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are beyond natural internal variability during the
 latter half of the 20th century. Cho et al. (2016) per-
formed an attribution study to identify the contribution
of different external sources causing massive land-
slides and extreme floods in Uttarakhand, a northern
state of India. They found that the root cause of this
rainstorm event was a post-1980 climatic trend. Mon-
dal & Mujumdar (2015) highlighted the difficulties
in unequivocal attribution of extreme  precipitation
changes to human-induced effects. Mondal & Mu -
jumdar (2012) and Chithra & Thampi (2015) per-
formed detection and attribution studies of changes in
precipitation and streamflow in different river basins
of India using CMIP3 climate model simulation. Lau &
Kim (2010) attributed the changes in Indian summer
monsoon regional precipitation to aerosol effects.

To date, limited studies have been conducted on the
formal detection and attribution of climate change
employing CMIP5 models over India (Sonali &
Nagesh Kumar 2016a), while none has attempted to
attribute the changes in temperature in South India to
increases in anthropogenic GHG emissions. Hence,
the main objective of the present study was to investi-
gate the detectability, and possible attribution, of cli-
mate change effects on Tmax and Tmin over South India.
Firstly, we analyzed the temporal variation of annual
and seasonal Tmax and Tmin by using a modified Mann-
Kendall approach. Secondly, the analysis was ex-
tended further to formally detect and attribute the ob-
served changes in Tmax and Tmin to different causative
factors by employing the fingerprint ap proach.

2.  OBSERVATIONAL AND MODEL DATA

Climatic characteristics differ significantly over
South India (shown in Fig. 1), as it consists of 3 differ-
ent temperature-homogenous regions, viz. the east
coast (EC), west coast (WC) and interior peninsula
(IP), as defined by the Indian Institute of Tropical
Meteorology (IITM, www.tropmet.res.in).

2.1.  Observational data

India Meteorological Department (IMD) (Sriva -
stava et al. 2009) temperature records are insufficient
for the considered time period (1950−2012). Hence
monthly Tmax and Tmin datasets from the latest version
of CRU3.22 (at 0.5° × 0.5° resolution) produced by the
Climate Research Unit (CRU) of the University of East
Anglia (Harris et al. 2014) were used as observational
data (as the data set is spatially and temporally com-

plete for the considered period). CRU and IMD tem-
perature datasets agree well (with high correlation)
during all months and seasons over most of India
 except for a few grid points located in the  Western
 Himalaya and northeast regions (Sonali & Nagesh
Kumar 2016b). This comparison was done by examin-
ing the common period of 2 datasets during all seasons
and months. None of the poorly correlated grid points
are located in South India. South India is covered by a
total of 428 grid points (resolution: 0.5° × 0.5°).

2.2.  Global model simulation

General circulation models (GCMs) provide simu-
lated patterns of the Earth’s climate system with or
without forcings. These simulated patterns are con-
trasted with the actual observations to determine
whether the signals of a specific forcing are percepti-
ble. Climate models therefore play a critical role in
attribution studies. Previous model evaluation stud-
ies have demonstrated that CMIP3 models perform
poorly compared to CMIP5 for Tmax, Tmin (Raju et al.
2016, Sonali et al. 2017) and precipitation (Mishra et
al. 2014) over India. The improved parameterization
in terms of aerosol scheme and convection plays a
major role in better simulation of precipitation ex -
tremes in CMIP5 climate models (Watanabe et al.
2010). Sonali et al. (2017) evaluated the performance
of CMIP5 and CMIP3 climate models in their ability
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Fig. 1. Study region in South India consisting of 428 grid
points and 3 temperature-homogenous regions. WC: west 

coast; IP: interior peninsula; EC: east coast



Clim Res 76: 145–160, 2018

to simulate Tmax and Tmin over all of India. A substan-
tial improvement was noted for CMIP5 compared to
CMIP3 climate models. Separate shortlisted climate
models for Tmax and Tmin are considered here, as
some climate models could simulate Tmin better than
Tmax. For model experiments, 9 GCMs each for Tmax

and Tmin from the CMIP5 archive, as suggested by
Sonali et al. (2017), were selected and 4 among the
selected climate models are common for both Tmax

and Tmin (see Table 2 for details).
Natural variability was estimated from the pre-in-

dustrial control runs, represented as the ‘piControl’
experiment in CMIP5. The 9 model control simulations
analyzed here comprise a total of 6276 yr for Tmax and
4590 yr for Tmin. The number of years of ‘piControl’
simulation availability varies across different climate
models. Hence, addition of all climate models’ control
simulations leads to different numbers of years for
Tmax and Tmin. To assess the possible effect of external
forcings (anthropogenic and natural), different climate
model simulations of CMIP5 such as ‘historical,’ ‘his-
toricalNat,’ ‘historicalGHG,’ ‘historical_AA’ and ‘his-
torical_LU’ were considered. Information on different
experiments is available in Table 1, and more details
can be found in the CMIP5 archive (https:// cmip. llnl.
gov/ cmip5/ docs/ Taylor_CMIP5_ design.pdf) (Taylor
et al. 2012). The historicalMisc experiment represents
the individual effect of historical forcings. CCSM4
provides individual forcing simulations of both Tmax

and Tmin. In order to understand the effect of individ-
ual forcing only, simulations under land use forcing
(historical_LU) and anthropogenic aerosol forcings
(historical_AA) of CCSM4 climate model were consid-
ered for our attribution analysis. In historicalMisc ex-
periments of the CCSM4 model, the r[1,4,6]i1p10 and
r[1,4,6]i1p13 realizations res pec tively represent an-
thropogenic aerosol forcing (historical_AA) and land-
use-change forcing (historical_LU) simulations.

All CMIP5 climate models provide ‘historical’ and
‘piControl’ simulations. The availability of different
experiments (Table 2) was one of the criteria for
selection of the climate models. To increase the ro -
bustness of this analysis and reduce the uncertainty,
we used simulations from multiple climate models
instead of just 1 set.

Ensemble means were first calculated for individual
models over available realizations for each ex -
periment separately. Averaging over multiple realiza-
tions for a particular climate model reduces the noise.
The multi-model mean (MMM) was obtained for each
experiment by taking the arithmetic average of the
model-specific ensemble means. In this way equal
weights are assigned to all models while calculating

MMM. All considered GCMs have different spatial
resolutions and are coarser than CRU data, i.e. 0.5° ×
0.5°. Due to different spatial resolutions, all GCMs
and CRU datasets were interpolated to a common grid
of 1.5° latitude × 1.5° longitude by applying the
inverse distance weighted (IDW) technique, which is
one of the most widely used deterministic and robust
approaches for spatial interpolation.

Temperature is one of the most important parame-
ters with which to detect climate fluctuations be cause
of its impact on different components of the hydro -
logical cycle, such as streamflow, evapotrans piration
and soil moisture. Both Tmax and Tmin are used as indi-
cators for warming or cooling. The considered hydro-
climatological datasets (i.e. Tmax and Tmin) of 3 tem -
perature-homogenous regions were used for trend
analysis. Trend analysis was carried out considering a
gridwise dataset as well as a regionally averaged
dataset over the 3 temperature-homogenous regions
separately to assess the spatio-temporal behavior of
climate over South India. Division of the seasons was
based on conventional meteo rological seasons: winter
(January−February; JF), pre-monsoon (March−May;
MAM), monsoon (June−  September, JJAS) and post-
monsoon (October− December; OND).

3.  METHODS

The main steps involved in any formal detection and
attribution study include the observation of one of the
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Experiment         Description

piControl             Represents natural internal variability
with fixed preindustrial greenhouse
gases (GHGs) and no change in
natural external factors such as solar
irradiance and volcanic activities

historical             Forced by observed atmospheric
composition of the 20th century; reflects
both anthropogenic (well mixed GHGs,
aerosols and ozone) and natural
sources (solar and volcanic eruption)

historicalGHG    Driven by GHG forcing alone

historicalNat       Contains changes in solar irradiance
and volcanic activity only

historical_AA      Simulations with anthropogenic
aerosols (AA) forcing only

historical_LU      Simulations with land-use (LU) change
forcing only

Table 1. Details of the CMIP5 experiments used in this study.
Source: CMIP5 Coupled Model Intercomparison Project 

(https://cmip.llnl.gov/cmip5/data_portal.html)
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No. Model_Tmax Institution piControl historical historical historical_AA & historical
≥500 yr Nat historical_LU GHG

1 CCSM4 National Center for Atmospheric Yes Yes Yes Yes Yes
Research 

2 MIROC5 Atmosphere and Ocean Research Yes Yes – – –
Institute, National Institute for 
Environmental Studies, and 
Japan Agency for Marine-Earth 
Science and Technology

3 CESM1-BGC National Science Foundation, Yes Yes – – –
Department of Energy, National 
Center for Atmospheric Research

4 CESM1-CAM5 National Science Foundation, No Yes – – –
Department of Energy, National 
Center for Atmospheric Research

5 CESM1_FASTCHEM National Science Foundation, No Yes – – –
Department of Energy, National 
Center for Atmospheric Research

6 BNU-ESM College of Global Change and Yes Yes Yes – Yes
Earth System Science, Beijing 
Normal University

7 CNRM-CM5 Centre National de Recherches Yes Yes Yes – Yes
Météorologiques 

8 MPI-ESM LR Max Planck Institute for Yes Yes – – –
Meteorology (MPI-M)–

9 MPI-ESM P Max Planck Institute for Yes Yes – – –
Meteorology (MPI-M)

No. Model_Tmin Institution piControl historical historical historical historical
≥500 yr Nat Misc GHG

1 CCSM4 National Center for Atmospheric Yes Yes Yes Yes Yes
Research

2 MIROC5 Atmosphere and Ocean Research Yes Yes – – –
Institute, National Institute for 
Environmental Studies, and Japan 
Agency for Marine-Earth Science 
and Technology

3 CESM1-BGC National Science Foundation, Yes Yes – – –
Department of Energy, National 
Center for Atmospheric Research

4 CESM1-CAM5 National Science Foundation, 
Department of Energy, National No Yes – – –
Center for Atmospheric Research

5 MRI-CGCM3 Meteorological Research Institute Yes Yes Yes – Yes
6 NOR-ESM1 M Norwegian Climate Centre Yes Yes Yes – Yes
7 MIROC4h Atmosphere and Ocean Research No Yes – – –

Institute, National Institute for 
Environmental Studies, and 
Japan Agency for Marine-Earth 
Science and Technology

8 GFDL-ESM2G Geophysical Fluid Dynamics Yes Yes – – –
Laboratory

9 ACCESS1.3 CSIRO (Commonwealth Scientific Yes Yes – – Yes
and Industrial Research Organi-
sation, Australia), and BOM 
(Bureau of Meteorology, Australia)

Table 2. Details of the models used for maximum and minimum temperature (Tmax and Tmin) and the availability of different experiments 
(see Table 1) in these models. –: not available
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climate variables, an estimation of how the external
drivers of climate have evolved before and during the
considered time period, and a physical-based assess-
ment of how the external drivers would have affected
the observed climate variable. It is ne cessary to check
whether the climatic trends are significant in the ob-
servation period prior to formal detection and attribu-
tion analysis. Statistical significances of trends present
in seasonal and annual Tmax and Tmin series for the pe-
riod 1950−2012 were quantified by applying a modi-
fied Mann-Kendall (MMK) approach and magnitude
of trend using Sen’s slope approach. Details about the
MMK approach and Sen’s approaches are provided in
Appendices 1 & 2.

The detection phase checks whether the observed
changes can be fully explained by the background
‘noise’ estimated from the piControl experiment. The
attribution phase examines whether the observed
changes are consistent with the 20th century climate
simulation obtained from historical experiments and
simultaneously inconsistent with the natural external
climate simulation obtained from the historicalNat
experiment. All climate model experiments used for
the attribution analysis have data normally up to
2005 in the CMIP5 archive. Hence the formal detec-
tion and attribution study was conducted over a 56 yr
period (1950−2005).

Fingerprint detection and attribution helps in as -
sessing the extent to which patterns of response to
external anthro-forcing from climate model simula-
tions (i.e. fingerprints) explain observed climate
change. This approach reduces the detection problem
to a low dimensional space where human-induced
climate change can be extracted smoothly from the
noise, i.e. natural climate variability. The fingerprint
specifies the direction of the signal in duced by an-
thropogenic effects. This process is distinct from the
extreme ways of detecting changes either in a full
variable space or using means as re presentatives (Jia
et al. 2012). An optimization process was used in pre-
vious studies (Santer et al. 2007, Hidalgo et al. 2009)
to enhance the detectability of the fingerprint, but
this requires a part of the piControl model simulation
which cannot be used again for detection. Hidalgo et
al. (2009) found a slight difference in results by em-
ploying optimized and non-optimized versions of the
fingerprint ap proach. Hence here we used the non-
optimized fingerprint approach, and the entire length
of the control simulation was used for the detection
process. The fingerprint, which explains the maxi-
mum variability, is specified as the leading empirical
orthogonal function (EOF) of ensemble-averaged
anthropo genically forced temperature time series

(obtained from the historical experiment) of different
considered climate models. The signal strength is cal-
culated as the least squares linear trend of the projec-
tion of a data set (observations or model simulated)
onto the fingerprint. So given the fingerprint F(x), the
signal strength S is determined as

(1)

where T(x,t ) is the time series from observation or
model simulation, and ‘trend’ indicates the slope of
the least squares best-fit line. Signal strength for
observations and for various model simulations
were obtained using the above equation. Significant
chan ges observed in Tmax and Tmin could be attrib-
uted to different factors by comparing the signal
strengths determined from different experiments
with that of the observations. The fingerprint was
estimated here by pooling the information from all
models (considering the MMM). MMM ensemble
average simulation performs better than individual
climate model simulations because of the reduction
in noise (Santer et al. 2007, Bonfils et al. 2008,
 Mondal & Mujumdar 2012). Uncertainty in signal
strength was calculated from a Monte Carlo simula-
tion. Data over each grid are expressed in anomaly
form considering the climatological mean calculated
over the entire period.

The detection process evaluates whether the ob -
served significant changes have occurred due to
 natural variations in the climate system. Climate
model simulations obtained from control integrations
(piControl experiment) which include only natural
internal variability (no forcing) of the climate system
were considered for this process. A Monte Carlo test
was used to estimate the likelihood that the observa-
tions are pulled from the control simulation obtained
from the piControl experiment. The detection pro-
cess was carried out for individual climate models
which have at least 500 yr (as mentioned in Table 2)
of control simulations as well as for the combined
control simulations obtained from all climate models
together. A step-by step procedure for fingerprint-
based formal detection and attribution analysis is
presented in Appendix 3.

4.  RESULTS AND DISCUSSION

4.1.  Analysis of temporal trends in Tmax and Tmin

Major changes in a time series can occur gradually
(trends), abruptly (step-changes) or in a complex fa -
shion, but long-term change specifies the impact of

= [ ( ) · ( , )]S trend F x T x t
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climate change, the main focus of the present
study. The widely used MMK approach
which satisfies the independence assump-
tion, explained in Appendix 1, was employed
for trend analysis. On the basis of the
observed time series (1950−2012) of seasonal
and annual Tmax and Tmin, a detailed trend
analysis was carried out and results are pre-
sented in Fig. 2 and Table 3.

Fig. 2 shows the variations of Tmax and Tmin

in different seasons and annually over all of
South India during 1950−2012. High values
of Tmax and Tmin are seen during the pre-mon-
soon season, but Tmin is also high during the
monsoon season. Tmax is lower during winter
and post-monsoon seasons. Tmin is lower
 during winter compared to other seasons.
Analysis was also carried out for seasonal
and annual Tmax and Tmin averaged over all of
India and 3 temperature homogenous regions
(EC, WC, IP) separately along with South India. Re-
sults for all regions are presented in Table 3. In
Table 3, the symbol ‘π’, indicating time series, depicts
an increasing trend at the 5% significance level. Sig-
nificant upward trends appear in annual and seasonal
Tmax and Tmin in South India (which includes EC, WC
and IP regions). When considering individual regions

(i.e. EC, WC, IP), similar conclusions (i.e. warming
trend in all cases) were obtained. However, no trends
are obvious in Tmin over all of India during winter and
pre-monsoon seasons. These significant changes may
be due to rapid increases in urbanization and indus-
trialization in recent decades. Using Sen’s slope ap-
proach (Appendix 2), we found that the trend magni-
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Fig. 2. Seasonal variation in (a) maximum temperature (Tmax) and (b) minimum temperature (Tmin) (°C) over South India for 
the period 1950−2012

Detection Annual Winter Pre- Mon- Post-
variable monsoon soon monsoon

All of India Tmax π π π π π
Tmin π π π

South India Tmax π π π π π
Tmin π π π π π

EC Tmax π π π π π
Tmin π π π π π

WC Tmax π π π π π
Tmin π π π π π

IP Tmax π π π π π
Tmin π π π π π

Table 3. Presence of trend using the modified Mann-Kendall ap-
proach. ‘π’ indicates the presence of a significant upward trend at the
5% significance level. Results are shown for all of India, South India
and 3 temperature-homogenous regions (EC: east coast, WC: west
coast, IP: interior peninsula) in different seasons during 1950−2012 for 

maximum and minimum temperature (Tmax and Tmin)
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tude is the same for both Tmax and Tmin over South In-
dia, highest  during post-monsoon season around
0.02°C yr−1. Warming in seasonal Tmin is more acute
in all seasons compared to Tmax except in the post-
monsoon season. These results indicate a significant
change in climate.

Furthermore, gridwise trends of Tmax and Tmin over
South India were obtained for different seasons for
the period 1950−2012. As discussed in Section 2.1,
428 grid points of the CRU3.22 dataset cover all
of South India (shown in Fig. 1). Large numbers of
grid points covering South India exhibit significant
change. Significant changes are computed as the
percentage change over the time period in seasonal
Tmax and Tmin using the MMK approach. Changes
over the period during different seasons in Tmax are
50% (winter), 50% (pre-monsoon) and 41% (mon-
soon) and in Tmin are 55% (winter), 70% (pre-mon-
soon) and 78% (post- monsoon). Results are shown in
Fig. 3 only for the seasons when Tmax and Tmin have
highest significant trends. More than 93% of the total
grid points witnessed significant upward trends in
Tmin during the monsoon season. Similarly, 82% of
the grid points for Tmax show significant upward
trends during the post-monsoon season (Fig. 3).
Overall change in percentage is higher in Tmin com-
pared to Tmax.

Cloudiness is strongly associated with both Tmax

and Tmin. Tmax decreases as cloudiness increases and
vice versa, but the net effect on Tmin is less. Tmin goes
down with an increase in cloudiness, whereas down-
ward longwave radiation tends to increase and leads

to increases in Tmin. To summarize, an increase in
cloudiness is the reason for change (decrease) in the
diurnal temperature range (Rai et al. 2012). Jaswal
(2017) analyzed seasonal variability and changes in
cloud cover during the period 1951−2010 utilizing
datasets of 195 surface meteorological stations cover-
ing all of India provided by IMD. Results indicated an
overall sig nificant decrease in the mean total cloud
cover in most parts of India during all 4 seasons
 (winter, pre-monsoon, monsoon and post-monsoon)
except in the Indo-Gangetic plains and the northeast
region (where cloud cover has increased). Analysis
on spatial distribution of cloud cover climatology
showed high magnitude over the southern peninsula,
Western Ghats and the northeast region of India. The
study by Jaswal (2017) is highly relevant for the pres-
ent analysis as it is considered a substitute for cloud
cover analysis for our study in the absence of a freely
available cloud cover dataset from IMD. Moreover,
the time period considered by Jaswal (2017) is nearly
the same as in our analysis, and our present study
area, i.e. South India, is also a part of their analysis.
De creasing trends in cloud cover in many parts of
 India, including the southern part (our study area), is
of interest especially given significant observed
chan ges in Tmax and Tmin. Regional analysis by Warren
et al. (2007) also indicated significant decreasing
trends of total cloud cover in India. Diminishing trends
of annual total cloud cover were observed during
1952−1997 in the Krishna basin of South India (Biggs
et al. 2007). Revadekar et al. (2013) found that the
changes in temperature extremes at low altitude over
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Fig. 3. Trends in (a) post-monsoon maximum temperature (Tmax) and (b) monsoon minimum temperature (Tmin)
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South Asia are less sensitive to local and regional fac-
tors compared to high altitude. These studies could
partially explain the reason for the significant tem-
perature changes in South India. Urbanization has a
large impact on regional climatic trends and usually
induces warming. Hence the impact of urbanization
on the temperature trend is crucial and mainly af fects
Tmin compared to Tmax. A limitation of the present
study could be excluding urbanization effect on cli-
mate change because of lack of qualitative data sets
(of at least 50 yr). However, fingerprint-based formal
detection and attribution analysis (presented below)
adopted CMIP5 model simulations from different ex-
periments which broadly consider the effect of the
above factors (simulations under land use for cing i.e.
historical_LU).

Relative humidity (RH) is the measurement of ac -
tual moisture content of the atmosphere expressed as
the percentage of the maximum possible moisture
content. The water holding capacity of the atmos-
phere depends on the temperature of the surround-
ing atmosphere. Over land areas (under limiting
moisture conditions), RH decreases with increasing
temperature, suggesting dryness/wetness at high/
low temperatures, respectively. RH has an important
implication for climate impact assessment studies.
Hence, we analyzed RH trends in conjunction with
temperature. A dataset of observed RH covering the
period 1950−2012 was not available. Therefore, a
monthly mean surface RH dataset at 2.5° × 2.5° reso-
lution (global in coverage) sourced from the National
Center for Environmental Prediction was derived.
Trend analysis was performed at seasonal and an -
nual time scales employing the MMK approach.
Results indicate that RH exhibited significant de -
creasing trends over South India during all seasons
except winter. Trends were significant in annual,
pre-monsoon and monsoon RH at 5% and post-mon-
soon RH at 10% significance level. This downward
trend in RH may be due to the significant warming
observed in South India over the same time frame.
These results can be considered as evidence of the
observed warming induced because of anthropo -
genic influence. To date, no study in India has vali-
dated the RH in climate models, largely because of
the unavailability of suitable datasets. In the future,
such validation of RH deserves increased attention,
as RH is one of the vital thermal parameters which
can be employed for climate change detection and
attribution studies.

It is clear from the trend analysis (using MMK) that
South India experienced significant temperature
changes during 1950−2012. Changes in seasonal cli-

mate patterns in South India and their connection to
large-scale circulations are important to understand.
Sea surface temperature (SST) plays a significant role
in shaping climate and helps in understanding sea-
sonal climatic patterns and extreme heat and cold
events. Both Indian Ocean and Pacific Ocean SSTs
play a crucial role in modulating Indian climate, and
this is strongly supported by previous studies (Gadgil
2003). The influence of large-scale circulation on the
climate of South India was analyzed by considering
different climatic indices at a seasonal scale. The El
Niño Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD) are the principal drivers of internal cli-
mate variability in the Pacific and Indian Oceans, re-
spectively. The Niño3.4 index and dipole mode index
(DMI), estimated based on SST, are oceanic compo-
nents of ENSO and IOD. Similarly, the atmo spheric
components of ENSO and IOD, such as the Southern
Oscillation index (SOI) (based on sea level pressure
differences between Tahiti and Darwin) and Equato-
rial zonal wind index (EQWIN) (based on surface
zonal wind averaged over the central equatorial In-
dian Ocean) (Francis & Gadgil 2013), were adopted
here. EQWIN is the index used for the Equatorial
 Indian Ocean Oscillation (EQUINOO), which is the
atmospheric component of the IOD. El Niño and La
Niña, part of ENSO, are among the most powerful cli-
matic phenomena on Earth, cycles of warm and cold
temperature episodes over the globe in accordance
with the changing patterns of SST over the Pacific.
SOI represents the strength of El Niño and La Niña
events. Seasonal time series of Tmax and Tmin averaged
over South India are linked with the respective cli-
matic  indices. To demonstrate the lead− lag relation-
ship, lag (by 1 and 2 seasons), concurrent and lead
(by 1 and 2 seasons) correlations of large-scale circu-
lation indices with Tmax and Tmin at a  seasonal scale
were obtained, and the results are presented in
Table 4. The association of ENSO is stronger as com-
pared to IOD. The correlation of Tmax and Tmin with
the Niño3.4 index is high and positive. Hence, in
Table 4, the number of significant correlations is
higher in the case of Niño3.4 compared to other in-
dices, which is the usual notion (Francis & Gadgil
2013, Pattanayak et al. 2017). Hence, it can be con-
cluded that the  seasonal temperature patterns of
South India are strongly linked to the ENSO. In con-
trast, IOD is poorly correlated with both Tmax and Tmin

during the same time frame.
ENSO is an important global climatic phenome-

non. It could be driven by both natural and anthro-
pogenic changes in the climate. Naturally occurring
ENSO events (El Niño and La Niña) and human-
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induced climate change are closely associated, and
naturally occurring ENSO events are going to be
heightened in conjunction with global warming
(Stocker et al. 2013).

4.2.  Formal detection and attribution analysis

Unlike trend analysis (temporal variation), finger-
print-based detection and attribution analysis pro-
vides spatio-temporal information. The ‘fingerprints’
are usually derived from changes simulated by a cli-
mate model in response to anthropogenic forcing.
Detection variables used for this analysis include sea-
sonal and annual averaged Tmax and Tmin linked
directly to hydrological changes. Formal detection
and attribution was performed in a multi-model
frame work. Models of CMIP5 produce historical
simulations until 2005, hence formal detection and
attribution analysis was based on the period 1950−
2005. Fingerprints are the leading EOFs of the sea-
sonal Tmax and Tmin time series during 1950−2005. For
all detection variables, i.e. annual Tmax, JF Tmax,
MAM Tmax, JJAS Tmax, OND Tmax, annual Tmin, JF
Tmin, MAM Tmin, JJAS Tmin and OND Tmin, finger-
prints were calculated separately using the MMM
historical simulation. Historical simulations of the
ACCESS1.3 model for Tmin differed significantly from
the MMM historical simulation (based on a nonpara-
metric Wilcoxon signed rank test). This behaviour is
seen only during the pre-monsoon season, so the
ACCESS1.3 climate model was excluded from fin-
gerprint estimation of pre-monsoon Tmin (MAM Tmin).

Before conducting attribution analysis, a Monte
Carlo test (as explained in Appendix 3) was used to
estimate the likelihood of the observed signal
strengths being extracted from piControl signal

strength distributions. Control signal strengths were
calculated in segments of 56 yr to match the observed
record. By combining control simulations from all
models (9 each for Tmax and Tmin), we obtained and
used a total of 6276 yr of Tmax and 4590 yr of Tmin data
for this test. Models having at least 500 yr of data were
considered separately for the Monte Carlo test. Seven
out of 9 models satisfied this criterion for both Tmax

and Tmin (Table 2). For observations, the number of
sources (p) was considered as 1. Fifty-six years of non-
overlapping p members were selected randomly from
the total control simulations to obtain control signal
strength. By iterating the process 10000 times, the
distribution of control signal strength was established
and used to compare with the observed signal strength.
This test was repeated for 7 models (piControl simula-
tion ≥500 yr) individually and for a combination of all
models. Here we presumed that if the observed signal
strength falls outside the range of control simulations
most of the time (including the combination of all
models), then the observed changes are statistically
different from natural climate variability. Re sults of
this test shown in Table 5 indicate that change in 3 out
of 10 detection variables, i.e. OND Tmax, MAM Tmin

and JJAS Tmin are statistically different from natural
variability at the 5% significance level. Despite quali-
tative similarity in the detection result, uncertainty
still exists and is model sensitive. In the case of the 3
detected variables, significance was not achieved in
all cases (i.e. for all models or combination of models
as shown in Table 5). For example, the observed
signal strength for OND Tmax was not statistically dif-
ferent from the control signal strength when
CNRM_CM5 and MIROC5 models were considered.
Hence, it is important to estimate signal strength (i.e.
control simulations) from multiple climate models.
The Monte Carlo test was repeated to check whether
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Index Winter Pre-monsoon Monsoon Post-monsoon
Lag Lead Lag Lead Lag Lead Lag Lead

2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

Niño3.4 Tmax + + + + + + + + + + + + + + +
Tmin + + + + + + + + + + + + + + + +

SOI Tmax − − − − −
Tmin − − − − − − − − − − −

DMI Tmax −
Tmin +

EQWIN Tmax − −
Tmin − − − − −

Table 4. Lead−lag and simultaneous correlation between the climatic indices (Niño3.4, SOI, DMI, EQWIN; see section 4.1 for
details) and maximum and minimum temperature (Tmax, Tmin) of South India during different seasons for the time period 

1950−2012. + and − respectively indicate a significant positive and negative correlation at the 5% level
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the anthropogenic signal strengths obtained from the
historical experiment are statis tically different from
the control signal strengths. In all cases, anthro-
pogenic signal strengths differed  significantly from
the distribution of control signal strength.

Once detection was confirmed, analysis
was further conducted to attribute those
changes to several possible explanations
obtained from historical, historicalNat,
historicalGHG, historical_LU and histori-
cal_AA experiments. Signal strengths and
corres ponding 95% confidence intervals
were obtained for model simulations un -
der different experiments along with
observations using Eq. (1). Observed sig-
nal strengths were compared with the
individual and MMM model signal
strengths of different experiments to
attribute the observed detected changes
to different inducive factors. Results for
the individual cases of OND Tmax, MAM
Tmin and JJAS Tmin are shown in Figs. 4−6,
respectively. 

The observed signal strengths were con-
sistent with the multi-model mean signal
strengths of the historical experiment
(Figs. 4−6). In all 3 detected variables, i.e.
OND Tmax, MAM Tmin and JJAS Tmin, val-
ues of MMM signal strength of the histori-
cal experiment were the same as the ob-

served signal strength (~0.1). Note that here the
fingerprint has negative loadings so the sign of signal
strengths are in verted. However, signal strengths
of the historicalNat experiment are mostly close to 0
and possess the opposite sign of the observed signal
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Climate model (Tmax) Annual JF MAM JJAS OND 
‘piControl’ experiment Tmax Tmax Tmax Tmax Tmax

Combined (all models) (Tmax) ns ns ns ns *
CCSM4 ns ns ns ns *
MIROC5 ns ns ns ns ns
CESM1_BGC ns ns ns ns *
BNU_ESM ns ns ns ns *
CNRM_CM5 ns ns ns ns ns
MPI_ESM_LR ns ns ns ns *
MPI_ESM_P ns ns ns ns *

Climate model (Tmin) Annual JF MAM JJAS OND 
‘piControl’ experiment Tmin Tmin Tmin Tmin Tmin

Combined (all models) (Tmin) ns ns * * ns
CCSM4 ns ns * * ns
MIROC5 * * * * *
ACCESS1_3 ns ns * * ns
CESM1_BGC ns ns ns * ns
GFDL_ESM2G ns ns * * ns
MRI_CGCM3 ns ns * * ns
NORESM1_M ns ns * * ns

Table 5. Results from the comparison study to determine whether the ob-
served signal strengths are different from the control signal strength. ns
and * respectively indicate statistically not different and different at the 

5% significance level

Fig. 4. Signal strengths and their 95% confidence intervals for various model experiments (individual and multi-model mean,
MMM) and observation for post-monsoon maximum temperature (OND Tmax). Signal strengths are shown consecutively for
historicalGHG (red), historical_LU (green), historical_AA (green), historicalNat (pink) and historical (blue) experiments (see 

Table 1) for individual models and then MMM. Observed signal strength is shown in black 
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strengths. This implies that the combined effect of
 anthropogenic and natural forcings, represented by
the historical experiment, could explain the recently
observed changes in temperature over South India,
whereas natural external forcings such as solar vari-
ability and volcanic activity could not. Observed
changes in temperature can only be attributed to
 human-induced climate change.

Signal strength of observation and MMM signal
strength obtained from the historicalGHG experiment
(values are slightly >0.1 for all 3 detected variables)
are very close and their difference is statistically

small. However, the effects of anthropogenic aerosols
and land-use forcing, which is represented by the sig-
nal strengths of the historical_AA and historical_LU
experiments (green in Figs. 4−6), are not consistent
with observed temperature changes over South India
(impact of anthropogenic aerosols and land-use forc-
ing are indistinct, as the signal strength magnitudes
are low). The effects of GHGs (i.e. historicalGHG) can
be attributed in the observed temperature changes in
South India (as shown in Figs. 4–6). The effect of GHG
forcing is dominant and clearly distinguishable com-
pared to other external forcings (such as LU and AA).
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Fig. 5. As in Fig. 4, for pre-monsoon minimum temperature (MAM Tmin)

Fig. 6. As in Fig. 4, for monsoon minimum temperature (JJAS Tmin)
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This study was able to formally establish the foot-
print of anthropogenic climate change over South
India. Human influences on climate are evident from
natural internal or external variability. Findings of
this fingerprint-based formal detection and attribu-
tion analysis are relevant in terms of assessing
changes in climate and implementing these changes
for future planning and adaption. Scope for un -
certainties may arise as a result of considering the
mean of multiple models by fixing equal weights for
each of them (Knutti et al. 2010), detection methodo -
logy and ignorance of regional land use change infor-
mation. To an extent, uncertainties can be reduced
by considering shortlisted climate models from a
prior evaluation study, instead of choosing arbitrarily
(Sonali et al. 2017). Another avenue for further cli-
mate change detection and attribution analysis is by
implementing different approaches considering vari-
ous hydro climatic variables. These aforementioned
issues will be considered as major focal areas of
future work.

5.  CONCLUSION

The southern part of India is highly sensitive to
 climate change effects because of its varied climate
and geography. Rapid changes and vulnerability in
hydro- climatology during recent decades motivated
us to further analyze the cause of observed changes
over South India. Therefore, the goal of this investi-
gation was to comprehensively analyze the changes
in the South Indian climate, focusing primarily on
Tmax and Tmin, initially by conducting trend analysis
and then extensively by implementing fingerprint-
based formal detection and attribution analysis. The
fingerprint-based detection and attribution approach
necessitates assessing the level of correspondence
be tween model-simulated patterns of externally
forced changes and observed changes for the consid-
ered time period.

To evaluate changes in South Indian climate, tem-
poral variations in seasonal and annual Tmax and Tmin

were analyzed for the period 1950−2012. The MMK
approach was applied to cope with the autocorrela-
tion of the time series. A pervasive increase in Tmax

and Tmin is evidenced consistently during all seasons.
Moreover, gridwise analysis revealed that the spread
of significant changes in Tmin is larger compared to
Tmax over South India. Spatial extensions of signifi-
cant changes (number of grid points with significant
trends) are higher in monsoon and post-monsoon
seasons compared to other seasons respectively for

Tmin and Tmax. The identified downward RH trends in
most seasons could be due to the observed warming
induced by anthropogenic influences. The impact of
ENSO and IOD on Indian climate was found to be
dominant. Hence the associations of South Indian
Tmax and Tmin with ENSO and IOD were examined.
ENSO had a stronger influence compared to IOD on
seasonal temperature change patterns. We observed
that the Niño3.4 index was associated significantly
with seasonal Tmin and Tmax compared to other cli-
matic indices.

Formal detection and attribution analysis revealed
that the changes ascertained in Tmax during the post-
monsoon and Tmin during the pre-monsoon and mon-
soon seasons in South India during 1950−2005 were
detectably different from natural variability. Simulta-
neously, model-simulated natural external variability
(specifying solar and volcanic effect) did not explain
the observed changes. Changes in the observed tem-
perature in South India can be attributed confidently
to climate change induced by anthropogenic effects.
Land use change alone cannot explain the observed
changes in temperature, but the effect of GHGs is
clearly detected in the temperature changes and is
one of the major contributing factors.

Overall, South India is more susceptible to temper-
ature changes, and more importantly, these changes
are no longer natural. These findings presage grave
consequences for processes such as hydro logy, cli-
matology, ecology, environmental engineering and
forestry both at global and local scales.

Acknowledgements. This research was supported by the
Divecha Centre for Climate Change, Indian Institute of Sci-
ence. We acknowledge the World Climate Research Pro-
gramme’s Working Group on Coupled Modeling, which is
responsible for CMIP, and thank all of the climate modeling
groups for producing and making available their model out-
puts. For CMIP, the US Department of Energy’s Program for
Climate Model Diagnosis and Intercomparison provided
coordinating support and led to the development of software
infrastructure in partnership with the Global Organization
for Earth System Science Portals. We also thank the IMD for
the gridded temperature dataset.

LITERATURE CITED

Biggs TW, Scott CA, Rajagopalan B, Turral HN (2007)
Trends in solar radiation due to clouds and aerosols,
southern India. 1952−1997. Int J Climatol 27: 1505−1518

Bindoff NL, Stott PA, Achuta Rao KM, Allen MR and others
(2013) Detection and attribution of climate change:  from
global to regional. In:  Stocker TF, Qin D, Plattner GK,
Tignor M and others (eds) Climate change 2013:  the
physical science basis. Contribution of Working Group I

157

https://doi.org/10.1002/joc.1487


Clim Res 76: 145–160, 2018

to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press,
Cambridge, p 867−952

Bonfils C, Santer BD, Pierce DW, Hidalgo HG and others
(2008) Detection and attribution of temperature changes
in the mountainous western United States. J Clim 21: 
6404−6424

Carleton TA (2017) Crop-damaging temperatures increase
suicide rates in India. Proc Natl Acad Sci 114: 8746−8751 

Chithra NR, Thampi SG (2015) Detection and attribution of
climate change signals in precipitation in the Chaliyar
River basin, Kerala, India. Aquat Procedia 4: 755−763

Cho C, Li R, Wang SY, Yoon JH, Gillies RR (2016) Anthro-
pogenic footprint of climate change in the June 2013
northern India flood. Clim Dyn 46: 797−805

Easterling DR, Horton B, Jones PD, Peterson TC and others
(1997) Maximum and minimum temperature trends for
the globe. Science 277: 364−367

Francis PA, Gadgil S (2013) A note on new indices for the
equatorial Indian Ocean oscillation. J Earth Syst Sci 122: 
1005−1011

Gadgil S (2003) The Indian monsoon and its variability.
Annu Rev Earth Planet Sci 31: 429−467

Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of cli-
mate change on extreme rainfall events and flood risk in
India. J Earth Syst Sci 120: 359−373

Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated
high-resolution grids of monthly climatic observations-
the CRU TS3.10 dataset. Int J Climatol 34: 623−642

Hasselmann K (1993) Optimal fingerprints for the detection
of time-dependent climate change. J Clim 6: 1957−1971 

Hidalgo HG, Das T, Dettinger MD, Cayan DR and others
(2009) Detection and attribution of streamflow timing
changes to climate change in the Western United States.
J Clim 22: 3838−3855

Jaswal AK (2017) Variability and changes in cloud cover
over India during 1951−2010. In:  Rajeevan MN, Nayak S
(eds) Observed climate variability and change over the
Indian region. Springer, Singapore, p 107−127

Jia Y, Ding X, Wang H, Zhou Z, Qiu Y, Niu C (2012) Attri -
bution of water resources evolution in the highly
water stressed Hai River Basin of China. Water Resour
Res 48: W02513 

Kendall MG (1975) Rank correlation methods. Charles Grif-
fin, London

Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire
A (2009) Identification of hydrologic trends in the pres-
ence of serial and cross correlations. A review of selected
methods and their application to annual flow regimes of
Canadian rivers. J Hydrol (Amst) 368: 117−130

Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010)
Challenges in combining projections from multiple cli-
mate models. J Clim 23: 2739−2758 

Kothawale DR, Revadekar JV, Rupa Kumar K (2010) Recent
trends in pre-monsoon daily temperature extremes over
India. J Earth Syst Sci 119: 51−65 

Kumar N, Jaswal AK, Mohapatra M, Kore PA (2016) Spatial
and temporal variation in daily temperature indices in
summer and winter seasons over India (1969−2012).
Theor Appl Climatol 129: 1227−1239

Lau WKM and Kim KM (2010) Fingerprinting the impacts of
aerosols on long term trends of the Indian summer mon-
soon regional rainfall. Geophys Res Lett 37: L16705 

Mann HB (1945) Nonparametric tests against trend. Econo-
metrica 13: 245−259

Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M,
Krishnan R, Shah RD (2014) Reliability of regional and
global climate models to simulate precipitation extremes
over India. J Geophys Res Atmos 119: 9301−9323 

Mondal A, Mujumdar PP (2012) On the basin scale detection
and attribution of human induced climate change in
monsoon precipitation and streamflow. Water Resour Res
48: W10520 

Mondal A, Mujumdar PP (2015) On the detection of human
influence in extreme precipitation over India. J Hydrol
529: 1161−1172

Pattanayak S, Nanjundiah RS, Kumar DN (2017) Linkage
between global sea surface temperature and hydrocli-
matology of a major river basin of India before and after
1980. Environ Res Lett 12:124002

Rai A, Joshi MK, Pandey AC (2012) Variations in diurnal
temperature range over India:  under global warming
scenario. J Geophys Res Atmos 117: D02114 

Raju KS, Sonali P, Nagesh Kumar D (2016) Ranking of
CMIP5 based global climate models for India using
 compromise programming. Theor Appl Climatol 128: 
563−574

Revadekar JV, Hameed S, Collins D, Manton M and others
(2013) Impact of altitude and latitude on changes in tem-
perature extremes over South Asia during 1971−2000. Int
J Climatol 33: 199−209 

Ribes A, Azaïs JM, Planton S (2009) Adaptation of the opti-
mal fingerprint method for climate change detection
using a well-conditioned covariance matrix estimate.
Clim Dyn 33: 707−722 

Ribes A, Planton S, Terray L (2013) Application of regu -
larized optimal fingerprinting to attribution. Part I: 
method, properties and idealized analysis. Clim Dyn 41: 
2817−2836

Rupa Kumar K, Krishna Kumar K, Pant GB (1994) Diurnal
asymmetry of surface temperature trends over India.
Geophys Res Lett 21: 677−680 

Santer BD, Mears C, Wentz FJ, Taylor KE and others (2007)
Identification of human-induced changes in atmospheric
moisture content. Proc Natl Acad Sci USA 104: 15248−
15253

Sen PK (1968) Estimates of the regression coefficient based
on Kendall’s tau. J Am Stat Assoc 63: 1379−1389

Singh R, Kumar R (2015) Vulnerability of water availability
in India due to climate change:  a bottom-up probabilistic
Budyko analysis. Geophys Res Lett 42: 9799−9807

Sonali P, Nagesh Kumar D (2013) Review of trend detection
methods and their application to detect temperature
changes in India. J Hydrol 476: 212−227 

Sonali P, Nagesh Kumar D (2016a) Detection and attribution
of seasonal temperature changes in India with climate
models in the CMIP5 archive. J Water Clim Change
7:83–102

Sonali P, Nagesh Kumar D (2016b) Spatio-temporal variabil-
ity of temperature and potential evapotranspiration over
India. J Water Clim Change 7: 810−822

Sonali P, Nagesh Kumar D, Nanjundiah RS (2017) Intercom-
parison of CMIP5 and CMIP3 simulations of the 20th
century maximum and minimum temperatures over
India and detection of climatic trends. Theor Appl Clima-
tol 128: 465−489

Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Develop-
ment of a high resolution daily gridded temperature data
set (1969−2005) for the Indian region. Atmos Sci Lett 10: 
249−254

158

https://doi.org/10.1175/2008JCLI2397.1
https://doi.org/10.1016/j.aqpro.2015.02.158
https://doi.org/10.1007/s00382-015-2613-2
https://doi.org/10.1126/science.277.5324.364
https://doi.org/10.1007/s12040-013-0320-0
https://doi.org/10.1146/annurev.earth.31.100901.141251
https://doi.org/10.1007/s12040-011-0082-5
https://doi.org/10.1002/joc.3711
https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO
https://doi.org/10.1175/2009JCLI2470.1
https://doi.org/10.1029/2010WR009275
https://doi.org/10.1016/j.jhydrol.2009.01.035
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.1007/s12040-010-0008-7
https://doi.org/10.1007/s00704-016-1844-4
https://doi.org/10.1029/2010GL043255
https://doi.org/10.2307/1907187
https://doi.org/10.1002/asl.232
https://doi.org/10.1007/s00704-015-1716-3
https://doi.org/10.2166/wcc.2016.230
https://doi.org/10.2166/wcc.2015.072
https://doi.org/10.1016/j.jhydrol.2012.10.034
https://doi.org/10.1002/2015GL066363
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1073/pnas.0702872104
https://doi.org/10.1029/94GL00007
https://doi.org/10.1007/s00382-013-1735-7
https://doi.org/10.1007/s00382-009-0561-4
https://doi.org/10.1002/joc.3418
https://doi.org/10.1007/s00704-015-1721-6
https://doi.org/10.1029/2011JD016697
https://doi.org/10.1016/j.jhydrol.2015.09.030
https://doi.org/10.1029/2011WR011468
https://doi.org/10.1002/2014JD021636


Sonali et al.: Climate change signals in South India

Stocker TF, Qin D, Plattner GK, Tignor M and others (eds)
(2013) Climate change 2013:  the physical science basis.
Contribution of Working Group I to the 5th Assessment
Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge

Stone DA, Hansen G (2016) Rapid systematic assessment of
the detection and attribution of regional anthropogenic
climate change. Clim Dyn 47: 1399−1450

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of
CMIP5 and the experiment design. Bull Am Meteorol
Soc 93: 485−498 

Vinnarasi R, Dhanya CT, Chakravorty A, AghaKouchak A
(2017) Unravelling diurnal asymmetry of surface temper-
ature in different climate zones. Sci Rep 7: 7350 

Warren SG, Eastman RM, Hahn CJ (2007) A survey of
changes in cloud cover and cloud types over land from
surface observations. 1971−96. J Clim 20: 717−738

Watanabe M, Suzuki T, O’ishi R, Komuro Y and others
(2010) Improved climate simulation by MIROC5:  mean
states, variability, and climate sensitivity. J Clim 23: 
6312−6335 

Yue S, Wang CY (2004) The Mann-Kendall test modified by
effective sample size to detect trend in serially correlated
hydrological series. Water Resour Manag 18: 201−218

Zhou L, Dickinson RE, Dai A, Dirmeyer P (2010) Detection
and attribution of anthropogenic forcing to DTR changes
from 1950 to 1999:  comparing multi-model simulations
with observations. Clim Dyn 35: 1289−130766

159

Slope-based parametric approaches such as linear regres-
sion need to fulfill both distributional and independence
assumptions, whereas nonparametric approaches are inde-
pendent of distributional as sump tions. In the present study,
none of the time series (seasonal and annual) followed a nor-
mal distribution as determined by a Kolmogorov-Smirnov
test (KS-test). The nonparametric Mann-Kendall (MK)
approach is particularly useful to identify the presence of
significant trends in hydroclimatological series (Mann 1945,
Kendall 1975). In the MK test, the null hypothesis is that ‘no
trend exists in the time series’ and the alternate hypothesis
is that ‘a trend exists with a significance level’ by assuming
data to be independent.

The MK test statistic SMK is computed as

(A1)

where Ti and Tj are 2 sequential subseries of data and n is
the length of the data series. Ti is used as a reference point
of Tj employing the equations: 

(A2)

E[SMK] = 0 (A3)

(A4)

where pk is the number of ties of extent for the kth value and
q is the number of tied groups. In the variance formula, the
second part of the numerator is considered for tied censored
data. The standard MK test statistic ZMK is described by the
following equation:

(A5)

If |ZMK | is greater than Zα/2, where α represents the
assumed significance level (5%), then the null hypo thesis
is rejected implying that the trend is significant. Zα/2 is
obtained from the standard normal table.

In spite of the robustness of the MK test for the distribu-
tional aspect of data, it does not consider the effect of serial
correlation. Improper independence assumption in a statisti-
cal test may lead to erroneous conclusions by heightening
the chance of type-1 errors. Various studies (Khaliq et al.
2009, Sonali & Nagesh Kumar 2013) have strongly sup-
ported the consideration of effects of serial correlation in the
usual trend detection practice. Hence, to limit the effect of
serial correlation on the trend detection analysis, we used
the modified MK (MMK) approach suggested by Yue &
Wang (2004). The presence of serial correlation affects the
variance of the MK test statistic. Hence a correction factor is
used to obtain the modified variance:

(A6)

The following equation is used to compute n*:

(A7)

where n* is the effective sample size which is uncorrelated
out of total n of data points in a time series. rk is the lag-k
serial correlation coefficient and is computed as:

(A8)

(A9)
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Step 1. Calculation of signal strength (S) for observation
and all model simulations from different experiments
(piControl, historical, historicalNat, historicalGHG and his-
toricalMisc) using Eq. (1). Fingerprint F (x) is the leading
EOF of the ensemble-averaged 9 OND Tmax time series
obtained from historical simulations (9 models for Tmax as
shown in Table 2).

Step 2. In this step, we check whether the variability
observed in OND Tmax is similar to the variability of OND Tmax

in piControl simulations. As discussed in Section 3, a Monte
Carlo test is adopted to estimate the likelihood of observations
being drawn from the control distribution (piControl simula-
tions). For the observed time series length, n is 56 and for the
control simulation length, m is 6276 (combination of all
piControl model simulation in case of Tmax). Groups of non-
overlapping p members (p = 1 for obser vation, p = 3 for histor-
icalNat) of length n are randomly selected from m years of
‘piControl’ simulations. Ensemble averaged p members are
used to calculate control S.

This process is repeated 10000 times to obtain a distribu-
tion of control S. If the observed S falls be yond the range of
control S distribution at the 5% significance level, then it

can be claimed that a human influence on climate is dis-
cernible and the changes are unnatural. The results indicate
that S of observed OND Tmax is statistically different from
control S distribution.

This process is repeated to check the likelihood of histori-
cal simulations of OND Tmax statistically being drawn from
control simulations using a Monte Carlo test.

Step 3. After successful detection, attribution is addressed
by comparing the observed S with that ob tained from differ-
ent experimental simulations such as historical, historical-
Nat, historicalGHG and historicalMisc. For comparison, S
from each model and MMM simulations obtained from dif-
ferent experiments and their 95% confidence interval are
plotted along with observed S.

Step 4. For unequivocal attribution, the observed S should
be consistent with the S of the historical simulation (repre-
senting anthropogenic forcing) and simultaneously inconsis-
tent with the S of the historicalNat simulation (which repre-
sents solar and volcanic forcing). Comparison of S for OND
Tmax from different experiments is shown in Fig. 4.
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Sen (1968) developed a non-parametric procedure to esti-
mate the magnitude of a trend in the sample of n pairs of
data. It is one of the most commonly used approaches to
detect linear trends (Khaliq et al. 2009). The slope is esti-
mated as follows:

(B1)

The n values of Qi are kept in an ascending order to obtain
the median value. Sen’s slope Qsen is computed as:

(B2)

Very similar to the MK approach, a positive or negative
value of Qsen respectively indicates the presence of a posi-
tive or a negative trend, and its value represents the steep-
ness of the trend.

A step-by-step procedure for formal detection and attribu-
tion analysis is described below by considering OND Tmax.
The following steps are repeated for each considered vari-
able, viz. Annual Tmax, JF Tmax, MAM Tmax, JJAS Tmax, OND
Tmax, Annual Tmin, JF Tmin, MAM Tmin, JJAS Tmin and OND
Tmin, separately.
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Appendix 2. Sen’s slope approach

Appendix 3. Step-by-step procedure for formal detection and attribution analysis
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