planck Institute for Meteorology, Germany                                                            1.875º × 1.875º
MPI-ESM-MR              Max Planck Institute for Meteorology, Germany                                                            1.875º × 1.875º
MRI-CGCM3               Meteorological Research Institute, Japan                                                                        1.125º × 1.125º
NOR-ESM1-ME           Norwegian Climate Centre                                                                                                   2.5º × 1.8º

Table 1. Models used in this study
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descriptions of these indices. Further documentation
is available from the World Research Climate Pro-
gramme at www.wcrp-climate.org/data-etccdi.

The design of the analysis described here refers to
a 1961−1990 baseline. Many researchers, including
Tomozeiu et al. (2014) and Ongoma et al. (2018c),
have utilised this baseline in climate change studies
around the world. Projections were divided into 2
separate 30 yr periods, i.e. 2021−2050 and 2071− 2100;
precipitation extremes were studied during these
periods relative to the 1961−1990 baseline.

The Mann-Kendall test (Mann 1945, Kendall 1975)
was used to identify trends in the projected precipita-
tion. While other methods of characterising trends
exist, the Mann-Kendall test has been heralded by
many scientists as the most robust methodology for
trend characterisation. For instance, Ongoma et al.
(2018d) used it to characterise trends of extreme
weather events over equatorial East Africa, focussing
on Uganda and Kenya. Adamowski & Bougadis (2003)
also used it alongside the L-moments method to
detect trends in extreme rainfall in Canada. In gen-
eral, the Mann-Kendall test is given as:

(1)

In this case, n is the sample size, and xi and xj are
sequential values of x. The p-value, after the Z-test,
was used in comparison to the α = 5% confidence
level; if the p-value is lower (higher) than α then it is
taken to be significant (insignificant). The null hypo -
thesis (H0) states that there is no trend in the series
and the alternative (H1) that there is a trend in the
series. Mathematically, the variance (VAR) of S is
given as:

(2)

where g is the number of tied groups, n is the number
of data points and tp is the number of observations in
the p th group.

To quantify the magnitude of the trends, Sen’s
slope estimator was used (Sen 1968). Like the Mann-
Kendall test, Sen’s slope estimator uses a non-para-
metric approach and it is given as:

(3)

where Q is a slope estimate, Yi’ and Yi are the values
at times i’ and i, where i’ is greater than i. Examples
of studies that have used Sen’s slope include those of
Gocic & Tajkovic (2013) in Serbia, and Sanogo et al.
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Indices Descriptor Index calculation Definition Unit

Frequency index
R1 mm Number of rainfall days RRij ≥ 1 mm Annual count of days with at least 1 mm of precipitation. d
R10 mm Number of heavy rainfall days RRij ≥ 10 mm Annual count of days when rainfall ≥10 mm. d
R20 mm Number of very heavy RRij ≥ 20 mm Annual count of days when rainfall ≥20 mm. d

rainfall days
CWD Consecutive wet days RRij ≥ 1 mm Maximum number of consecutive days with at least d

1 mm of precipitation.
CDD Consecutive dry days RRij ≤ 1 mm Maximum number of consecutive days with less than d

1 mm of precipitation.
Intensity index
Rx1day Daily maximum rainfall Rx1dayj = max(RRij) Monthly maximum 1 d rainfall. mm
Rx5day 5 d maximum rainfall Rx5dayj = max(RRij) Monthly maximum 5 d rainfall. mm

PRCPTOT Annual wet-day rainfall total Annual total rainfall in wet days (RR > 1 mm). mm

SDII Simple daily intensity index Annual mean rainfall when PRCP ≥ 1 mm. mm d−1

R95p Very wet day Annual total rainfall when RR > 95th percentile. mm

R99p Extremely wet day Annual total rainfall when RR > 99th percentile. mm

1

PRCPTOTj RRij
i

l

∑=
=

1SDII

RR

W
j

j
w

W

∑
= =

95
1

R p RRj wj
W

W

∑=
=

99
1

R p RRj wj
W

W

∑=
=

Table 2. Indices used in this study. PRCP: precipitation; RRij: daily precipitation amount on day i in period j; w: daily precipitation amount 
on a wet day when RR ≥ 1mm. W represents the number of all wet days in the period under study
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(2015), who studied spatio-temporal characteristics of
rainfall recovery in West Africa.

The Probability Distribution Function (PDF) is
useful for characterising the relative frequency of oc-
currence of given values within a dataset under con-
sideration (Wilks 1995, Fallmann et al. 2017). Here,
changes in the temporal intensity of precipitation in
Zambia are described using PDFs. Empirical distri -
bution was em ployed to generate the PDFs for the
3 periods, i.e. historical/baseline (1961−1990), 2021−
2050 and 2071−2100. To understand the statistical
 sig ni ficance of the changes in the PDFs, a 2-tailed
 Kolmogorov-Smirnov test was used (Jupp et al. 2010).

3.  RESULTS AND DISCUSSION

3.1.  Model performance

Fig. 2 shows the comparison of the
mean annual cycles from the GPCC and
CRU datasets and observations. Results
indicate that both the GPCC and CRU
datasets were able to reproduce observa-
tions of rainfall received from October/
November to March/ April. All the data -
sets produced a distinct dry season from
May to  September, as has been observed
by others (e.g. Hachigonta & Reason
2006, Libanda et al. 2015b).

The ability of the GPCC and CRU data -
sets to mimic rain gauge data in repro-
ducing interannual variability in precipi-
tation is presented in Fig. 3. Although the

magnitude of annual changes in the reanalysed
datasets does not precisely match the observations,
these results indicate that all the datasets were able
to accurately capture the trend of reducing precipita-
tion across Zambia.

The overall aim of comparing the GPCC and CRU
data to observations was to find a suitable dataset for
examining the skill of models for the baseline period
(1961−1990). The observation data, which covers the
period 1980−2000, was not long enough for this pur-
pose. The results presented in Figs. 2 & 3 show that
both datasets adequately capture rain gauge data.
The GPCC dataset was subsequently used, based on
the results presented in Fig. 4. From these results
(Taylor diagram), it can be seen that both the GPCC
and CRU datasets are strongly correlated with the
observations, with the GPCC set showing a slightly
stronger correlation (0.83 for GPCC and 0.80 for
CRU). The GPCC dataset generally performs well
over Africa. This is mirrored in the work of Nicholson
et al. (2003), who compared the performance of
GPCC data to a network of 515 observatory stations
and found good agreement. Having validated that
GPCC data agrees with observed data, this was used
in subsequent analyses in this study.

While many scientists (e.g. Sillmann et al. 2013b,
Ongoma et al. 2018a) have recommended the use of
ensembles as opposed to single models, it is also well
documented that ensembles containing models with
poor skill over a region of study can lower the overall
performance of the ensemble (Fotso-Nguemo et al.
2018). This is because model performance varies
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Fig. 2. Mean annual cycle of precipitation (mm) over Zambia
based on observations (black), and the GPCC (red) and CRU
(blue) datasets, averaged over longitudes 21.8° to 34° E and 

latitudes 18° to 8° S for the period 1980−2000

f
f
f

Fig. 3. Standardised rainfall anomaly across Zambia based on observations
(black), GPCC (red) and CRU (blue), averaged over longitudes 21.8° to
34° E and latitudes 18° to 8° S for the period 1980−2000. The equations are 

for GPCC, CRU and observations, respectively
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from one region to another. In this study, the per-
formance of 20 models (Table 1) over Zambia was
examined. Results (Fig. 5a) show that only 5 models
performed within ±5% PBias of GPCC. These models
were CNRM-CM5, CanESM2, EC-Earth, MPI-ESM-LR

and MPI-ESM-MR. The resulting ensemble had a
1.1% PBias and was better than any of the individual
models. However, it is worth noting that users of this
ensemble should apply caution as it still overesti-
mates GPCC data.
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Fig. 5. (a) Area-averaged annual PBias of rainfall; (b) standard deviation relative to GPCC data for each GCM for the period 
1961−1990 over Zambia. Dotted line: GPCC
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Results further indicate (Fig. 5a) that apart from
GISS-E2-H, MRI-CGCM3, EC-Earth, MPI-ESM-MR
and CNRM-CM5, all the models showed positive
bias relative to GPCC and this contributed to the
resultant positive bias of the ensemble. With a PBias
of −36% (78.6%), GISS-E2-H (MIROC5) was the
highest negatively (positively) biased model. Stan-
dard deviation (Fig. 5b) was used to further examine
how well GPCC data mimics observations. These
results indicate a similar pattern to that observed in
the PBias computation. In general, lower deviation
was observed in the 5 ensemble models compared to
the other 15. Overall, the highest (lowest) departure
from GPCC was observed in MIROC5 (MPI-ESM-LR)
with a standard deviation of 591.3 mm (8.6 mm).

Table 3 gives a statistical summary of the perform-
ance of each model. Of the 20 models, 12 exhibited a
negative correlation. Although the remaining 8 mod-
els were positively correlated, the correlation coeffi-
cients only ranged between 0.01 and 0.32, indicating
weak agreement between the models and GPCC
data over Zambia. Similar findings were noted by
Ongoma et al. (2018b) in their study over East Africa.

3.2.  Temporal and spatial variability of rainfall
frequency

The frequency of extreme precipitation was stud-
ied and characterised using indices shown in Table 2.
Generally, a significant increase in the number of
consecutive dry days (CDD) (Fig. 6a) was projected
over Zambia, especially beginning from the year
2050 and continuing to the end of the century. An
increase in the number of CDD will negatively
impact the agricultural sector because this is strongly
correlated with critically reduced soil moisture (Hot-

tenstein et al. 2015). These climate patterns will be
key for strategic planning to ensure food security.
Agriculture is not the only sector that is challenged
by CDD; a study by Chen et al. (2014) on the influ-
ence of CDD on burned areas in southwestern China
found that CDD predominantly boosted large fires
affecting areas of up to 100 ha or more. Such large
fires are usually catastrophic, causing significant
socio-economic disruptions and threatening ecosys-
tem provisioning. Under RCP 4.5, Sen’s slope for
CDD is 0.323 but steepens to 0.439 under RCP 8.5. In
both cases, the risk of rejecting the null hypothesis
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Model Annual Correlation RMSE
mean coefficient

BCC-CSM-1-1 1228.32 0.07 224.01
BNU-ESM 1737.37 −0.10 693.69
CanESM2 1119.21 −0.10 163.60
CCSM4 1439.82 0.01 407.72
CNRM-CM5 1051.05 −0.27 144.89
CSIRO-MK3.6.0 1551.39 −0.18 519.97
EC-Earth 1019.01 −0.06 142.13
Ensemble 1042.29 −0.19 128.58
GFDL-CM3 1313.36 −0.07 295.70
GFDL-ESM2G 1545.35 −0.08 504.00
GFDL-ESM2M 1519.51 −0.24 483.65
GISS-E2-H 680.51 −0.02 415.07
GPCC 1063.76 1.00 0.00
HadGEM2-ES 1319.31 0.12 295.94
IPSL-CM5A-LR 1391.02 0.32 361.07
IPSL-CM5A-MR 1472.16 0.19 433.03
MIROC5 1900.10 −0.02 852.25
MIROC-ESM 1135.01 0.00 202.05
MPI-ESM-LR 1076.02 0.02 131.48
MPI-ESM-MR 1042.08 −0.11 137.55
MRI-CGCM3 1010.75 0.23 135.95
NOR-ESM1-ME 1401.25 0.18 379.74

Table 3. Statistical association between models and GPCC 
data over Zambia
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Fig. 6. Timeseries of (a) consecutive dry days (CDD) and (b) number of days with at least 10 mm precipitation (R10 mm). Base-
line period for anomalies calculation is 1961−1990
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H0 when it is true is lower than 0.01%. In contrast to
CDD, consecutive wet days (CWD) are projected to
decrease over Zambia.

Fig. 6b shows the temporal distribution of days when
rainfall is≥10 mm. These results indicate a re duction in
the trend with slopes of −0.5 (RCP 4.5) and −0.6 (RCP
8.5). It is important to note that R10 mm and R1 mm
both refer to the number of days; therefore, when the
number of days receiving extreme precipitation re -
duces, the intensity increases, as shown in Section 3.3.

Spatially, the intensification of CDD under RCP 4.5
is observed only over Eastern, Lusaka and parts of
Southern Province for the period 2021−2050 (Fig. 7a).
Towards the end of the century (Fig. 7b), more areas,

including parts of Northern and Central Pro vince, be-
come affected. This will have a negative im pact on the
Mkushi farming block, one of the country’s major pro-
ducers of Zambia’s staple food (maize). Under RCP 8.5
(Fig. 7c,d), CDD intensifies further to cover the whole
of Southern, Central and Western Pro vince and ex-
tending to Luapula Province towards the end of the
century. Taken together, these results (Fig. 7) show
that the spatial intensification of CDDs will exhibit a
north to southeast pattern, i.e. the northern half, espe-
cially over the boundary be tween Congo and Zambia,
will have less reduction (more rainfall) than the south-
eastern part. Eastern Province will be more affected
than Southern. Therefore, the downward trend of

Fig. 7. Anomalies of consecutive dry days (CDD). (a,b) RCP 4.5 and (c,d) RCP 8.5 simulations relative to the 1961−1990 refer-
ence period



Clim Res 76: 59–72, 2018

precipitation from the north to the south of the country
that has been ob served in previous studies (e.g.
Hachigonta et al. 2008, Libanda et al. 2015b) using
rain gauge data is projected to continue through the
middle to the end of the century. These results are
presented as dif ferences between (1) the middle of
the century (2021−2050) and the baseline period

(1961−1990), and (2) the end of the century
(2071−2100) and the baseline period (1961−1990).

A significant downward trend is projected in the
frequency of days with at least 1 mm of precipitation.
On Sen’s slope estimator, this downward trend is
graded as −0.225 under RCP 4.5 and −0.275 under
RCP 8.5. Under both concentration pathways (RCP
4.5 and RCP 8.5), the risk of rejecting the null hypo -
thesis H0 when it is true is lower than 0.01%. A sum-
mary of the frequency results is given in Table 4.

3.3.  Temporal and spatial variability of
 precipitation intensity

Annual total rainfall in wet days (daily precipita-
tion > 1 mm) ex hibits a declining trend (Fig. 8a,b).
The variance decreases significantly, especially dur-
ing the 2071− 2100 period; the tails of the PDFs
extend towards lower precipitation amounts during
this period. These findings are in agreement with
those of Shongwe et al. (2011), who projected a de -
cline in annual precipitation over the broader south-
ern African region.
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Variable RCP Sen’s Risk of rejecting 
slope H0 when true (%)

R1 mm 4.5 −0.225 0.01
R1 mm 8.5 −0.275 0.01
R10 mm 4.5 −0.525 2.22
R10 mm 8.5 −0.631 3.99
R20 mm 4.5 −0.018 38.22
R20 mm 8.5 −0.028 5.42
CWD 4.5 −0.074 6.24
CWD 8.5 −0.082 23.43
CDD 4.5 0.323 0.03
CDD 8.5 0.439 0.04

Table 4. Statistical summary of precipitation frequency over
Zambia for the period 2020−2100 computed in respect to α =
0.05. Significant results are given in bold. See Table 2 for 

definition of variables

Fig. 8. Probability density functions of (a,b) annual total rainfall in wet days (mm yr−1) and (c,d) extremely wet days (mm yr−1) 
relative to the 1961−1990 reference period. (a,c) RCP 4.5 and (b,d) RCP 8.5 simulations



Libanda & Ngonga: Extreme precipitation over Zambia 69

Overall, while the frequency of precipitation is pre-
dicted to reduce over the country, the intensity ex-
hibits an upward trend. For instance, the wettest day
of the season (Fig. 8), i.e. the 99th percentile of daily
maximum precipitation in any given season, is pro-
jected to increase with a Sen’s slope of 0.424 under
RCP 4.5 and 0.479 under RCP 8.5. Although sig -
nificant change in rainfall variance at the 5% signifi-
cance level is observed in both R99p and PRCPTOT,
the negative shifts of PDFs observed in PRCPTOT
(Fig. 8a,b) are reversed here. These heavy rain falls
will result in flooding that poses risk to properties and
lives because changes in variance exert greater influ-
ence on extremes than mean rainfall changes (Katz &
Brown 1992). Many studies have shown that when
daily accumulated total precipitation exceeds the

90th, 95th or 99th percentiles of the rainfall climatol-
ogy of the area of study, this results in pluvial and flu-
vial floods that cause damage and significant losses.
For instance, Christensen & Christensen (2003) found
that precipitation that exceeded the 95th percentile
over continental Europe resulted in catastrophic
flooding. In Fig. 8c,d, results are presented as PDFs
and both RCP 4.5 and 8.5 projections exhibit a shift to-
wards more intense precipitation com mensurate to an
increase in radiative forcing over time.

With an increase in radiative forcing, extremely
heavy precipitation (R99p) is projected to intensify
in the central parts of the country stretching from
Northern and Luapula Province, especially under
RCP 8.5 (Fig. 9c,d). The Northern and Luapula re -
gions are home to some of Zambia’s major water bod-

Fig. 9. Anomalies of R99p (a,b) RCP 4.5 and (c,d) RCP 8.5 simulations relative to the 1961−1990 reference period
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ies, e.g. Lake Bangweulu, Mweru and Mweru Wan-
tipa (Libanda et al. 2018). With intensified precipita-
tion, adaptive strategies against flooding around this
area will be of major importance. Inundation of flood-
water into homes, displacement of people, mudslides
and erosion of stream banks and lakeshores are com-
mon in the wake of intensified precipitation (Shon-
gwe et al. 2011). Fig. 9 shows the spatial patterns of
R99p. Again, these results are presented as differ-
ences between (1) the middle of the century (2021−
2050) and the baseline period (1961−1990), and (2)
the end of the century (2071−2100) and the baseline
period (1961−1990).

Trends of precipitation intensity, both significant
and insignificant, are summarised in Table 5. These
conclusions are consistent with the findings of Pinto
et al. (2016) who used CORDEX models to project ex -
treme precipitations over the whole southern African
region. Although they used a different reference
period (1976−2005), they showed conclusively that
annual total precipitation will decrease, CDD will
increase and R95p will increase towards the end of
the 21st century.

4.  CONCLUSION AND SUMMARY

Climate change is a global phenomenon, but its
impacts are mainly felt at the local scale. This neces-
sitates research that contributes meaningful under-
standing of future climate variations at the local or
country level. This study investigated future (2021−
2100) trends of extreme precipitation over Zambia
using ETCCDI indices. Broadly, an in crease (decline)
in precipitation intensity (frequency) is predicted.

Specifically, a significant increase in the number of
CDD is projected over Zambia, especially beginning
from the year 2050 to the end of the century. An
increase in the number of CDD will negatively im -
pact the agricultural sector, ecosystem services and
water resources management. Under RCP 4.5, Sen’s
slope for CDD is 0.323, but steepens to 0.439 under
RCP 8.5. In both cases, the risk of rejecting the null
hypothesis H0 when it is true is lower than 0.05%. In
contrast to CDD, CWD are projected to decrease over
Zambia. A significant downward trend is projected
for the frequency of days with at least 10 mm of pre-
cipitation. This decrease is apparent beginning from
around 2040 up to the end of the century. Sen’s slope
for this downward trend is graded as −0.525 under
RCP 4.5 and −0.631 under RCP 8.5. In similar pattern
to R10 mm, R1 mm is observed to decline under RCP
8.5 with a Sen’s slope of −0.275. Spatially, the intensi-
fication of CDD under RCP 4.5 is observed only over
Eastern, Lusaka and parts of Southern Province, but
under RCP 8.5, the number of CDD intensifies further
to cover the whole of Southern, Central and Western
Province.

The wettest day of the season, i.e. the 99th per-
centile of daily maximum precipitation in any given
season, is projected to increase with a Sen’s slope of
0.424 under RCP 4.5 and 0.479 under RCP 8.5. These
heavy rainfalls will result in flooding, posing risk to
properties and lives.

The results described here give an overview of the
expected trends in Zambia. These results can act
as guidelines for strategic planning for flood and
drought prevention. This work also forms a baseline
for future, more robust, climate research in Zambia.
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