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1.  INTRODUCTION

Cities differ from rural areas in many ways (e.g.
extensive impervious surfaces and intensive human
activities) and substantially affect the local climate,
resulting in an urban heat island (UHI) effect (Heinl
et al. 2015). With many regions of the world undergo-
ing rapid urbanization, urbanization biases in surface
air temperature (SAT) series have become an issue
when meteorological stations located in or close to
cities are used to estimate regional temperature
change. Previous studies have shown that the effects

of urbanization on SAT trends vary at regional and
global scales (Jones et al. 1990, Portman 1993, Peter-
son & Vose 1997, Hansen et al. 2001, Peterson 2003,
Ren et al. 2008, 2015, Yang et al. 2013, Wang et al.
2015). These divergences can be attributed to differ-
ences in study areas, environmental factors, data
used, study periods, and especially analysis methods
(Jones et al. 1990, Peterson 2003, Ren & Ren 2011, Y.
Li et al. 2013, H. Li et al. 2018a).

The methods for estimating urbanization effects
have diversified in recent years and normally
include the ‘observation data minus reanalysis data
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(OMR)’ method (Kalnay & Cai 2003), mathematical
models based on some parameters (e.g. population)
(Chung et al. 2004, He et al. 2013), and the ‘urban
minus rural (UMR)’ method (Hansen et al. 2001,
Peterson 2003, Chen et al. 2006). It has been
acknow ledged that each method has its limitations,
and different methods may give different results.
For example, most satellite data and reanalysis
products have relatively short time series for UHI
studies. In addition, although reanalysis data are
not sensitive to urbanization or land-use effects
(Kalnay & Cai 2003), some factors, such as changes
in cloud cover and surface moisture, have been ex -
cluded from the climate models used in the data
assimilation, which may bias the UHI assessment
(Trenberth 2004). The parameter-based mathemati-
cal method can only be applied if there are enough
stations with varying degrees of urbanization to
represent regional averages (Karl et al. 1988). In
general, the UMR method is one of the most popular
and reliable methods and can be used at various
scales (Peterson 2003, Li et al. 2004b, Ren et al.
2008, Wang et al. 2015).

Classifying meteorological stations into different
categories (e.g. urban, suburban, and rural) is a key
procedure in the UMR method (Ren & Ren 2011). In
general, the nearest rural stations are directly se -
lected without specific criteria in local-scale studies
(Tayanç & Toros 1997, Xiong et al. 2010). Regional
studies often employ population data, large-scale
maps, energy consumption, or land use/land cover
data to categorize stations, but the thresholds are
inconsistent or contentious (Portman 1993, Li et al.
2004b, Hua et al. 2008, Mohsin & Gough 2012, Li et
al. 2013). A few previous studies even adopted a
comprehensive procedure considering several of the
factors mentioned above to investigate urbanization
biases (e.g. Zhang et al. 2010). However, their pro-
cesses required large amounts of metadata and sev-
eral thresholds for selecting reference stations (Ren
et al. 2015). In another approach, classification is con-
ducted by identifying station locations in isothermal
maps based on SAT (Winkler et al. 1981), but this
method is more applicable for local-scale studies
because of the complicated process of manual identi-
fication (Ren & Ren 2011). Moreover, nighttime sta-
ble light (NSL) data have been used to categorize sta-
tions (Owen et al. 1998, Hansen et al. 2001).
Al though this method is limited in its comparability
among different countries, cultures, and economic
regions (Liu et al. 2012), it is a simpler and faster
method than the other above-mentioned methods.
Therefore, if optimal thresholds for extracting urban

areas from different regions can be found, NSL data
can be well applied at large scales.

Another important issue in quantifying the impacts
of UHI is related to city size (Li et al. 2018b) and sta-
tion location (Jin et al. 2015). Population size (Karl et
al. 1988) and urban area (Zhou et al. 2014) are posi-
tively correlated with the magnitude of the UHI
effect. Moreover, the impact of UHI on temperature
de creases with increasing distance from the station
to the city center (Khandelwal et al. 2011, Heldens et
al. 2013). Previous studies often considered the sta-
tion location using the threshold of a fixed distance,
and rarely quantified the gradual reductive impact of
UHI based on changes in distance (e.g. Yang et al.
2013). If we do not consider this impact, we might
select different rural stations, which would result in
the estimation of the urbanization bias deviating
from the real magnitude (Jones & Lister 2009, Ge et
al. 2013). For instance, using different rural stations,
Mohsin & Gough (2012) showed that the estimated
trends for the UHI intensity at the ‘Toronto down-
town’ station and the ‘Toronto Pearson’ station
ranged from 0.01 to 0.02°C decade−1 and from 0.03 to
0.035°C decade−1, respectively.

Here we aimed to properly describe urbanization
effects over China by considering urban areas and
station locations relative to urbanized areas with the
help of a new index, termed the extent of urban
impact (EUI). The EUI index is used to represent the
extent of the urban impact on meteorological sta-
tions for temperature observation. Compared with
previous indexes, such as surface imperviousness
(Li et al. 2018b), urban fraction (Li et al. 2017, Wang
et al. 2017), and population (Karl et al. 1988), EUI is
a more integrated index for reflecting the urban
impact and incorporates information of UHI inten-
sity and its impact on stations related to different
distances. Based on EUI, 569 stations in China were
classified into 3 categories: stations with little or no
urban impact (R stations), stations with low urban
impact (LU stations), and stations with high urban
impact (HU stations). Urbanization biases in SAT
series were calculated by analyzing the difference
in regional average SAT trends between R stations
and other station groups. The method described
here and its results can be used as a reference for
detecting urbanization effects in the observed SAT
trends over China. The rest of this paper is organ-
ized as follows. In Section 2, we describe the data
and methods used, and we analyze the results in
Section 3. In Section 4 we discuss several of the
important issues used for drawing our conclusions,
which are summarized in Section 5.
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2.  METHODS

2.1.  Temperature data and homogeneity
 adjustment

In this study, we selected 569 national basic/
reference surface stations located in mainland China
with temperature records from 1961−2012 (Fig. 1).
The SAT data, mainly including the China Homoge-
nized Historical Temperature (CHHT) (1961−2004)
dataset (Li et al. 2004a), were obtained from the
China Meteorological Data Service Center (http://
data. cma. cn/ en). The CHHT is a homogenized data-
set that has been adjusted for inhomogeneities
mainly relating to station relocation based on the
Easterling−Peterson technique (Easterling & Peter-
son 1995, Li et al. 2004a). In this study, we updated
the SAT series to include data up to 2012 by connect-
ing historical SAT records (2005−2012) to the CHHT
series (1961−2004) (Ren & Zhou 2014). Then, accord-
ing to the method proposed by Li et al. (2004a), the
connected SAT series of the stations that were relo-
cated after 2004 was adjusted for inhomogeneities.
After connection, rechecking, and adjustment, the

homogeneities and continuities of the SAT series dur-
ing 1961−2012 were comparatively reasonable. A
detailed explanation of this procedure is given in
Fig. A1 in the Appendix.

2.2.  Regionalization of the SAT series

A recent study suggested that surface UHI inten-
sity was affected by the inter-annual background cli-
mate variability (Yao et al. 2017). This implies that
urbanization effects on SAT trends may vary within a
large-scale region because of inter-annual tempera-
ture change. Therefore, to analyze the potential dif-
ference in urbanization effects among different
regions, we divided China into several sub-regions
based on the inter-annual temperature change of the
meteorological stations. Based on Li et al. (2004b),
rotated principal component analysis (RPCA) (Horel
1981) was applied to divide China into sub-regions
based on the annual mean temperature of all stations
from 1961−2012. Two main steps were taken. First,
principal component analysis (PCA) was used to re -
duce the variability in the 569 SAT series into a few
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Fig. 1. Distributions of the 5 sub-regions for the surface air temperature (SAT) series and the 569 meteorological stations over
China (S1−S5 indicate the first−fifth sub-regions, respectively). R, LU, and HU stations are stations with little or no urban impact, 

with low urban impact, and with high urban impact, respectively
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principal components (PCs), i.e. weighted linear com-
binations of the original variables. In this study, the
first 7 PCs (i.e. PC1−PC7) contained 90% of the cumu-
lative variance contribution, implying that they could
well explain the total variance of the original data
(Table 1). Second, the loadings of the 7 PCs were
used to conduct a varimax rotation, which could bet-
ter reflect the local difference of the original vari-
ables (Kaiser 1958, Li et al. 2004b). The rotated PC
(RPC) refers to a linear transformation of the initial
PCs (Horel 1981). After rotation, the variance contri-
butions of the first 5 RPCs (i.e. RPC1− RPC5) were
above 10%, with a cumulative variance contribution
of up to 86.15% (Table 1). Based on the rotated load-
ings of RPCs (loading values above 0.5), meteorolog-
ical stations with geographical contiguity were clas-
sified as belonging to the same sub-regions (Fig. 1).
The detailed calculations of the RPCA and the vari-
max method can be found in Kaiser (1958).

2.3.  Classification of meteorological stations

In this study, meteorological stations of China were
classified into 3 groups based on the EUI, which was
quantified by considering urban areas and the dis-
tance from urbanized area to station. The China City
Yearbook 2012, which contains the data of urban
built-up areas, was obtained from the National
Bureau of Statistics of China (www. stats. gov.
cn). In addition, the NSL data from the
Defense Meteorological Satellite Program’s
Operational Line-scan System (DMSP/OLS)
were obtained from the US National Geophys-
ical Data Center (NGDC) (https://ngdc.noaa.
gov/ eog/download.html). The digital number
(DN) value of each pixel was the average of
the visible-band DN values of lights from
cities, towns, and other sites with persistent
lighting. The values of NSL data range be -
tween 0 and 63, including background noise

with the value of 0 and lit pixels
with values of 1−63. With a resolu-
tion of 1 km, DMSP/OLS NSL data
have been frequently used to ex -
tract information about urban ex -
pansion at regio nal and global
scales (Imhoff et al. 1997, Liu et al.
2012). The empirical threshold-
based approach is one of the most
popular methods for the extraction
of urban areas (Jin et al. 2018).
However, because of the ‘diffuse

lighting’ phenomenon in densely populated areas
(Elvidge et al. 1999), the optimal thresholds of NSL
should be based on the regional economic or urban-
ization levels (Liu et al. 2012). For example, Liu et al.
(2012) extracted urban areas of 8 economic regions in
China in 2005, with different thresholds in the range
38−60 DN. Jin et al. (2018) extracted urban areas
with different thresholds in the range 35−55 for the
71 largest cities of China. Based on the data of urban
built-up areas, we first classified the cities and towns
into 3 groups (large, medium, and small cities). Then,
based on Jin et al. (2018), urban areas were extracted
with the different thresholds of NSL using ArcGIS
10.0 (Table 2).

Li et al. (2013) adopted a weighted ratio of effective
energy consumption pixels in 3 circular buffer zones
to reflect the impact of energy consumption on a
meteorological station. Similarly, urban impact on
stations can be represented by a weighted ratio of the
urban area near the station. Based on Li et al. (2013),
3 circular buffer areas with radii of 10, 20, and 30 km
at each station were drawn in ArcGIS 10.0. The areas
near the stations were then divided into 3 subzones
(Zones a, b, and c) (Fig. 2). Urban areas in the 3 sub-
zones were counted using ArcGIS 10.0 to quantify
the EUI. According to Jin et al. (2015), EUI is defined
as the extent of urban impact on meteorological sta-
tions for temperature observation, which can be cal-
culated by Eqs. (1) & (2):
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                                                         1         2         3         4         5         6         7

PC
Variance contributions (%)         65.12  9.93  5.65  3.09  2.36  2.19  1.66
Cumulative contributions (%)    65.12  75.05  80.70  83.79  86.15  88.34  90.00

RPC
Variance contributions (%)         23.55 17.25 16.68 16.12 12.55  2.79  1.06
Cumulative contributions (%)    23.55   40.8   57.48   73.6   86.15  88.94  90.00

Table 1. Variance contribution rates and cumulative variance contribution rates of 
the 7 principal components (PC); RPC: rotated principal component

Size category                Built-up area   Number of   Threshold of 
                                       of city (km2)         cities            NSL data

Large cities                          >100                 92                   55
Medium-size cities            50−100               106                   45
Small cities and towns         <50                 90                   35

Table 2. City size categories and the corresponding thresholds of
nighttime stable light (NSL) data in China for 2012. The different
thresholds of NSL data were determined based on the study of Jin et 

al. (2018) and are given as digital numbers
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(1)

(2)

where Sa, Sb, and Sc are the urban areas in Zones a,
b, and c, respectively, in km2; Ra, Rb, and Rc are the
radii of the circular buffer areas, namely the dis-
tances from the station to the boundary of Zones a, b,
and c, respectively (Ra = 10 km, Rb = 20 km, and Rc =
30 km); and K and K0 are the actual and maximum
values, respectively. K0 was calculated with Sa, Sb,
and Sc equaling the areas of Zones a, b, and c,
respectively.

To guarantee a sufficient number of reference sta-
tions, especially in East China, previous studies used
a relatively relaxed standard for station classification
(Li et al. 2004b, Ren et al. 2008, 2015). In general, the
thresholds of station classification were determined
by an empirical method. For example, Wang & Ge
(2012) selected those stations with the least urban
land-use expansion (<100 ha) as reference stations.
Similarly, the 569 meteorological stations were clas-
sified into 3 categories based on the empirical
method and the values of EUI: a station with little or
no urban impact (EUI < 1%, R station), a station with
low urban impact (1% ≤ EUI < 5%, LU station), and a
station with high urban impact (EUI ≥ 5%, HU sta-
tion). An R station is a rural or reference station with
negligible urban effects. LU and HU stations are
urban stations with urbanization effects. Owing to
the higher urbanization level and population density

in East China, we selected R stations with EUI < 2%
in Jilin, Liaoning, Hebei, Henan, Shandong, Anhui,
and Jiangsu provinces. The selection criterion of LU
stations in these provinces was 2% ≤ EUI < 5%.

2.4.  Estimation of temperature change and
 urbanization effects

Based on the annual mean SAT data of 569 sta-
tions, we first calculated the annual mean SAT anom-
alies for each station over the period 1961−2012. The
reference period used was 1971−2000. SAT anom-
alies of the stations within each 5° × 5° latitude−
longitude grid were then averaged to obtain the
mean SAT anomalies of the grids (Fig. 1). Finally, the
average SAT anomaly series based on each station
group were generated for the sub-regions and China
as a whole using the grid area as the weighting coef-
ficient (Jones & Hulme 1996). To ensure the unifor-
mity of station distribution, based on the study of Ren
& Zhou (2014), we only analyzed those grids includ-
ing at least 1 reference station (R station) and 1 urban
station (LU or HU station). Thus, 46 grids in the study
region were analyzed. The 5 grids that had only ref-
erence stations were all located along national
boundaries or in Southwest China.

Spatial and temporal variations in the annual mean
SAT over China during 1961−2012 were analyzed
based on the linear trends of SAT anomalies of 569
stations and the Kriging method (Holdaway 1996).
We assumed that the effects of urbanization on tem-
perature trends of R stations could be neglected.
Thus, the urbanization effects (ΔTrend) were calcu-
lated by analyzing the difference in regional average
temperature trends between R stations and other sta-
tion groups (i.e. LU, HU, and all national stations)
(Ren et al. 2008, Zhang et al. 2010, Zhou & Ren 2011).
TrendR, TrendLU, TrendHU, and TrendT indicate the
trends of the regional average SAT anomaly series
based on R, LU, HU, and all stations, respectively,
and were calculated by the least-squares method (Li
et al. 2004b). Based on Zhang et al. (2010) and Ren et
al. (2008), the contribution of urbanization warming
to the overall trend of regional average SAT series
(urbanization contribution, C) was calculated as fol-
lows:

(3)

(4)

where ΔTrend indicates the difference in trends of
the regional average SAT series between the refer-

a

a

b

b

c

c
= + +K

S
R

S
R

S
R

Trend Trend TrendΔ = − R

= Δ ×C
Trend

Trend
100%

= ×K
K

EUI 100%
0

135

Fig. 2. Sketch of subzones and urban areas close to meteoro-
logical stations using the example of Wuhan City
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ence stations and other station groups (i.e. LU, HU,
and all stations); that is, the urbanization effect (Ren
et al. 2008), in °C decade−1; Trend indicates the over-
all trend of the regional average SAT series based on
LU, HU, or all stations (TrendLU, TrendHU, or TrendT),
in °C decade−1; TrendR indicates the trend of the
regional average SAT series based on the reference
stations, in °C decade−1; and C is considered 100%
when ΔTrend is larger than TrendLU, TrendHU, or
TrendT (Zhang et al. 2010).

3.  RELULTS

3.1.  RPCA sub-regions and station classification

The first and second sub-regions (S1 and S2) were
Northeast China and Southwest China, respectively
(Fig. 1). Sub-region S3 was South China. Sub-region
S4 included East, Central, and part of North China,
and S5 covered all of Northwest China and part of
North China. In addition, each sub-region included
about 100 meteorological stations, except for S2,
which had 82 meteorological stations. Overall, our
results of RPCA sub-regions were consistent with the
division given by Li et al. (2004b) based on 390 sta-
tions. There was only 1 obvious difference: a part of
South China included in S3 in our division was clas-
sified into another sub-region in the division by Li et
al. (2004b). This is mainly related to differences in the
number of meteorological stations and the length of
SAT time series used.

The classification result showed that there were
219 R stations with an average EUI of 0.3%, 150 LU
stations with an average EUI of 2.6%, and 200 HU
stations with an average EUI of 15.3% (Table 3).
However, station distribution in different categories

varied by region. The number of R stations in South-
west China and part of South China was far greater
than in Northeast China and the coastal areas of East
China. Furthermore, in Southwest China (S2), there
were only 12 LU stations and 15 HU stations, but 55 R
stations. The average values of EUI in West and
South China (S2, S5, and S3) were significantly lower
than in East China (S1 and S4). Beijing station,
located in S1, had the largest EUI, which was calcu-
lated to be 71%. The unbalanced distribution of sta-
tions and different EUI in different sub-regions can
be partly attributed to the difference in regional
economy and urbanization levels. Therefore, region-
alization of SAT series over China is useful for ana-
lyzing the differences in temperature changes
between rural and urban stations.

3.2.  Spatio-temporal variation of SAT

The distribution of annual mean SAT changes over
China showed clear regional differences (Fig. 3).
Most regions of China showed a warming trend, with
the rate being higher than 0.1°C decade−1 during
1961− 2012, except for a small area of Central China.
Moreover, there were some ‘islands’ in which tem-
peratures increased more rapidly than temperatures
in their surrounding areas. For instance, the Yangtze
Delta area, located in the coastal area of East China,
presented greater warming than nearby areas. The
Yangtze Delta area includes several large and
medium cities that are economically developed and
densely populated, such as Shanghai. Therefore, the
severe impact of urbanization on temperature
change may be one of the reasons for local warming.

We calculated the average trends of each sub-
region during 1961−2012 (Table 3). All sub-regions

showed significant warm-
ing (p < 0.01), and their SAT
trends were obviously dif-
ferent. The average temper-
ature of S5 had the highest
increase, with a trend of
0.353°C decade−1. In con-
trast, the average tempera-
ture of S3 increased with a
trend of 0.183°C decade−1.
The average trend of SAT
over China was 0.285°C
decade−1 (p < 0.01). The
regions identified to exhibit
significant warming in
China matched well with
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Region R station  LU station HU station      Total         Temperature 
            Number  EUI       Number  EUI       Number  EUI       Number  EUI         trend

S1              24       0.9            44       3.0            62      16.7          130      9.1        0.345**
S2              55       0.1            12       2.1            15      10.1           82       2.2        0.293**
S3              56       0.1            29       2.6            30      15.1          115      4.6        0.183**
S4              40       0.4            22       2.9            63      15.6          125      8.5        0.224**
S5              43       0.3            44       2.2            30      14.7          117      4.7        0.353**

China       219      0.3           150      2.6           200     15.3          569      6.2        0.285**

Table 3. Number and average extent of urban impact (EUI, %) of different station groups
and the regional average temperature trends in different sub-regions and China. S1−S5:
first−fifth sub-region. R, LU, and HU stations: stations with little or no urban impact, low
urban impact, and high urban impact, respectively. Temperature trend: trend of regional
average surface air temperature (SAT) anomaly series during 1961−2012 (°C decade−1). 

**p ≤ 0.01 (significance determined using a t-test)
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the result of the IPCC Fifth Assessment Report (AR5)
related to global warming (Hartmann et al. 2013).
However, the difference in inter-annual temperature
change among the 5 sub-regions may enhance the
diversity of urbanization effects on observed SAT
trends in China (Yao et al. 2017).

3.3.  Urbanization biases in the
SAT series

Fig. 4 shows the temporal variation for
average SAT anomalies of R stations and
all national stations over China during
1961−2012. The average SAT anomalies
of R stations and all national stations of
China showed a significant positive
trend. However, the trend rate of the an-
nual mean SAT series based on the na-
tional stations was larger than the trend
rate based on R stations. Because of the
historical and unique socio- economic
conditions, most of the national stations
were positioned in or close to cities (Ren
et al. 2008). In the past several decades,

China has undergone rapid urbanization, with the ur-
ban population increasing from 0.54 billion in 1949 to
1.35 billion in 2012, implying a higher warming trend
for urban stations than rural stations (Ren et al. 2015).
The annual mean SAT trends for R stations and all na-
tional stations were 0.235 and 0.285°C decade−1, re-
spectively. Therefore, the urbanization effect on the
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Fig. 3. Spatiotemporal variation of annual mean surface air temperature (SAT) anomalies over China during 1961−2012
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annual mean SAT trend of all national stations over
China was estimated to be 0.05°C decade−1.

The trends of HU stations (TrendHU) were the high-
est in each sub-region, with high confidence levels,
whereas the trends of R stations (TrendR) were the
lowest (Table 4). For example, in S1, changes in
TrendR, TrendLU, and TrendHU were 0.299°C decade−1

(p < 0.01), 0.343°C decade−1 (p < 0.01), and 0.363°C
decade−1 (p < 0.01), respectively. Obviously, varied
urbanization biases were present in the SAT series
observed by urban stations. Furthermore, urbaniza-
tion effects on the regional average SAT trends obvi-
ously differed among the 5 sub-regions in China. The
urbanization effect was lowest in S3, with a value
of 0.022°C decade−1 for ΔTrendLU. However, for
ΔTrendHU, the urbanization effect in S1 was lowest,
with a value of 0.064°C decade−1. The lowest magni-
tude of ΔTrendT was also found in S3 (0.03°C
decade−1). In contrast, the largest magnitudes of
ΔTrendLU, ΔTrendHU, and ΔTrendT were estimated to
be 0.077, 0.117, and 0.056°C decade−1 in S5, respec-
tively. The contribution of urbanization to the overall
warming of LU stations (CLU) in S1, S2, and S3 was
lower than 20%. However, the contribution of urban-
ization to the overall warming of HU stations (CHU) in
S2, S3, S4, and S5 was higher than 20%. Moreover,
ΔTrendLU and ΔTrendHU were 0.06 and 0.09°C
decade−1, accounting for 20 and 28% of the overall
warming trends, respectively.

4.  DISCUSSION

4.1.  Impact of UHI on SAT trends of urban stations

In the present study, we found that HU stations are
significantly influenced by UHI, a result similar to
that of previous studies (Portman 1993, Peterson &
Vose 1997, Wang & Ge 2012, Wang et al. 2013). For

instance, Hua et al. (2008) showed that the greatest
urbanization warming (0.35°C) during 1961−2000 oc -
curred in large city stations, approximately 0.088°C
decade−1; this was very similar to our estimation for
HU stations (0.09°C decade−1). Large cities have ex-
perienced rapid urbanization with intensive land-use
change, which can strongly impact the surface
energy balance (Li et al. 2017, 2018b). As a result, the
stations in or close to large cities generally undergo
faster warming than small-city stations (Liu 2009,
Deng et al. 2015). The significant correlations be -
tween temperature trends and urban growth re -
ported in previous studies further confirmed this phe-
nomenon (He et al. 2013, Wang et al. 2017). However,
the urbanization effect in the observed SAT series of
urban stations is very local, and thus it should be pre-
cisely determined and eliminated before analyzing
the regional temperature change.

4.2.  Reasons for different estimates of
urbanization biases

Existing estimates of the urbanization effect on
observed temperature changes in China are signifi-
cantly divergent (Zhang et al. 2010, Wang & Ge 2012,
Jin et al. 2015, Ren et al. 2015). In addition to differ-
ences in study periods, different study areas may also
lead to divergent estimates of urbanization biases
due to the varied urbanization levels (Zhang et al.
2010). In general, a high urbanization level means a
large influence of urbanization on SAT trends (He et
al. 2013). However, we found that S1, with the largest
EUI, had the lowest urbanization contribution among
the 5 sub-regions (Table 4). One of the reasons is that
the overall warming trend of S1 was higher than in
other sub-regions. Moreover, inter-annual climate
variability may contribute to the diversity of urban-
ization effects. For instance, Yao et al. (2017) sug-
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Region Temperature trend (°C decade−1)    Urbanization effect (°C decade−1) Urbanization contribution (%)
                         TrendR       TrendLU     TrendHU             ΔTrendLU    ΔTrendHU      ΔTrendT               CLU            CHU            CT

S1                     0.299**     0.343**     0.363**                 0.044           0.064            0.046                   13               18              13
S2                     0.242**       0.29**       0.342**                 0.048           0.100            0.051                   17               29              17
S3                     0.153**     0.175**     0.228**                 0.022           0.075            0.030                   13               33              16
S4                     0.179**     0.241**     0.248**                 0.062           0.069            0.045                   26               28              20
S5                     0.297**     0.374**     0.414**                 0.077           0.117            0.056                   21               28              16

China               0.235**     0.295**     0.325**                 0.060           0.090            0.050                   20               28              18

Table 4. Urbanization effect on the change trends of surface air temperature (SAT) series in different sub-regions and China
during 1961−2012. CLU, CHU, and CT are the contributions of the urbanization effect to the overall SAT trend of LU, HU, and to-
tal stations, respectively (where LU and HU are stations with low and high urban impact, respectively). **p ≤ 0.01 (significance 

of each temperature trend was determined using a t-test)
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gested that the inter-annual variations of UHI inten-
sity were negatively correlated with land surface
temperature, especially in northern China. We found
that the urbanization effect in S5 was considerably
larger than in S3, despite the background tempera-
ture trend of S5 being higher than that of S3 and their
EUIs being the same. S5 (mainly containing North-
west China) is drier and colder than S3 (South
China). Zhou et al. (2014) demonstrated that cities
located in cold and dry regions have a larger UHI
intensity than cities of the same size located in hot
and humid regions. Thus, climatic condition is an -
other reason for these diverse urbanization effects.
All of these reasons highlight the necessity for divi-
sion in the study of large-scale regions.

In addition to the above-mentioned factors, the dif-
ferent meteorological data used in previous studies
are also among the primary reasons for different re-
sults (Wang & Yan 2016). For instance, inhomoge-
neous data may contain some uncertainties, such as
the impact of station relocation on temperature
records, which generally weaken the urbanization ef-
fect biases in the SAT series (Li et al. 2004a, Jin et al.
2015). In contrast, after homogenizing data based on
the present locations of the stations, urbanization ef-
fect biases in the corrected SAT series of the stations
that moved from urban areas to rural areas would be
recovered (Cao et al. 2016). However, if some of these
relocated stations are selected as rural stations, ur-
banization effects would be underestimated based on
the homogenized data and UMR method. In this
study, EUI was calculated by weighting an urban area
within a wider buffer area (i.e. 30 km). Those re -
located stations, being slighter farther away from ur-
ban areas, would be identified as urban stations again
when their EUI became ≥1%. Thus, the above-men-
tioned uncertainties can be reduced to some extent.

Another important reason for different estimates is
the varied study methods (Wang & Yan 2016). For
instance, while He et al. (2013) found a large urban-
ization contribution (44.1%) by directly fitting the
regression model between the SAT trend and urban
growth around stations, Wang et al. (2017) detected a
much smaller result (4%) by reducing background
temperature change before applying this regression
model. The results presented by He et al. (2013) may
contain a large uncertainty induced by the back-
ground climate change. In contrast, the improved
method used by Wang et al. (2017) should be better,
which highlights the need to consider large-scale cli-
mate change when assessing local urban effects.

In general, background temperature change in
large-scale regions can be explored based on the

regional average temperature series generated from
reanalysis data (Kalnay & Cai 2003, Wang et al. 2017)
or observations of rural stations (Ren & Zhou 2014).
However, some uncertainties may remain in the
reanalysis data generated from numerical modeling
and the observations generated from unevenly dis-
tributed rural stations (Simmons et al. 2004, Ren et al.
2015), resulting in variation among estimates. For
instance, Wang & Yan (2015) found a very slight
urban effect based on the OMR method (using ERA
reanalysis data), but a dramatic urban warming
(0.12°C decade−1) based on the UMR method in the
Beijing−Tianjin−Hebei metropolitan area. In con-
trast, Ren & Zhou (2014) showed that urbanization
effects reached 0.047°C decade−1 during 1961−2008
in China, which was strikingly similar to our estima-
tion (0.05°C decade−1, see Table 4). This may be
related to use of the same study method and climate
dataset, as well as a similar study period.

Consequently, differences in data used and study
methods are the main reasons for varied results
(Wang & Yan 2016), which justifies the development
of new methods, such as the method of selecting rural
stations proposed in this study. The impact of choice
of rural stations on estimates of urbanization biases is
independently discussed in the next subsection.

4.3.  Impact of choice of rural stations on estimates
of urbanization bias

This study identified the R stations based on the
magnitude of EUI, and found that the number of R sta-
tions in Southwest China and part of South China was
far greater than in Northeast China and the coastal ar-
eas of East China. This is consistent with the results of
Liao et al. (2017), who found few ‘pure’ rural stations
in East China because of the high urbanization level
and population density in this region. Selecting
enough rural stations that are evenly distributed over
the entire region is very important for calculating
background temperature trends (Ren & Ren 2011).
Thus, many researchers have had to select ‘impure’
rural stations located in small cities as reference sta-
tions (e.g. Li et al. 2004b, Xiong et al. 2010). Some
rural stations identified in previous studies may have
been converted to urban stations, resulting in an
 extreme lack of reference stations. As a specific ex-
ample, Zengcheng station was identified as a HU sta-
tion (EUI = 15%) in our study, but it had been previ-
ously treated as a rural station by Xiong et al. (2010).

The UHI can be detected even in small towns with
populations of 10 000 or only a 1 km2 urban area (Karl
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et al. 1988, Heinl et al. 2015). Therefore, selecting
rural stations with less representative regional cli-
mate conditions may underestimate urbanization
warming (Jones & Lister 2009, Ge et al. 2013). For
example, the urbanization effect estimated by Li et
al. (2004b) (0.06°C during the last 50 yr) is substan-
tially smaller than the results of Zhang et al. (2010)
(0.076°C decade−1) and of Ren et al. (2015) (0.074°C
decade−1). Li et al. (2004b) selected rural stations only
based on population, which was less successful than
the sophisticated procedures later adopted by Zhang
et al. (2010) and Ren et al. (2015).

In addition to representativeness, spatial distribu-
tion of rural stations is another issue that should be
considered. However, rural stations are unevenly
distributed in China because of the imbalance of
urbani zation (Liao et al. 2017). Some previous studies
arith metically averaged all temperature records of
rural stations in large-scale regions (e.g. Li et al.
2004b), which could not reflect the regional tempera-
ture changes (Jones & Hulme 1996). In contrast, in
the present study, we adopted a grid-weighted me -
thod (Jones & Hulme 1996) to calculate the regional
average temperature series. Thus, the uncertainties
caused by uneven distribution of stations can be re-
duced when calculating large-scale patterns of tem-
perature change (Zhang et al. 2010, Ren et al. 2015).

However, in this study, the lack and uneven distri-
bution of rural stations still remains in some latitude−
longitude grids. Moreover, a relaxed standard (EUI ≥
2%) was used to select more rural stations in some re-
gions due to rapid urbanization. All of these circum-
stances may also contribute to the diverse intensifica-
tion of urbanization effects in different sub-regions.
The urbanization contribution in China calculated in
this study (18%) was smaller than the estimates of
Zhang et al. (2010) (27.3%) and Ren et al. (2015)
(24.9%). Thus, although we quantified the urban im-
pact by considering urban areas and the distance
from the station to the urban area, the current results
should be considered as the lowest  estimation.

4.4.  Limitations of our approach and 
future outlook

Adopting NSL data to classify stations is a compar-
atively objective method and particularly useful in
the periphery of urban areas (Owen et al. 1998). Our
results are comparable with some recent studies
(Yang et al. 2011, Ren & Zhou 2014, Jin et al. 2015).
However, the method presented here still has limita-
tions. For instance, although EUI quantified the

impact of city size and distance from the city, some
complicated microfactors related to UHI, such as
density of built-up areas (Tran et al. 2006), urban
fraction (Li et al. 2017), and surface imperviousness
(Li et al. 2018b), were not considered. In addition, the
lack of rural stations and their uneven distribution in
some regions may lead to uncertainty in the results.

Recently, surface imperviousness (Li et al. 2018b)
and urban fraction (Li et al. 2017) have been used as
indicators linked to urbanization and UHI, which
showed a promising method for selecting rural sta-
tions. Wang et al. (2017) applied linear regression
between temperature trends induced by UHI and
urban fraction trends to detect urbanization effects in
China, which is another new way to study urbaniza-
tion effects. Moreover, the impact of urbanization on
the SAT trend should be different in different sea-
sons because of the changes in natural climate fac-
tors, such as snow and rain (Li et al. 2016). Conse-
quently, accurate accounts of urbanization biases
based on new methods are still needed to improve
the evaluation of temperature changes at different
spatial and temporal scales.

5.  CONCLUSIONS

In the present study, we adopted a method based
on an index to classify stations in terms of the impact
of urbanization. Urbanization biases in the average
SAT series over China were then examined by com-
paring the regional average SAT series between
urban (all stations) and rural stations. The main re -
sults are summarized as follows.

(1) The average trend of annual mean temperature
over China during 1961−2012 was estimated to be up
to 0.285°C decade−1, ranging from 0.183°C decade−1

for S3 (South China) to 0.353°C decade−1 for S5
(Northwest China and a part of North China). How-
ever, there were spatial differences in the local tem-
perature change that can be partly attributed to the
significant urban impact on urban stations. The
urbanization influence on temperature trends was
effectively described by the EUI, which takes into
account the urban area around a station and the sta-
tion location relative to urbanized areas. With the
help of the EUI, the 569 stations in China were classi-
fied into rural stations, stations with low urban im -
pact, and stations with high urban impact. The index
values for the last 2 groups were 2.6 and 15.3%,
respectively.

(2) Significant urbanization effects on average tem-
perature changes of urban stations were found all
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over China. The average urbanization biases were
estimated to be 0.06°C decade−1 for LU stations and
0.09°C decade−1 for HU stations, accounting for 20
and 28% of the overall warming, respectively.

(3) In the average SAT series of China, the urban-
ization effect was estimated to be 0.05°C decade−1 by
contrasting the estimates from all stations and those
from rural stations only. This effect accounted for
18% of the overall warming. Among the 5 sub-re-
gions, the largest urbanization effect was detected in
S5 (0.056°C decade−1), whereas the smallest urban-
ization effect was detected in S3 (0.03°C decade−1),
which is located in South China. The diverse intensi-
fications of urbanization effects in different sub-re-
gions may be related to varied urbanization levels
and different regional climates.
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Explanation for the homogeneity adjustment

Here we show Guiyang and Haikou stations as examples to illustrate the adjustment of connected SAT series (Fig. A1). For
Guiyang station, 1 obvious discontinuous point caused by relocation in 1999 (dashed curve) was adjusted in the CHHT
dataset (solid curve between 1961 and 2004). The adjusted data series during 1961−2004 was connected to the records after
2004 (Fig. A1a). Due to Guiyang station not being relocated after 2004, the connected SAT series did not need to be
adjusted further. Similarly, 1 obvious discontinuous point caused by relocation in 2007 was detected in the connected SAT
series of Haikou station (Fig. A1b). Therefore, the 1961−2006 records (dashed curve) were adjusted based on the SAT
series of Qionghai station which was close to Haikou station and had never been relocated. After connection, rechecking,
and adjustment, the homogeneities and continuities of the SAT series during 1961−2012 are comparatively reasonable.

Appendix. Example of homogeneity adjustment for temperature series
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Fig. A1. Annual mean surface air temperature (SAT) time series of (a) Guiyang station and (b) Haikou station before (dashed 
curve) and after (solid curve) adjustment
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