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1.  INTRODUCTION

Weather and climate have a key influence in deter-
mining vegetation dynamics and growth. Particularly,
drought and heat events are an important threat to
forestry, agricultural, economic and environmental sys-
tems (Prasad et al. 2008, Beguería et al. 2010, Vicente-
Serrano et al. 2011). Previous studies have shown that
droughts and extreme temperatures (e.g. cold spells,
heat waves) have strong impacts on vegetation green-
ness and health (Potter et al. 2007). Drought has long
been recognized as a main driving factor of forest

health and species distribution. Drought-induced dis-
turbances depend on drought intensity and duration,
as well as on the developmental stage of plants (Be-
guería et al. 2010). Drought detection is strongly influ-
enced by the time lag between anomalies in precipita-
tion and vegetation activity, since droughts are caused
by persistent lack of precipitation over a certain time
period (van Hoek et al. 2016). As such, drought indices
are essential to monitor vegetation health, supporting
decision-making (Sánchez et al. 2016).

Drought indices can be used to determine differ-
ent drought conditions for e.g. crops (Potopova et al.
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2016), plant growth (Oliveira et al. 2016, Zhang et
al. 2016), afforestation (Abiodun et al. 2013), fire
danger (Goodrick 2002), soil water availability (van
der Burg et al. 2016) and climate change impact as -
sessment (Li et al. 2015). Subjectivity in defining
drought, including its multi-scale nature, has made
it very difficult to establish a unique and universal
drought index (Vicente-Serrano et al. 2010, Paulo et
al. 2012, Banimahd & Khalili 2013, Sun et al. 2016,
Yoo et al. 2016). However, the Standardized Pre -
cipitation Evapotranspiration Index (SPEI) is one of
the most widely used indices (Vicente-Serrano et al.
2010). SPEI is based on normalized differences be -
tween precipitation and evapotranspiration and can
be calculated over a wide range of climates (Begue -
ría et al. 2010). It combines the sensitivity of the
self-calibrated Palmer drought severity index to
evapotranspiration (Beguería et al. 2010) with the
simple mathematical formulation and multi-scale
nature of the standardized precipitation index
(Vicente- Serrano et al. 2010, van der Burg et al.
2016). Hence, it combines temperatures and pre -
cipitation in its definition, being a robust index
that allows comparisons of drought severity through
time and space.

Plant vigour (or greenness) can be assessed through
satellite-derived vegetation indices, such as the Nor-
malized Difference Vegetation Index (NDVI) (Huete
et al. 1999). NDVI combines spectral reflectance
measurements within specific near-infrared (NIR)
and red (Red) electromagnetic bands as follows:
NDVI = (NIR − Red) / (NIR + Red). NDVI provides a
measure of vegetation greenness; i.e. the larger the
difference between NIR and red reflectances, the
higher the NDVI and vegetation greenness (Roderick
et al. 1996). The use of satellite remote sensing data
has many advantages, such as global coverage and
frequent (and regular) measurements, making NDVI
useful to support field observations and estimate for-
est biophysical parameters (Brooks et al. 2016). NDVI
is widely applied in ecological research and manage-
ment as a proxy for vegetation quantity and quality
(Garroutte et al. 2016), and it has been used to esti-
mate plant production (Brooks et al. 2016), forest bio-
mass (e.g. net primary productivity) (Myneni et al.
1997, Tum et al. 2011), leaf area index (Verger et al.
2016) and plant growth and photosynthetic activity
(Decuyper et al. 2016, Ganjurjav et al. 2016). The
NDVI is also related to other variables, such as
pheno logy (Fraga et al. 2014), surface water (De -
cuyper et al. 2016), drought (Klisch & Atzberger
2016), soil cover (Tian et al. 2016), soil sealing (Perez
& Garcia 2016), live fuel moisture content for fire

danger rating (Chuvieco et al. 2004) and pests and
diseases (Olsson et al. 2016).

In Portugal, forests occupy approximately 35% of
the country (INE 2010). Typical Mediterranean flora
dominated by the ‘montado’ (cork and holm oak
woodlands) predominates in the south, while shrub-
land and denser forests prevail in the northern
 mountains, including Eurosiberian species (God-
inho- Ferreira et al. 2005). Maritime pine Pinus
pinaster and eucalypt Eucalyptus globulus forest
stands and cork oak Quercus suber montado wood-
land jointly represent 72% of the forested area and
are the most economically important species in Por-
tugal (ICNF 2013). Although 6.0 Mha are potentially
suited for forest, part of this area is occupied by
shrubland (ICNF 2013). Grasslands are relevant in
the southern half of the country and, essentially,
alternate in the landscape with evergreen oak wood-
lands. Portuguese forests have been subjected to
anthropogenic influences over the last millennia,
which has resulted in a significant replacement of
oak-dominated native forests by agriculture, shrub-
land and forest plantations (Reboredo & Pais 2014).

Portuguese forests are usually exposed to warm
and dry periods as a result of the Mediterranean-type
climate, particularly during summers. The effects of
recent-past temperature rise and rainfall reduction
have been observed in southern Portugal, an area
highly susceptible to desertification and one of the
most vulnerable regions worldwide (Vicente-Serrano
et al. 2012, Mühlbauer et al. 2016). In fact, Portu -
guese forests are expected to be severely affected by
climate change owing to the projected warming and
drying trends, which are expected to favour non-for-
est vegetation types (Costa et al. 2012, 2017, Andrade
et al. 2014). As future projections show increases in
both droughts and extreme temperatures, under-
standing the patterns of mortality and plant res -
ponses to severe drought is of great relevance to
resource managers (Andrade et al. 2014, Assal et al.
2016).

Previous studies have analyzed the relationships
between climatic variables and either vegetation
greenness (Gonsamo et al. 2016) or SPEI (Vicente-
Serrano et al. 2013). Nonetheless, the climate-driven
variability of forest vegetation greenness has not yet
been assessed in Portugal. Given the strong sensitivity
of the Portuguese forestry system to drought and air
temperatures, and the climate change projected for
the next decades, the assessment of these connections
is of foremost relevance. In the present study, the cli-
mate-driven variability of vegetation greenness was
assessed in Portugal over the time period of 2000−
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2014. Owing to the large diversity of land-use in Por-
tugal, the study individualized the different main veg-
etation types, which provided important in formation
regarding response heterogeneity through out the
country. Our main objectives were 4-fold: (1) to identi -
fy the mean vegetation greenness conditions over
mainland Portugal and associated trends; (2) to iden -
tify temporal and spatial corre lations between drought/
air temperatures (SPEI/ minimum and ma ximum tem-
peratures) and vegetation greenness (NDVI); (3) to
analyse these associations separately for each vegeta-
tion type in Portugal; and (4) to develop corresponding
type-specific models for predicting NDVI.

2.  MATERIALS AND METHODS

2.1.  Vegetation indices

A NDVI dataset was used to evaluate vegetation
greenness, based on measurements taken by the
Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard the National Aeronautics and
Space Administration (NASA) Terra satellite. The
15 yr MODIS-derived NDVI data (MOD13Q1, Collec-
tion 5), tiles h17v04 and h17v05, were extracted from
the NASA Land Processes Distributed Active Archive
Center (LP DAAC; https://lpdaac.usgs.gov/dataset_
discovery/modis/modis_products_table/mod13q1).
These data consist of 16 d composites at near 250 m
spatial resolution (231.75 meter pixel size) covering
the study area during the period of 2000−2014.
Monthly NDVI values were computed and re-pro-
jected from the original sinusoidal grid onto the UTM-
WGS84 reference grid. NDVI dimensionless values
range from −1 to 1. Overall, values >0.1 indicate the
level of greenness and intensity of vegetation. Values
be tween0and0.1arecommonlycharacteristicof rocks
or bare soil, whereas negative values may indicate
clouds, rain or snow (Holm et al. 1987). Low values of
NDVI (typically <0.4) do not necessarily mean a lack of
vegetation, since e.g. deciduous forests may have very
low greenness during winter (Roderick et al. 1996).

2.2.  Vegetation types in Portugal

The COS2007 land use and land cover dataset for
mainland Portugal (Caetano et al. 2009) was used for
analyzing the spatial distribution of the main non-
agricultural vegetation types (Source: Direção-Geral
do Território, http://mapas.dgterritorio.pt/geoportal/
catalogo.html). The third level of COS2007 was used

for grassland, shrubland, deciduous and evergreen
forest vegetation types, while the fifth level was con-
sidered to differentiate holm and cork oak vegetation
types. The digital land use and land cover dataset for
2007 is suitable for our study as it corresponds to the
middle of the study period. This data set has a mini-
mum mappable area of 1.0 ha, positional accuracy of
≤5.5 m and thematic accuracy of 85%, and was pro-
duced from orthophotomaps with a spatial resolution
of 0.5 m. The spatial distributions of the different veg-
etation types were obtained from COS2007. For this
purpose, the individual polygons of a given vegeta-
tion type were used for the analysis. The geographical
coordinate system used was PT-TM06/ ETRS89.

Fig. 1 shows the spatial distribution of the 6 selec -
ted vegetation types in Portugal: grasslands, holm
oak, cork oak, shrubland, deciduous forests and
other evergreen forests. Deciduous and evergreen
forests (mostly pines and eucalypts), as well as shrub-
lands are more conspicuous in the north of the coun-
try, particularly in its inner north-central regions,
whereas grassy oak woodlands prevail in its southern
half (Fig. 1). Differences in physiognomy, phenology
and stand density, as determined by land manage-
ment and environmental limitations, potentially in -
fluence the NDVI and justify a separate analysis for
each type. NDVI and SPEI values were extracted for
the points corresponding to each type separately.
The resulting data were then used for the vegetation-
type specific analysis.

2.3.  Climatic indices

Regarding droughts, SPEI data were retrieved
from the Global SPEI database v.2.4 (http://sac. csic.
es/spei/database.html; Beguería et al. 2010), for the
period of 2000−2014 (15 yr) and within a sector that
comprises mainland Portugal (36°−43° N, 5°−11° W).
Data is available over a grid of 0.5° latitude × 0.5° lon-
gitude. For the SPEI calculation, the differences be -
tween precipitation and potential evapotranspiration
were calculated on a monthly basis, providing a sim-
ple measure of monthly water balance. In this data
set, potential evapotranspiration was estimated by
the Penman-Monteith equation. As the difference
time series was also standardized (to zero mean and
unit variance) using a 3 parameter log-logistic distri-
bution, it can be compared with other SPEI values in
time and space. A SPEI = 0 indicates a cumulative
probability of 50% in the difference time series.
Although SPEI values for different timescales were
retrieved, only the 1 mo (SPEI-1), 3 mo (SPEI-3) and
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6 mo (SPEI-6) timescales were selected. Further in -
formation on the SPEI dataset can be found in
Beguería et al. (2014). In fact, SPEI-1, SPEI-3 and
SPEI-6 are commonly used for assessing drought
impacts on agroforestry systems, while SPEI-9 and
SPEI-12 (or even higher timescales) are mostly ap -
plied to hydrological systems (Meresa et al. 2016).

In order to assess the likely influence of air temper-
atures on NDVI, monthly means of maximum (TX)

and minimum (TN) temperatures were calculated
from the E-OBS gridded daily TX and TN (Haylock et
al. 2008). Data is available on a 0.25° latitude × 0.25°
longitude grid (~25 km spatial resolution) and were
retrieved for the period of 1999−2014 (1999 was used
for estimating lagged temperatures in 2000) and
within a sector that covers mainland Portugal. The
1 mo, 3 mo and 6 mo timescales (lags) for both TX
and TN were then computed.
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Fig. 1. Spatial distribution of the selected vegetation types over mainland Portugal: grassland, holm oak and cork oak, shrub-
land, deciduous forests and other evergreen forests. Black shading represents the respective vegetation cover. Source: 

COS2007 (Caetano et al. 2009) (Geographic coordinate system: ETRS89)
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2.4.  NDVI modelling

In order to test the potential use of SPEI/TX/TN in
modelling NDVI, point-by-point Pearson correlation
coefficient patterns between NDVI and SPEI/TX/TN
were used to assess their co-variability on the space
domain. Cross-wavelet spectral analysis was also
applied for identifying non-stationarity in their co-
variability on the time domain (Grinsted et al. 2004).
A set of potential predictors was then defined for the
3 variables (SPEI, TX and TN) at timescales from 1 to
6 mo, being e.g. SPEI-x, the x-lagged average of
SPEI. Monthly anomalies with respect to the corre-
sponding monthly climate-means for the full period
(2000−2014) were computed for NDVI and for all pre-
dictors, thus removing seasonality from the analysis.

The modelling approach was applied to each vege-
tation type separately so as to highlight different
responses to climate variables, i.e. the NDVI time
series for each vegetation type over Portugal was
retrieved and modelled. Stepwise multivariate linear
regressions were applied, with robust fitting using
bi-square weighting. As the NDVI time series length
was not long enough (15 yr) for defining the conven-
tional training/testing periods for each model, a
leave-one-out (1 full year) cross-validation analysis
was carried out to avoid model overfitting. The nor-
mal distribution and independency of residuals were
checked using respectively the Lilliefors and Durbin-
Watson tests. In order to mitigate the inability of
regression models to replicate the observed variance,
a multiplicative scaling factor was applied to the
modelled time series, i.e. the ratio between observed
and modelled time series variance. Lastly, for each
vegetation type, the mean seasonal cycle (seasonal
component) was added to the corresponding esti-
mated NDVI anomalies, obtained from the multivari-
ate linear regression, so that the final modelled
monthly NDVI values were recovered. The model
performances were assessed using the following
measures: Fisher’s test measure (F ), R-squared value
(R2), R-squared value after leave-one-out cross-
 validation (R2

cv), difference between estimated and
observed averages (BIAS), mean absolute error
(MAE) and root-mean squared error (RMSE).

3.  RESULTS AND DISCUSSION

3.1.  NDVI versus climatic indices

The NDVI annual mean pattern shows that the
northern half of Portugal, apart from some innermost

regions, clearly has higher greenness than the south
(Fig. 2a), depicting a strong southeast−northwest
gradient as the Mediterranean influences are gradu-
ally mitigated by the Atlantic influences towards the
northwest. The effect of the largest urban areas, bare
rock or snow areas and artificial water surfaces
(dams) are also clearly displayed (NDVI < 0.2).

However, this general pattern has been changing
through the years, mostly owing to both land-use
changes and wildfires. The NDVI trends highlight
that most of the western northern-central regions of
the country exhibit decreasing greenness (Fig. 2b),
whereas NDVI has experienced slight increases in
the inner north and south of the country. In the first
case, a very densely populated area, forest replace-
ment by agriculture, wildfire incidence and urban-
ization might have played an important role in the
NDVI lowering. In the second case, gradual affore -
station and abandonment of some agricultural areas,
subsequently encroached with woody vegetation or
converted to shrubland might explain the NDVI
increase (Ogaya et al. 2015). It was also possible to
identify localized areas with strong positive (dark
blue) or negative (orange) trends (Fig. 2b). The
strongest negative trends can be due to different fac-
tors, namely large wildfires at the end of the ana-
lyzed period (2000−2014), large water surfaces from
new dams (e.g. Alqueva in the southeast) and forest
harvested because of the pine wilt nematode (in the
southwest). The strongest positive trends (e.g. in cen-
tral Portugal) result from vegetation recovery after
the extremely large fires of 2003 and 2005.

The NDVI intra-annual variability is quite strong
owing to the prevailing Mediterranean conditions,
with mild-wet winters and warm-dry summers,
which can be illustrated by the January and August
NDVI mean patterns (Fig. 2c,d). These maps high-
light that NDVI is greatly influenced by precipitation
(and soil water availability), showing a relatively
homogeneous pattern in January with relatively high
NDVI values, and a highly heterogeneous pattern in
August. Summertime NDVI is typically much lower
than wintertime NDVI. The south and inner regions
reveal quite strong intra-annual variability, particu-
larly in the south, where high greenness in winter is
replaced by very low greenness in summer. The
northwest presents much lower intra-annual vari-
ability.

The NDVI intra-annual variability (seasonality)
varies significantly among different vegetation types,
despite the important within-class ranges (Fig. 3).
Seasonal patterns in the NDVI are evident for grass-
lands, holm oak and cork oak (winter maximum and
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Fig. 2. Normalized Difference Vegetation Index (NDVI) patterns (dimensionless) over mainland Portugal for the period of
2000−2014: (a) annual mean, (b) linear trend of annual mean, (c) January mean, and (d) August mean. Geographic coordinate 

system: WGS 1984
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summer minimum), but are much weaker for shrub-
land and deciduous or evergreen forests. For grass-
lands, this strong seasonality is explained by the
archetypal annual growing cycle of herbaceous spe-
cies in Mediterranean ecosystems, with vigorous
growth in winter/spring under wet and mild condi-
tions, and subsequent curing in summer. Since holm
oak and cork oak are generally low-density wood-
lands, canopy density is low enough to allow wide-

spread grass coverage. Hence, their corresponding
NDVI seasonality mainly reflects the growing cycle
of grasses — particularly for holm oak, as it typically
grows in the driest regions of southern Portugal, with
the strongest winter−summer contrast (Figs. 1 & 2).

Shrublands, deciduous forests and other evergreen
forests are also characterized by a wintertime maxi-
mum and a summertime minimum, but their intra-an-
nual variability is much less apparent. Mediterra nean
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forest species are evergreen, with only small changes
due to foliage renewal, and are sclerophylous and
adapted to drought, thus explaining the weak sea-
sonality. Although deciduous forest species are leaf-
less during part of the dormant season, the rapid
growth of understory herbaceous species in winter/
spring tends to offset this effect and maintains green-
ness, explaining minimal NDVI changes (Figs. 2 & 3).
A joint effect resulting from the herbaceous coverage
plus foliage renewal of deciduous trees occurs in
May, underlying the second peak of NDVI.

To assess the relevance of water availability in the
previously described NDVI intra-annual variability,
monthly correlation coefficients between the spatial
means of NDVI and SPEI are presented for each type
separately. For the 6 types, the highest correlations
were found between NDVI and SPEI-6, while SPEI-1
showed much lower correlations (Fig. 4). The SPEI-1
correlations highlighted a strong sensitivity of NDVI
to SPEI in 2 well-defined periods: February−March
and September. This suggests that soil water status in
early spring and by the end of summer tends to play
a key role in vegetation greenness. As these are tran-
sitional periods between the wet and dry seasons, a
delay or advancement in the dry/wet season can
have significant implications for vegetation green-
ness. As the transition from the wet to the dry season
(spring) is much slower than from the dry to the wet
season (late summer/early autumn), correlations are
stronger and spikier in September than in Febru-
ary−March. As the SPEI timescale increases, the cor-
relations tend to increase — apart from September,
when SPEI-6 tends to reveal lower correlations than
SPEI-1 or SEPI-3. The inclusion of longer periods in
SPEI calculations gradually overrides intra-annual
differences in the sensitivity of NDVI to SPEI, justify-
ing the general increase and evenness of correlations
throughout the year.

Despite the above-described intra-annual variabil-
ity, the inter-annual variability in both indices can be
illustrated by the highly contrasting conditions for
September 2005 and 2010 (Fig. 5), which were ex -
tremely dry and wet years, respectively (Costa et al.
2012, Andrade et al. 2014). As stated above, Septem-
ber’s NDVI is the most sensitive to soil water status.
The NDVI spatial pattern for September 2005
(Fig. 5a) reveals relatively low NDVI values (<0.3)
throughout the country, particularly in the southern
and inner regions, while only a few areas in northern
and central Portugal present NDVI > 0.6. For Sep-
tember 2010 (Fig. 5c), however, the NDVI spatial pat-
tern is remarkably different from 2005, showing
much greater values of NDVI (>0.6) over large areas

of northern and central Portugal, with the exception
of the innermost regions and in the southwest. Yet
low NDVI values (<0.3) were also found over most of
southern and inner Portugal. There was also a clear
association between NDVI and SPEI-6 for both
months (positively correlated), i.e. low/high NDVI vs.
low/high SPEI-6. SPEI-6 was lower in September
2005, revealing dry conditions throughout the coun-
try, particularly in southern and central Portugal
(Fig. 5c). Conversely, September 2010 presented
lower dryness and even humid conditions in some
northeastern areas (Fig. 5d).

The monthly anomalies of NDVI (baseline of 2000−
2014) were jointly represented with the correspon-
ding anomalies for SPEI-1, SPEI-3 or SPEI-6 so as to
determine relationships between the indices (Fig. 6).
The connection between SPEI-1 and NDVI was not
clear on a monthly basis (Fig. 6a), but a noteworthy
association can be found for SPEI-3 (Fig. 6b) and
SPEI-6 (Fig. 6c). In effect, the area-mean SPEI-6
(2000−2014, 180 months), computed over mainland
Portugal, has the strongest relationship with the cor-
responding area-mean NDVI (r = 0.60), followed by
SPEI-3 (r = 0.55) and SPEI-1 (r = 0.26) (see Fig. S1 in
the Supplement at www. int-res. com/ articles/ suppl/
c076 p095 _ supp. pdf). These correspondences were
weaker for higher SPEI timescales (data not shown).
This is in clear agreement with the increasing corre-
lation coefficient as the SPEI timescale increases
from 1 to 6 mo, highlighting that vegetation typically
integrates the signal of precipitation variability into a
lagged and low-pass filtered response. This outcome
is also corroborated by previous studies that showed
that 6 mo SPEI is optimally correlated with land bio-
mes over Portugal (Vicente-Serrano et al. 2013). The
corresponding chronograms for SPEI-6 and for each
type separately showed similar behaviour (Fig. S2).
Therefore, the inter-annual variability in NDVI over
Portugal is better represented by SPEI-6.

Despite the general agreement between NDVI and
SPEI-6, it was also possible to identify periods where
SPEI-6 influences NDVI more clearly. The cross-
wavelet spectrum between the monthly anomalies of
NDVI and of SPEI-6 over the same time period dis-
plays periods with primarily in-phase relationships
(forward arrows in Fig. 6d). In this spectrum, thick
black lines outline statistically significant co-variabil-
ity at the 95% confidence level, while the 5% signif-
icance level against red noise is shown as a thick con-
tour. Furthermore, the most significant and persistent
associations were found in the low frequencies (peri-
ods >12 mo), particularly in the second half of the
time period, when there is a much clearer corres -
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Fig. 4. Radar plots of the monthly correlation coefficients between the Normalized Difference Vegetation Index (NDVI) and
1 mo (SPEI-1), 3 mo (SPEI-3) and 6 mo (SPEI-6) Standardized Precipitation Evapotranspiration Index (SPEI) for the period 

of 2000−2014 and for each selected vegetation type (see legends for details)
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Fig. 5. (a) Normalized Difference Vegetation Index (NDVI) pattern for September 2005 and (b) corresponding 6 mo Standardized
Precipitation Evapotranspiration Index (SPEI-6) pattern; (c,d) same as in (a,b) but for September 2010. Geographic coordinate 

system: WGS 1984
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Fig. 6. Chronograms (2000−2014) of the monthly anomalies (departures from the corresponding monthly means for the full
 period) of the Normalized Difference Vegetation Index (NDVI, black lines) and of the Standardized Precipitation Evapo -
transpiration Index (a) 1 mo (SPEI-1), (b) 3 mo (SPEI-3) and (c) 6 mo (SPEI-6) timescales (blue bars for positive and red bars for
negative values). (d) Cross-wavelet spectrum between the monthly anomalies of NDVI and of SPEI-6 for the same time period.
Thick black lines outline statistically significant co-variability at the 95% confidence level (5% significance level against red
noise is shown as a thick contour). The cone of influence is also represented by lighter shading. The relative phase relationship 

is shown as arrows (with in-phase pointing right, anti-phase pointing left)
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pondence between drought/wet periods and NDVI
ano malies (i.e. departures from its corresponding
month ly means computed over the full period of
2000−2014). Besides the temporal correlation analy-
sis, the spatial correlation between NDVI and SPEI-6
was also analyzed (Fig. S3). Apart from January,
April and September, remarkably lower correlations
were found over northwestern Portugal, which can
be explained by regional vegetation features (Fig. 1)
and by their different sensitivities to water availabil-
ity. In effect, dense evergreen and deciduous forests
are mostly located in the northwest and tend to be
less sensitive to precipitation regime seasonality
(Fig. 3). Therefore, SPEI is expected to be an impor-
tant predictor of NDVI anomalies in Portugal, partic-
ularly at the longer timescales. A similar analysis was
also carried out for TX and TN, but showed much
weaker associations between the NDVI anomalies
and these variables (Figs. S4 & S5). However, some
correlations at 3 and 6 mo timescales are still appar-
ent, thus also being potential predictors of NDVI.

The NDVI can be influenced by non-climatic fac-
tors; namely, by wildfires. However, we found no
clear association between the evolution of NDVI
anomalies and burnt area in Portugal, obtained from
Portuguese Forest Service (ICNF) official records
(http://www2.icnf.pt/portal/florestas/dfci/inc/estat-
sgif#tot) (Fig. S6). The burnt area attained a maxi-
mum of 3.5% of the total area of Portugal, illustrating
that the influence of wildfires in areal-mean NDVI is
marginal. Therefore, wildfire effects on the NDVI are
neglectful beyond the local scale.

3.2.  NDVI models

Although the time series of the NDVI anomalies
(departures from the mean seasonal cycle) for each
vegetation class are highly correlated, some impor-

tant differences can still be found; namely, the
stronger variability and magnitude of the anomalies
in grasslands, holm and cork oaks compared to de -
ciduous forests and other evergreen forests (Fig. S7).
Therefore, 6 type-specific NDVI models, one for each
vegetation class, were developed using SPEI, TX and
TN as potential regressors (defined for timescales
from 1−6 mo). These models are statistically signifi-
cant (p < 0.01) according to Fisher’s test (Table 1),
and the residuals are normally distributed and in -
dependent according to the Lilliefors and Durbin-
Watson tests (p < 0.05). The resulting estimated time
series accounted for 37−49% of the observed vari-
ance (R2 values in Table 1). However, after cross-val-
idation, as expected, these values lower to 30−37%,
i.e. the model explains about one-third of the with-
held variance of the seasonality-removed monthly
NDVI anomalies.

The scatterplots between observed and modelled
NDVI highlight the different model performances
(Fig. 7, left panels). Despite the post-processing scal-
ing of the modelled time series, there is still some
underestimation of the variability in the modelled
time series (regression slopes <1), which is a common
limitation of regression analysis. Furthermore, the
corresponding chronograms depict an overall agree-
ment between estimated and observed monthly
NDVI (Fig. 7, middle panels). However, the models
show noteworthy deviations, e.g. on the estimation of
NDVI for 2010 (anomalously wet conditions; Fig. 6),
overestimating NDVI. Modelling extreme events of -
ten requires specific models for these events, which
is out of the scope of the present study owing to the
insufficient sample size for such a study (15 yr).

For all vegetation classes, no biases between ob -
served and modelled NDVI were found (Table 1).
The corresponding MAE varied from 0.02−0.04,
while the RMSE ranged from 0.03−0.05 (Table 1). For
each model, the correlation coefficients between
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Predictors F (p-value) R2 R2
cv BIAS MAE RMSE

Grassland SPEI-3, SPEI-6, TX-6 47.59 (<0.01) 0.44 0.34 0.00 0.04 0.05
Holm oak SPEI-3, SPEI-6, TX-6, TN-3 32.84 (<0.01) 0.42 0.31 0.00 0.04 0.05
Cork oak SPEI-3, SPEI-6, TX-6 57.68 (<0.01) 0.49 0.37 0.00 0.03 0.04
Shrubland SPEI-1, SPEI-3, SPEI-6 44.31 (<0.01) 0.42 0.36 0.00 0.03 0.03
Deciduous forest SPEI-1, SPEI-3, SPEI-6, TX-6 26.38 (<0.01) 0.37 0.30 0.00 0.02 0.03
Evergreen forest SPEI-3, SPEI-6, TX-6 38.83 (<0.01) 0.39 0.31 0.00 0.02 0.03

Table 1. Stepwise-selected predictors (Standardized Precipitation Evapotranspiration Index [SPEI], maximum [TX] and
 minimum [TN] temperatures at 3 and 6 mo timescales) and corresponding performance parameters of the multivariate linear
 regression modelling of Normalized Difference Vegetation Index (NDVI) monthly anomalies (dependent variable): Fisher’s
test measure (F ), R-squared value (R2), R-squared value after leave-one-out cross-validation (R2

cv), bias between estimated 
and observed averages (BIAS), mean absolute error (MAE) and root-mean squared error (RMSE)



Costa et al.: Precipitation vs. vegetation greenness over Portugal

NDVI and the stepwise-selected regressors con-
firmed that SPEI largely controls NDVI variability,
particularly at the 6 mo scale (correlation coefficients
0.55−0.65 for SPEI-6 in all vegetation types; Fig. 7,
right panels). Nevertheless, TX-6 also presented sig-
nificant negative correlations with observed NDVI

for all classes except shrublands (correlation coeffi-
cients from −0.25 to −0.15). In the latter case, SPEI is
an important factor for 1, 3 and 6 mo timescales and
no significant association with temperatures was
found, as in the global empirical model of Del Grosso
et al. (2008) for net primary production. TN-3 influ-
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Fig. 7. Regression on the Normalized Difference Vegetation Index (NDVI) anomalies: (a,d,g,j,m,p) scatterplots of observed vs.
modelled NDVI anomalies for each outlined vegetation type, along with the respective linear regression lines; (b,e,h,k,n,q)
chronograms of the observed and modelled NDVI anomalies over the period of 2000−2014 (cf. legends for details). The corre-
sponding regression equations with the multiplicative factors are also outlined. (c,f,i,l,o,r) Bar charts of the Pearson product-
moment correlation coefficients between the observed NDVI anomalies and the stepwise-selected predictors over the period 

of 2000−2014 and for each vegetation type (continued on next page)
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ences NDVI in the case of holm oak (correlation co -
efficient of 0.33). Hence, monthly greenness fluctua-
tions with respect to the seasonal cycle depend pri-
marily on SPEI-6, but TX-6 and TN-3 may have a
moderate influence on greenness of some specific
vegetation classes. Therefore, anomalously high
SPEI generally favours greenness (higher water
availability leads to higher NDVI), as well as moder-
ate air temperatures (lower TX and higher TN).
These results are indeed supported by previous stud-
ies (De Dato et al. 2008, Del Grosso et al. 2008, Fang
et al. 2016). The diurnal temperature range at the dif-

ferent timescales was also tested based on previous
studies (Scheitlin 2013, Hatfield & Prueger 2015), but
no statistically significant improvements in the mod-
els were achieved.

For each vegetation type, the NDVI values can be
recovered by adding the corresponding mean sea-
sonal cycle to the predicted anomalies. Therefore, as
a final step of the NDVI modelling, the mean sea-
sonal cycle (second model component) of each vege-
tation type was added to the corresponding NDVI
cross-validated monthly anomalies in Fig. 7. The
final results are displayed in Fig. 8 (multivariate lin-

108

P
ea

rs
on

 c
oe

ffi
ci

en
t

Shrubland

Deciduous forests

Other evergreen forests

j k l

m n o

p q r

Fig. 7 (continued)



Costa et al.: Precipitation vs. vegetation greenness over Portugal

ear regression + mean seasonal cycle). The model
performances increased significantly when the sea-
sonal cycle was incorporated (Table 2), as it is a very
strong component of the NDVI monthly variability.
Overall, the final NDVI model performances were
very satisfactory at simulating the observed monthly
variability of NDVI, explaining 50−88% of the ob -
served variability, with relative RMSE of 3−7%

(Table 2). The BIAS was zero for every type, while
the MAE varied from 0.02−0.03 (Table 2). As ex -
pected, this improvement is particularly noteworthy
for the vegetation types with stronger seasonality
(Fig. 3), such as grasslands (88%), holm (88%) or
cork (84%) oaks, while for shrublands (71%), deci -
duous forests (50%) and other evergreen forests
(74%), with weaker seasonality, the improvements in
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Fig. 8. Final Normalized Difference Vegetation Index (NDVI) models: (a,c,e,g,i,k) scatterplots of observed vs. modelled NDVI
values for each outlined vegetation type, along with the respective linear regression lines; and (b,d,f,h,j,l) chronograms of the 

observed and modelled NDVI over the period of 2000−2014 (cf. legends for details) (continued on next page)
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the model performances are more modest. In fact, the
seasonal cycle has higher contributions to the ex -
plained variance than the climatic anomalies (regres-
sion models) in the former 3 types, but has similar
contributions in the latter 3 types. For deciduous
forests, the seasonal cycle has indeed lower contribu-
tion than the climatic anomalies.

By applying the previous models, it is possible to
predict, with relatively high accuracy, vegetation

greenness in Portugal up to 3 mo (1 mo) in advance
for grasslands, holm or cork oaks and other ever-
green forests (shrublands and deciduous forests).
Furthermore, these models enable predicting the
NDVI in future conditions, including under climate
change scenarios, which should be done in a follow-
up study. Predicting NDVI is useful e.g. for forest and
fire management; namely, to anticipate and prepare
for particularly severe and prolonged fire seasons.
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An evident example is the abnormally high burnt
area in 2005, which was preceded by, and coincided
with, the strongest and longest drought during the
study period (cf. Figs. 6 & S6).

The ability to predict the NDVI is also pertinent in
the face of on-going and future warming, with sub-
stantial increase of dry and arid lands in the Iberian
Peninsula indicating changes in vegetation cover
(Vicente-Serrano et al. 2012). As such, given the
projected warming and decrease in precipitation,
particularly during spring and summer (Fraga et al.
2016, Santos et al. 2016, Costa et al. 2017), as well
as the projected increases in the occurrence of ex -
treme droughts (Costa et al. 2012) such as the afore-
mentioned 2005 drought in Portugal, an enhance-
ment of these negative impacts is envisioned.
Furthermore, intensified human-related activities,
such as overgrazing, cultivation of steep slopes and
development of intensive crops may also decrease
vegetation cover, consequently influencing soil fer-
tility and triggering or intensifying vegetation de -
gradation processes (Vicente-Serrano et al. 2012).
Conversely, many regions are currently undergoing
declining agriculture and forest use, which may
lead to natural vegetation recovery. Nonetheless,
successful recovery will be influenced by several
environmental and socioeconomic limitations, such
as the degree of prior agricultural intensity and the
land economic interest.

4.  CONCLUSIONS

Over the study time period, a general increasing
trend in NDVI values over southern Portugal and a
decrease along coastal northern areas were found.
However, despite these long-term trends, landscape

greenness in Portugal is largely governed by
 climatic factors, especially the precipitation re -
gime. This dependency is particularly apparent
in the more  typically Mediterranean regions of
southern/inner Portugal. Furthermore, the iden-
tified regional discrepancies are mostly at tri -
butable to different vegetation types. Therefore,
in the present study, these associations were
analyzed using vegetation-type specific analy-
ses, which helped explaining spatial and tempo-
ral (intra- and inter-annual) variability of NDVI
in Portugal in response to different time scales of
precipitation and temperature vari ability. In fact,
despite the key role played by precipitation/soil
water variability in monthly anoma lies of vegeta-
tion greenness, maximum and, to a much lower

extent, minimum temperatures are also relevant
forcing factors. In effect, several previous studies
have identified clear connections between NDVI and
land surface/near-surface temperatures in different
regions worldwide, though these relationships are
often modulated by precipitation (e.g. Karnieli et al.
2010). Other studies also suggest that medium to
long-term water stress plays an important role on
NDVI variability (e.g. Gouveia et al. 2009, Ferreira et
al. 2012), which is also in accordance with the high
relevance of the 3−6 mo SPEI timescales the present
study  models.

Understanding the vegetation greenness versus
climatic variability relationship is of foremost rele-
vance in land monitoring and management (e.g. crop
phenology and development, forest degradation/
health assessments and wildfires), water resources
management (e.g. water stress assessments), ecosys-
tem monitoring and landscape planning, all of which
are pertinent under changing climates and environ-
ments. These relationships may provide clues about
the ecosystem impacts of climate change, allowing
developing guidelines to improve forest and water
resources management.
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R2
cv ΔR2

cv BIAS MAE RMSE RMSE (%)

Grassland 0.88 +0.54 0.00 0.03 0.03 7
Holm oak 0.88 +0.57 0.00 0.03 0.04 7
Cork oak 0.84 +0.47 0.00 0.02 0.03 5
Shrubland 0.71 +0.35 0.00 0.02 0.02 4
Deciduous forest 0.50 +0.20 0.00 0.02 0.02 4
Evergreen forest 0.74 +0.43 0.00 0.02 0.02 3

Table 2. Performance parameters of the final models (multivariate
linear regression + mean seasonal cycle) of monthly Normalized
Difference Vegetation Index (NDVI): R-squared value after
leave- one-out cross-validation (R2

cv), the change in R2
cv after

adding the mean seasonal cycle (ΔR2
cv), bias between estimated

and observed averages (BIAS), mean absolute error (MAE), root-
mean squared error (RMSE) and relative RMSE (%) of observed 

NDVI average
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