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1.  INTRODUCTION

When dealing with ensembles of global or regional
climate models (GCMs or RCMs), the question of
whether to weight or not to weight the ensemble
often arises. Weighting better-performing members
of an ensemble is assumed to create better ensemble
means with less inherent uncertainty (e.g. Giorgi &
Mearns 2002, Tebaldi et al. 2005). However, there is
no consensus on how to weight ensembles (Knutti
2010), and while an unweighted ensemble mean
often outperforms any given ensemble member (e.g.
Knutti et al. 2010, Wehner 2013), a weighted ensem-
ble mean may not produce a more robust ensemble
mean or a substantially different result (e.g. Weigel
et al. 2010, Chen et al. 2017).

In the European ENSEMBLES regional climate
downscaling project, one objective was to explore
the use of performance-based RCM weights for

eventual use in creating probability distributions of
regional projections, as weighting based on per-
formance has been suggested as a method for possi-
ble uncertainty reduction (e.g. Giorgi & Mearns
2002, Knutti et al. 2010). Thus, 6 performance met-
rics were adopted to evaluate and weight the
ENSEMBLES RCM simulations (Christensen et al.
2010). Five of the metrics were developed to meas-
ure the performance of the RCMs in simulating sub-
GCM scale climate features, specifically emphasiz-
ing where the RCMs should be capable of adding
value over GCM performance. The sixth metric was
designed to test the performance of the RCMs in
reproducing large-scale weather regimes, as they
contribute to regional climate characteristics. Thus,
multiple metrics were used to ensure a simulation
could perform well by a range of measures, verify-
ing reliability, and minimizing the possible effects of
compensating systematic bias.
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In this work, we explore the effect of the ENSEM-
BLES metrics on the RCM simulations produced as a
part of the North American Regional Climate Change
Assessment Program (NARCCAP; Mearns et al. 2012,
2013). In ENSEMBLES, the goal was to investigate the
consequence of weighting an RCM ensemble with
weights specifically designed for RCMs. Our goal is
the same, but we expand on the ENSEMBLES effort
by applying the metrics to the NARCCAP simulations,
thus allowing the metrics to be tested over a different
region of the world, and over a greater number of
 diverse sub-continental scale climates. In Christensen
et al. (2010), the European continent was broken
down into 8 sub-regions. Here, we divide the USA
into 16 sub-regions based on eco-climatic zone. Other
efforts to examine the effect of similar performance-
based metrics have usually employed fewer metrics —
thus not effectively sampling measures of model per-
formance and reliability — and/ or have been limited
to fewer regions, which limits general applicability
(e.g. Holtanová et al. 2012, Foley et al. 2013, Eum et
al. 2014, Gillet 2015, Chen et al. 2017, Ring et al.
2018). Furthermore, in the ENSEMBLES work, the
metrics were applied only to the reanalysis-forced
simulations. We expand on their method by applying
the metrics, where appropriate, to the NARCCAP
GCM-driven simulations. Given the results of this ex-
periment using the ENSEMBLES metrics for weight-
ing, we also briefly question when, where, and how
any type of generic weighting scheme would ever sig-
nificantly change ensemble mean results. Finally, we
discuss the results of the metrics and weighting in

comparison to a couple of in-depth analyses of the
NARCCAP simulations. Therefore, our focus herein is
not on providing an assessment of the differential
credibility of the NARCCAP simulations, though this
may be implied. We instead focus on the process, ac-
tual effect, and value and limitations of weighting
such an ensemble via a metrics system that is
designed to assess reliability and perhaps decrease
uncertainty in future projections.

2.  METHODS

2.1.  NARCCAP

The ENSEMBLES performance metrics are calcu-
lated for the 6 NARCCAP RCMs forced with the
National Centers for Environmental Prediction
(NCEP)/   Department of Energy (DOE) Reanalysis II
(hereafter NCEP; Kanamitsu et al. 2002) and the 12
simulations that result from forcing the 6 RCMs with
4 different Coupled Model Intercomparison Program
3 (CMIP3) era GCM simulations (Mearns et al. 2007).
Future simulations utilize the Special Report on Emis-
sions Scenarios (SRES; Nakićenović et al. 2000) A2
emissions scenario; the twentieth-century (20c3m)
emission representation is used for the baseline
period. All simulations were completed with a 50 km
horizontal resolution. A thorough description of these
simulations is available in Mearns et al. (2012) or at
www.narccap.ucar.edu. Table 1 provides an over -
view of the RCMs and GCMs; Table 2 presents the
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Acronym       Details                                                                                                                                   References

RCMs
CRCM           Canadian RCM                                                                                                                    Caya & Laprise (1999)

ECP2             Experimental Climate Prediction Center’s version of the Regional Spectral Model     Juang et al. (1997)

HRM3           Third-generation Hadley Centre RCM                                                                             Jones et al. (2003)

MM5I            Fifth-generation Pennsylvania State University − National Center for                          Grell et al. (1993)
                      Atmospheric Research (NCAR) Mesoscale Model

RCM3            International Centre for Theoretical Physics RCM version 3                                          Giorgi et al. (1993a,b), 
                                                                                                                                                                    Pal et al. (2007)

WRFG           Weather Research and Forecasting model                                                                       Skamarock et al. (2005)

GCMs            
CCSM           NCAR CCSM version 3.0, run 5                                                                                         Collins et al. (2006)

CGCM3        Canadian Global Climate Model version 3, run 4                                                            Flato et al. (2000)

GFDL            GFDL climate model version 2.1, runs 1 and 2                                                                 GFDL GAMDT (2004)

HADCM3     Hadley Centre Climate Model version 3, this run is not part of the CMIP3 archive     Gordon et al. (2000), 
                                                                                                                                                                    Pope et al. (2000)

Table 1. Regional and global climate models (RCMs and GCMs) used in the North American Regional Climate Change
 Assessment Program (NARCCAP), their identifying acronyms (RCM acronyms are as used in the NARCCAP model archive), 

and relevant references
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RCM-GCM simulation combinations. When referring
to an RCM and its driving GCM, the forcing simula-
tion follows the RCM in lower case, e.g. WRFG-ccsm;
otherwise, all acronyms are in upper case. When
referring to an RCM forced by NCEP, in sections
where only the NCEP-driven simulations are dis-
cussed, the RCM is referred to without the name of
the driver attached.

The focus of this manuscript is on winter
 (December− January, DJF), summer (June−August,
JJA), and an nual (ANN) results, although spring
(March− May, MAM) and autumn (September−
November, SON) are included. For the NCEP-driven
simulations, the  NARCCAP ensemble spans 1980−
2004, and for the GCM-driven simulations, 1971−
1999. The future simu lation period, used in the ana -
lysis of projections, spans 2041−2069. The metrics,
due to limitations in the observationally based com-
parison datasets, are only calculated for 1980− 1999
for the GCM-driven simulations.

Two of the RCMs (the CRCM and ECP2) use spec-
tral nudging, which regularly forces the simulations
back toward the large-scale driving conditions in the
interior of the domain (instead of just at the bound-
aries). Therefore, these models are more constrained
to follow the parent reanalysis or GCM, particularly
at large-scales. This trait is relevant to the results
herein.

2.2.  Verification datasets

Several observationally based datasets are used
when calculating the metrics. These include: 500 hPa
geopotential height from the NCEP reanalysis; 1/8°
spatial resolution, gridded precipitation and temper-
ature from Maurer et al. (2002) (hereafter M-OBS;
available at www.engr.scu.edu/~emaurer/gridded_
obs/ index_gridded_obs.html), bilinearly interpolated
to a 1/2° grid; and monthly, 1/2° gridded precipitation
and temperature from the Climate Research Unit

(CRU) TS version 2.10 dataset (hereafter CRU ; see
Mitchell & Jones 2005; available at https://crudata.
uea.   ac.uk/cru/data/hrg/).

2.3.  Regions

The ENSEMBLES weighting metrics were calcu-
lated over all of the regions shown in Fig. 1. Region
abbreviations are given in Table 3. For more infor-
mation on these regions, please see Bukovsky (2011).

2.4.  ENSEMBLES weighting metrics

Six performance-based metrics were developed
within the European ENSEMBLES project, which
were then combined into individual RCM weights for
use in multi-RCM analyses. An overview of these
metrics and their resulting weights as applied to the
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                    CCSM      CGCM3      GFDL       HADCM3

CRCM             X                 X                                      
ECP2                                                      X                  X
HRM3                                                    X                  X
MM5I              X                                                         X
RCM3                                  X                X                    
WRFG             X                 X

Table 2. NARCCAP GCM-driven simulations. All combina-
tions are marked with an X

Fig. 1. Map of regions used in this study. Each regional ab-
breviation is defined in Table 3. The 1 region without an ab-
breviation (in yellow) was not used in this study as much of it 

lies outside of the USA

Abbreviation                                             Name
           
         AP                                                Appalachia
         CP                                                Central Plains
         DS                                                 Deep South
         GB                                                Great Basin
         GL                                                 Great Lakes
         MA                                                Mid-Atlantic
         NA                                                North Atlantic
         NP                                                Northern Plains
         NR                                                Northern Rockies
         PNW                                            Pacific Northwest
         PSW                                              Pacific Southwest
         PR                                                 Prairie
         SE                                                 Southeast
         SW                                                Southwest
         SP                                                 Southern Plains
         SR                                                 Southern Rockies

Table 3. Names of regions illustrated in Fig. 1
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ENSEMBLES RCMs is given in Christensen et al.
(2010). For further information on the metrics de -
scribed below, including the motivation behind each
metric, please see the included references. Every at -
tempt was made to reproduce these metrics ex actly;
however, small changes were necessary to accom-
modate dataset and domain differences. Notation for
each metric is also retained from Christensen et al.
(2010) and the other related publications in the same
special issue of Climate Research at www.int-res.
com/ abstracts/ cr/ v44/n2-3. A list of the metrics, in -
cluding their identification tags, is given in Table 4
for reference.

2.4.1.  Large-scale circulation metric (f1)

This metric tests a simulation’s ability to reproduce
weather regimes (WR) (Sanchez-Gomez et al. 2008,
2009). WR are identified in NCEP using a k-means

clustering algorithm on 500 hPa daily geopotential
height anomalies. A principle component (PC) analy-
sis is used on the anomalies to reduce the number of
degrees of freedom first. Enough PCs are kept to
explain 90% of the variance. Clustering of the PC ano -
malies is done over an expanded North  American/
North Pacific region covering 10°−80° N and 170°−
320° E for 1980−2004. Twelve WR clusters are calcu-
lated, following Riddle et al. (2013) who found that
for annual analyses 12 clusters are optimal for North
America. Europe, on the other hand, required 4 WR
(Sanchez-Gomez et al. 2009). A map of the 12 cluster
centroids is provided in Fig. 2.

Once the cluster centroids are identified, over a
common NARCCAP domain covering 15.25°−
75.25° N and 159.75°−29.75° W, daily 500 hPa geopo-
tential height anomalies from the RCMs and NCEP
are matched to a given WR cluster centroid. Each day
is matched to the regime that has the highest spatial
correlation over the common domain.

Five skill scores are then calculated from this
chronology of WR for each RCM versus NCEP for
June− September (JJAS), December−March (DJFM),
and the year (taken as the JJAS and DJFM aver-
age), as done in ENSEMBLES. They include: a spa-
tial correlation between NCEP and the RCM com-
posite for each WR (f111), the difference between
NCEP and an RCM in terms of the mean frequency
of occurrence for each WR (f112), the difference in
the mean persistence time for each WR (f113), an
RCM/ NCEP ratio of the variance of the timeseries of
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    Identifier                                    Metric

          f1                       Large-scale circulation
          f2                       Mesoscale metric
          f3                       Probability density distribution
          f4                       Extremes
          f5                       Temperature trends
          f6                       Annual cycle

Table 4. Reference list of metrics

Fig. 2. 500 hPa geopotential height (GPH) anomalies associated with each cluster centroid

http://www.int-res.com/abstracts/cr/v44/n2-3
http://www.int-res.com/abstracts/cr/v44/n2-3
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the frequency of each WR in each year (f121), and
the temporal correlation of the NCEP and RCM
timeseries of the annual frequency of each WR
(f122). For application to the GCM-driven simula-
tions, f122 was not in cluded, as the GCMs are not
expected to reproduce the weather regimes with
the same temporal phasing.

The 5 skill scores are then normalized to be be -
tween 0 and 1, multiplied together, and normalized
again to sum to 1 across the models (for application to
the ensemble mean) to obtain the final values for this
metric for each season. A final annual value for all of
North America is obtained by averaging between the
2 seasons and normalizing. This is the only metric
calculated across the North American NARCCAP
domain and not individual subregions. For final
application, each region receives the same value.

It is important to note at this point that we partly
change the meaning (i.e. the intent, not the calcula-
tion, except as noted above) of this metric between its
application to the NCEP-driven and GCM-driven
ensembles. This metric was originally meant to both
measure a model’s performance in reproducing the
observed large-scale circulations that drive regional
climates and measure how well an RCM follows its
driver (Sanchez-Gomez et al. 2009, Christensen et al.
2010), both of which are sensible for an RCM per-
formance metric, particularly when only applying the
metric to reanalysis driven simulations. We maintain
this definition for the NCEP-driven runs, but cannot
maintain both parts of the original intent for the
GCM-driven simulations. We compare the simula-
tions to NCEP, instead of their parent GCMs, turning
this into a pure verification metric, instead of measur-
ing how well the RCMs follow their drivers. The rea-
son for this is 2-fold. (1) We believe it is more impor-
tant to know how well a simulation produces a
climate that is most like reality. (2) The NARCCAP
en semble contains nudged simulations, and as in -
tended, they follow their parent simulations’ large-
scale best. In ENSEMBLES, the 1 simulation that uti-
lized nudging was not included in the final results, as
the relatively superior performance in f1 would have
resulted in the highest weight, by far, based on only
1 measure (ENSEMBLES 2009). There were still 15
simulations in their final weighted ensemble. We do
not discard the nudged simulations here, as it would
mean throwing out 1/3 of the simulations, leaving
only 8 produced by 4 RCMs. Instead, we present
results of the weighting with and without the inclu-
sion of metric f1 in the final weight, as the results
vary substantially depending on whether or not it is
used, particularly in the NCEP-driven simulations,

where nudging matters most. While we could just
discard this metric — as it disproportionately high-
lights nudged models in the reanalysis-driven simu-
lations and is more of a GCM performance metric
when used with the GCM-driven simulations — its
use allows us to better examine the effect of different
weight distributions.

2.4.2.  Mesoscale metric (f2)

This metric tests the information the RCM adds at
the mesoscale in seasonal average precipitation and
2 m temperature (Coppola et al. 2010). The meso -
scale component is found by subtracting a 250 km,
5 × 5 grid cell running average from each grid cell. In
ENSEMBLES, a 9 × 9 grid box running average was
subtracted instead, as the RCM resolution was
25 km. Five skill scores comparing each RCM meso -
scale field to that from CRU are calculated for each
season. These skill scores measure the spatial corre-
lations of each field individually (mainly measuring
the ability to capture the spatial patterns near com-
plex topography and coasts), the interannual vari-
ability and RMSE of the mesoscale signals for each
variable (to measure the skill in reproducing the
magnitude and sign), and a spatial correlation be -
tween the temperature and precipitation fields (mea-
suring their spatial interconnection). As in f1, these
skill scores are normalized, multiplied together, and
normalized again to obtain a final value for this
 metric for each region and season.

2.4.3.  Probability density distribution metric (f3)

This method examines the statistical properties of
the empirical probability distribution functions
(PDFs) of daily and monthly precipitation and daily
maximum and minimum temperature (Kjellström et
al. 2010). A skill score is generated from daily precip-
itation and daily minimum and maximum tempera-
tures based on the overlap of M-OBS and each
RCM’s PDFs. A skill score for monthly precipitation is
also calculated, but consists of 5 parts that measure
an RCMs ability to capture different aspects of the
generated PDF. The final value for this metric is an
average of the skill score from daily precipitation, the
average of the maximum and minimum daily temper-
ature skill scores, and the square root of the monthly
precipitation skill score. These are then normalized,
as above, to give a final value for each season and
each region.
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2.4.4.  Extremes metric (f4)

The extremes metric tests the ability of an RCM to
reproduce 99th, 99.9th, and 99.99th percentile daily
precipitation across each given region (Lenderink
2010) and it also uses generalized extreme value
(GEV) theory to assess 5 yr return periods in daily
precipitation and maximum and minimum tempera-
ture (ENSEMBLES 2009). A basic transformation of
percent bias versus M-OBS for each of the 3 extreme
daily precipitation percentiles is calculated giving
values between 0 and 1 for each percentile. These
are then averaged to obtain the first skill score for
each region and season. The second skill score is
derived from 5 yr return periods of daily precipitation
and minimum and maximum temperature. A GEV
distribution is fit to a timeseries of seasonal maxi-
mums using L-moments. The final score for this sec-
ond part is based on the difference in the upper and
lower confidence bounds (at a 0.2 confidence level)
for the RCM 5-year return period and the bias in the
5-year return value versus that from M-OBS. These 2
skill scores are multiplied together and normalized to
obtain the final values for this metric for each region
and season.

2.4.5.  Temperature trends metric (f5)

The ability of an RCM to reproduce seasonal and
annual mean 2 m temperature trends is tested in this
metric. The value for the metric in each region is a
basic skill score with values ranging from 0 to 1 com-
paring the linear slope/trend for a given region from
the RCM to that in CRU, as described in Lorenz &
Jacob (2010). This metric is only used with the NCEP-
driven simulations and not the GCM-driven simula-
tions, as the GCMs are not expected to contain the
signals forcing the historical trends with the same
temporal phasing. Multiple GCM realizations would
likely be needed to characterize the internal variabil-
ity and encompass the observed trend.

2.4.6.  Annual cycle metric (f6)

The annual cycle metric examines bias in the
amplitude and period in the annual cycle of monthly
mean 2 m temperature and precipitation against
CRU (ENSEMBLES 2009, Christensen et al. 2010).
The index used is S, where: 

(1)

and R is the correlation coefficient between the RCM
and observations, R0 is the maximum attainable cor-
relation (R0 = 1), and σ is the SD of the RCM normal-
ized by the SD of the observations (σ = σRCM/σOBS). S
is calculated separately for 2 m temperature and pre-
cipitation, the 2 values are averaged together and
then renormalized. For this metric only, the same
value is used in the final weight for the annual
weight as well as the individual season weights, as it
is computed on a full annual cycle only, and not sub-
periods within that cycle.

2.4.7  Final weights (W)

Following the baseline approach in Christensen et
al. (2010), the final weight is obtained by multiplying
the metrics together. Using this method, as opposed
to an additive one, a model must perform well in all
metrics to obtain a high weight and the importance of
each metric is retained in the final result. This also
assures no compensation for bad performance in one
metric given good performance in another. Once the
product is taken, the values are renormalized to sum
to 1 for the final weight. Christensen et al. (2010) only
address annual weights and not seasonal ones. Here,
however, we discuss weights for individual seasons
as well. As in ENSEMBLES, the summer final weight
is the JJAS seasonal value from the large-scale met-
ric (f1) and the JJA seasonal value from the other
metrics multiplied together, and for winter, the DJFM
seasonal value from f1 and DJF from the others
(except for f6, in which the same value is used for all
seasons).

3.  RESULTS AND DISCUSSION

3.1.  NCEP-driven simulation metrics

Winter, summer, and annual results from metrics
f2−f6 are displayed in Fig. 3. Results for spring and
fall are given in Fig. S1 in the Supplement at www.
int-res. com/  articles/ suppl/ c077 p023 _ supp.   pdf.
Across regions, the metrics are very evenly distrib-
uted for f3 (PDF metric), f4 (extremes metric), and f6
(annual cycle metric). That is, the RCMs perform
almost equally, and consistently across regions and
seasons in these metrics. These measures do not
express that the RCMs performed well or poorly, only
that they performed similarly, better, or worse rela-
tive to the other RCMs. However, there is a little
more variability in performance in the extremes met-( )
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ric, especially in summer, originating from
regions where warm-season convection is important
(e.g. the Southwest, Plains, and Southeast regions).
The CRCM, for instance, scores lower than other
RCMs in the extremes metric in summer in many
regions, due to its handling of precipitation extremes

(not shown). This is not surprising, however, given
that this RCM does produce extremes that are
damped, likely be cause of its use of nudging
(Alexandru et al. 2009). Likewise, the HRM3 contains
a relatively low score in many regions, originating

29

Fig. 3. Final values for metrics f2−f6 (top−bottom, respectively) averaged
annually (left column), for winter (center column), and summer (right col-
umn) from the NCEP-driven simulations. Metric values summed across
simulations are constrained to sum to 1 in each region (see Table 3 for defi-
nitions of regions); therefore, the thickness of the color over a region for any
given simulation gives the value of the metric for that simulation and illus-
trates the performance of that simulation in that region relative to the other 

simulations (thicker is better)
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from the temperature component of the extremes
metric (not shown), and possibly related to its known
warm bias (Mearns et al. 2012). This same bias likely
also contributes to the HRM3’s low performance in f3
via the temperature half of the metric (where it is
ranked lowest in the majority of regions). Metrics f2
(mesoscale metric) and f5 (trends metric) produce
greater variability in performance between models
and regions than the other 3 metrics across seasons
(Fig. 3). This is somewhat different than what was
found in ENSEMBLES, where f2 and f4 produced the
greatest performance variability. The most obvious
departure in score is in f2 from the RCM3 in the
Great Lakes region, where it receives a very high
score. The RCM3 also has a high score in f5, though
not to the same extent. Another noteworthy outlier in
f2 is the HRM3 in summer in the Southwest and
Southern Rockies (f2 scores here are the highest, sec-
ond to the RCM3 in the Great Lakes region only),
where it is capturing the orographically forced spa-
tial distribution of precipitation and temperature and
their interannual variability in a manner that is supe-
rior to the other RCMs. This result is not surprising,
given its known skillful performance in simulating
various aspects of the North American monsoon
(Bukovsky et al. 2013, 2015). Aside from a few other
more minor outliers, the RCMs perform fairly equally
in f2 relative to the results of f5. High variability in f5
is expected, however, given previous examination of
the temperature trends produced by these models in
Bukovsky (2012). Given Bukovsky (2012), for exam-
ple, it is not surprising the MM5I performs poorly
across all seasons and regions in this metric, as it has
a very strong, very widespread, progressive warming
bias. Much of the variations otherwise come from the
RCMs’ differing ability to capture features such as
the summer and fall ‘warming hole’ that is present
across the central part of the continent during this
period, the strength and pattern of winter warming,
and the extent of the cooling in spring across the
northern USA during this period. Overall, the 2
nudged RCMs, the CRCM and ECP2, as well as the
RCM3 often outperform the HRM3 and MM5I in this
measure, particularly outside of the western USA.

Scores from f1, the large-scale metric, are provided
in Fig. 4. Whereas scores from the other metrics are
often relatively uniform, and between 0.1 and 0.2,
with the exception of some outliers, scores from f1 do
not indicate relatively consistent performance across
the RCMs. As illustrated in Fig. 4a, the CRCM scores
substantially higher than the other RCMs in this met-
ric in winter (0.54), summer (0.70), and in the annual
average (0.62). ECP2 is always the second highest,

30

Fig. 4. Values for (a) metric f1 and (b−f) its sub-components 
for the NCEP-driven simulations
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but not by nearly as much (0.21−0.13). Both the
CRCM and ECP2 use nudging. As in the ENSEM-
BLES simulations, this yields a large advantage
(Sanchez-Gomez et al. 2009), as they are being
nudged to one of the same fields used to compute the
WR. However, this metric is in part meant to measure
how well an RCM follows its driver. The HRM3, on
the other hand, always scores lowest in this metric.
As illustrated in Fig. 4b-e, these differences do not
originate in all of the sub-components of f1. The per-
formance of the RCMs in f113 and f121 are more uni-
form than in the other sub-metrics. That they are uni-
form in f113 is not surprising, as this is a measure of
average persistence time in a given WR. With 12
regimes, this value is almost always between 1 and
3 d in summer and 1 and 4 d in winter in the RCMs
and NCEP, with an average of 2.5 d in any weather
regime in NCEP; thus, there is very little spread.
There would be more spread if the maximum amount
of time spent in each WR was used instead of the
average, as on average across the WR, the maximum
time spent in any WR in the series is 10.5 d in NCEP.
The greatest spread in performance is in f111, the
spatial correlation of the 500 hPa geopotential height
anomaly composited for days assigned to a given
WR. The smaller bias in the large-scale in the nudged
models is clearly an advantage here. As the sub-met-
rics are multiplied together to come up with the final
value for f1, any low or high score in a component
will be reflected. As the CRCM does not perform

poorly in any sub-metric (and is often the best), the
performance in f111 highly dictates its final high
score. As HRM3 performs poorly in f111, but also has
the lowest score in other sub-metrics where there is
less spread, it obtains the lowest score. The HRM3’s
low score in f1 in summer is further influenced by low
values in f112 and f1222.

When f1 is not included in a region’s final weight,
the RCM that carries the most weight varies by re -
gion (Fig. 5). When f1 is included, because there is a
much greater spread in the values than the other
metrics, the CRCM carries the greatest weight in al-
most all regions at all times, and the HRM3 has
almost no weight in many regions, particularly in
summer. This is also true of the MM5I in many re-
gions. The overall influence of f1 on the final weights
is made more obvious by averaging across regions
for each RCM, as done in Fig. 6. While the average
weight without f1 is more uniform across RCMs
(about 0.1−0.3), including f1 the weight varies be-
tween near 0 and 0.6.

3.2.  GCM-driven simulation metrics

In ENSEMBLES, the metrics and final weights were
calculated using only reanalysis-driven RCM simula-
tions, not GCM-driven simulations. Other work with
the NARCCAP ensemble suggests that the perform-
ance of the RCMs when driven with the GCMs can be
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Fig. 5. Final weights for the NCEP-driven simulations with (bottom) and without (top) the large-scale metric (f1) included in 
the calculation
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very different from their corresponding reanalysis-
driven simulations (e.g. Bukovsky et al. 2013, Wehner
2013, cf. McCrary & Mearns 2017, R. R. McCrary &
L. O. Mearns unpubl.); therefore, we have calculated
the metrics and final weights for each GCM-driven
simulation as well. In doing so, we removed metrics

and metric components that would be
most affected by internal GCM variabil-
ity: f4, the trend metric; and part f122 of
the large-scale metric. We also changed
the overall intent of f1 (but not the
methodology), as discussed in Section
2.4.1. In this application, f1 is now purely
a verification metric, comparing the simu-
lations to NCEP, and not also assessing
how well the simulations follow their
driver. Since the GCM simulation of
large-scale WR is not necessarily very ac-
curate (compared to NCEP), the nudged
simulations lose the very clear advantage
they demonstrated when forced by NCEP.

The annual average final metric values
for the GCM-driven simulations are
shown in Fig. 7. Overall, the annual aver-

age results are similar to the seasonal results (Fig. S2
in the Supplement). Similar to the NCEP-driven
results, metrics f3, f4, and f6 show relatively uniform
performance between the simulations with greater
variability between simulations in metric f2, the
mesoscale metric. The performance of some of the
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Fig. 6. Final weights for the NCEP-driven simulations averaged across all
regions with (WF1) and without (NF1) the large-scale metric (f1) included
in the calculation. If all of the simulations received equal weight, the 

weights would be 0.167

Fig. 7. Annually averaged final values for metrics f2, f3, f4, and f6 from the GCM-driven simulations. As in Fig. 3, the thickness
of a color above a given region indicates the value of the metric for the simulation assigned to that color, and metric values 

must sum to 1 in each region
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RCMs when forced with a GCM is also comparable to
their NCEP-forced simulation. For example, the
RCM3 performs well in the mesoscale metric here
(Fig. 7) as well as when forced by NCEP (Fig. 3) in
the Great Lakes region (GL). Also, the lack of heavy

precipitation extremes in the CRCM leads to a rela-
tively poorer performance compared to the other
simulations in the extremes metric regardless of
driver. Relative performance in these metrics does
not cluster by RCM or GCM in all cases, however.
For instance, the MM5I-hadcm3 and ECP2-gfdl both
score worse in the mesoscale metric in regions of
complex terrain relative to their counterparts.

The GCM-driven simulations perform consider-
ably worse than the NCEP-driven simulations in met-
ric f1, the large-scale metric. The relative perform-
ance can be seen by comparing the scores from the
subcomponents of f1 in Figs. 4 & 8. In this case, the
nudged models do not have an advantage as per-
formance is closely tied to how well the driving
GCMs reproduce the large-scale circulation and the
various WR. However, when a nudged RCM is paired
with a GCM that better captures North American
weather regimes, it does score higher than the other
RCMs paired with that GCM. This is the case for the
CRCM-ccsm in summer and the ECP2-hadcm3 in
winter (Fig. 8a).

Scores in part f111 (the spatial correlation of the
height pattern for all days identified as a given
weather regime) are particularly poor, with values
that are lower by about an order of magnitude com-
pared to the NCEP-driven simulations (cf. Figs. 4b &
8b). Furthermore, due to poor performance in winter
in f112 (percent of days spent in each weather
regime), the CCSM-driven simulations virtually drop
out of metric f1 completely in winter (due to an
inability to capture regimes a, f, and l; see Fig. 2).

Performance in f1 suggests that if we were to
weight the ensemble using it, the results may not be
very meaningful. This would give us little confidence
in a weighted ensemble mean; therefore, in present-
ing results, we will continue to separate the results of
the final weighting with and without f1. While we
could discard f1, it demonstrates the effects of a
diverse weight distribution well.

As in the NCEP-driven simulations, inclusion ver-
sus exclusion of the large-scale metric in the final
weight creates a much greater separation in weight
be tween simulations (Fig. 9; and for weights aver-
aged across all regions, see Fig. S3 in the Supple-
ment), although for a different reason. Weights ex -
cluding f1 are relatively more uniform across the
simulations and regions. Without f1, the WRFG-
cgcm3 simulations stands out as performing better
than most simulations in most regions in both sea-
sons. The HRM3-gfdl also performs best in summer
in most regions according to these 4 metrics, and it
does particularly well in the Southwest (SW). Without
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Fig. 8. Values for metric f1 and its sub-components for the
GCM-driven simulations. Note that the scale on (b) is now
different from the other panels by 1 order of magnitude



Clim Res 77: 23–43, 2019

f1, the MM5I-hadcm3 simulations performs most
poorly in many regions in winter and summer, along
with the ECP2-gfdl in winter and the CRCM-ccsm in
summer. When f1 is included in the final weights, the
CRCM-ccsm moves from the lowest weighted model
in summer (and second lowest annually), to the high-
est weighted model in summer (and highest annu-

ally). The HRM3-gfdl, because of its very low score in
f1, switches from one of the highest weighted models
in summer to a weight that is virtually 0 when f1 is
used. Similarly, the HRM3-hadcm3 simulation final
weight increases such that it moves from the poorer-
weighted half of the simulations, to the highest
weight in winter and one of the higher weights in

34

Fig. 9. Final weights for the GCM-driven simulations with (bottom) and without (top) the large-scale metric (f1) included in the 
calculation. In a ‘model democracy’, the weights would equal 0.083

Fig. 10. Unweighted NCEP-driven ensemble mean temperature bias for (a) winter, (d) summer. Bias is defined as the ensemble
mean minus CRU dataset difference. (b,c,e,f) Improvement with weighting on the ensemble mean temperature bias. Improve-
ment is the difference in bias between the weighted and unweighted ensemble mean, but where positive (negative) improve-
ment indicates that the bias has become closer to (farther from) 0 with weighting by the indicated amount. Weighted ensemble 

improvement is shown excluding f1 from the final weight (b,e) and including it (c,f)
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summer in most regions with the addition of f1. Inter-
estingly, the set of simulations with a weight that is
not effectively 0 in summer is almost exactly opposite
that of the set that is not effectively 0 in winter (see
Fig. 9, bottom panels). Only the HRM3-hadcm3 has
any significant amount of weight in both seasons in
most regions when f1 is included, and the MM5I-
hadcm3 has a near-0 weight in all regions in both
seasons. Considering they have the same driver, this
result is surprising, and also not comparable to those
RCMs’ performances when driven with NCEP. Fur-
thermore, it is only comparable in rank to their
weights without f1 when driven by the HADCM3, in
that the HRM3 has a somewhat higher weight than
the MM5I in most regions.

3.3.  Effect of weighting on ensemble mean bias:
Does it make a difference?

The effect of weighting on the performance of the
ensemble mean for the NCEP-driven simulations rel-
ative to the CRU dataset for mean temperature and
precipitation is illustrated in Figs. 10 & 11. The
change in the bias with weighting is given as ‘im -
provement’, where a positive improvement indicates
that the bias has decreased (moved closer to 0) by the
indicated value. Negative ‘improvement’ indicates
that the bias has increased (moved farther from 0).
Figs. 10 & 11 show the effect of weighting excluding
and including f1 from the final weights for each
region. Each region is given the weight calculated
from the performance of each metric in that individ-
ual region (not a uniform weight averaged across all
regions), i.e. the weights given in Fig. 5 for the

NCEP-driven simulations. The effect of weighting on
the bias is only shown and discussed here for the
NCEP-driven simulations versus CRU as similar con-
clusions can be drawn from the GCM-driven simula-
tions. Results from the GCM-driven simulations ver-
sus CRU are available in Figs. S4 & S5 in the
Supplement. Similarly, since the same conclusions
can also be drawn using M-OBS for comparison in -
stead of CRU, we will only show and discuss results
using CRU (results using M-OBS can be found in
Figs. S6− S9 in the Supplement). This is not to say that
the comparison dataset does not change the bias,
however, it is just that we end up with the same gen-
eral conclusions using either.

Overall, improvement in bias with weighting for
both mean temperature and precipitation is mixed,
with the weights increasing or decreasing the ensem-
ble mean bias depending on the region and season.
Positive or negative improvement is often small rela-
tive to the ensemble mean bias for weighting without
f1. In some cases, the change in bias with weighting is
quite large relative to the unweighted bias though,
for good or bad, and this most often occurs in the
western half of the USA. The effect across variables is
not always consistent either. For example, in the
Northern Plains (NP) and Central Plains (CP) regions
for winter temperature, the positive improvement
with weighting notably decreases the bias (Fig. 10).
However, at the same time, bias in DJF precipitation
substantially increases with weight ing in NP relative
to other regions (Fig. 11), but the bias is already so
high that this change is not large relative to that re-
gion’s unweighted bias (Fig. 11). In some regions,
weighting flips the sign of the bias as well (not
shown), improving (e.g. GL DJF temperature, NP JJA
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Fig. 11. As in Fig. 10, but for ensemble mean precipitation percent bias
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precipitation) but more often exacerbating (e.g. Great
Basin [GB], Southeast [SE] DJF temperature, GL JJA
precipitation) the bias.

Furthermore, including f1 in the final weight often
increases the magnitude of the ‘improvement’ for
better or worse. Generally, including f1 illustrates the
mixed effect of putting most of the weight on the
CRCM and ECP2 simulations versus spreading the
weight more evenly across the set of 6 NCEP-driven
simulations. The effect of including f1 is much ampli-
fied in the GCM-driven ensemble, where weights
are also skewed towards only a few simulations as
well, with more large increases in bias across the
USA in winter (see Figs. S4 & S5)

By and large, there is no clear signal that weighting
improves the ensemble mean bias. That the weights
sometimes lead to a more biased ensemble mean is
not unexpected given that the weights are not based
on metrics that are explicitly related to mean bias.
This was also the case in Christensen et al. (2010)
with these metrics. It is in contrast to weighting
schemes like the one applied in Haughton et al.
(2015) though, where the mean bias in global mean
temperature improved when a measure of mean per-
formance was used to weight a GCM ensemble.
Therefore, including a measure of mean perform-
ance here may improve these results, but given the
influence of the other metrics, this cannot be as -
sumed, since the relative performance in all metrics
influences the final weight. Different methods for
equally combining the metrics could also be tested in
place of the multiplicative approach, but as in Chris-
tensen et al. (2010) when this was tested, we suspect
we would also end up with the same rank of simula-
tions in any given region but with damped spread
and, therefore, similar but damped results for bias
improvement. We could also pick and choose which
metrics to use, but this would introduce more subjec-
tivity into the approach as we would need to deter-
mine what aspects of performance are most impor-
tant, and this would likely vary by region, decreasing
the usefulness of an approach that is meant for uni-
versal application. It also may not decrease bias in
the ensemble mean.

3.4.  Effect of weighting on ensemble mean
 projections: Can it make a difference?

Given the results of Section 3.3, we hypothesize
that unless most of the weight is applied to 1 or 2 sim-
ulations that have changes toward the extremes of
the ensemble distribution, the effect of the weights on

the ensemble mean change would not be significant.
We also question whether weights that were based
on multiple metrics of performance could ever create
weights that differentiated the models in a meaning-
ful way, even if the metrics were reasonably justified,
as the weights might become more diluted. The
greater the number of metrics and sub-metrics in-
volved, the more uniform the weights seem likely to
become, and this would also be true as the number of
models increased. We see another issue here as well,
related to the necessary limitation that the weights
sum to 1 for application to the ensemble. The results
before the normalization process (not shown for most
metrics) are often more revealing regarding model
performance than they are afterward. With a 0−1 nor-
malization limitation, it seems very likely that any
weighting scheme would not substantially differenti-
ate between simulations unless it involved few per-
formance metrics and/or in a location where per -
formance between models is very heterogeneous.
Therefore, in this section we also apply a generic set
of ‘all possible weights’ to test these hypotheses when
applying the metric-based weights to the projections.

In Fig. 12 we demonstrate the effect of the metric-
based weights on the ensemble mean projections of
precipitation and temperature, but also the potential
effect of any combination of weights on the ensemble.
In Fig. 12 we focus on 1 season and 3 regions that
broadly represent the possible results across all of the
regions and seasons (the full set of results is shown in
Figs. S10−S15 in the Supplement). For Fig. 12 (and
Figs. S10−S15), 1 000 000 random, uniformly distrib-
uted weight combinations (sets of 12) that sum to 1
were created and applied to the NARCCAP en semble
of simulation projections over each region to create a
PDF of possible weighted climate changes. We con-
sider any ensemble mean change that is outside of
these bounds to be significantly different from the un-
weighted ensemble mean. In this way, we are com-
menting on statistical significance and not practical
significance. Some of the differences discussed below
may matter from a climate change impacts point of
view even if they are not statistically significant.

For the North Atlantic region (Fig. 12a,b), the
weighted ensemble mean with or without f1 is not sig-
nificantly different than the unweighted mean for pre-
cipitation or temperature. For temperature, weight ing
tends to pull the ensemble mean to a slightly lower
value of change, as most of the weight is still on a
model or models that project changes near the ensem-
ble mean. This includes the en semble mean with f1,
where approximately 57% of the weight is placed on
the ECP2-hadgem (Fig. 9), which projects a change of
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Fig. 12. Projections of (a,c,e) winter temperature and (b,d,f) precipitation with and without weights from 3 regions (a,b:
NA, North Atlantic; c,d: NP, Northern Plains; e,f: SW, Southwest). Black curve represents the frequency of a given ensem-
ble mean change using 1 000 000 different sets of random, uniformly distributed weights. The purple triangles indicate the
5th and 95th percentile values of change from this distribution. The dark orange line indicates the change from the un-
weighted ensemble mean; the light turquoise line that from the ensemble mean weighted using the metrics without f1;
and the dark turquoise line that from the ensemble mean weighted using the metrics with f1. The short orange lines 

indicate the individual simulation projections
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+2.9°C, just be low the un weighted ensemble mean.
Thus, the weighted means are not significantly differ-
ent. Results for precipitation in this region are similar.

For the Northern Plains region (Fig. 12c,d), one
weighted mean for both temperature and precipita-
tion is significantly different than the unweighted
mean. For temperature, the weighted mean includ-
ing f1 is at the high extreme of what is possible given
the ‘all possible weights’ distribution, mostly because
66% of the weight is on the one simulation (ECP2-
hadgem) with the greatest temperature increase. For
precipitation, this is one of only two regions and sea-
sons where the weighted ensemble mean without f1
is significantly different than the unweighted mean
(the other is in annual mean temperature in the
PSW). The weights without f1 in this region are fairly
uniform, but there is an emphasis on the simulations
with the greatest projected increase in precipitation,
the WRFG-cgcm, which receives 23% of the weight
(Fig. 9). Also, in the NP, weights without f1 favor the
CCSM- and CGCM-driven simulations, which also
tend to project a greater increase in precipitation.
Combined, this leads to the very rare occurrence of
the weighted ensemble without f1 being significantly
different than the unweighted ensemble.

In the SW region (Fig. 12e,f), the weighted mean
using f1 demonstrates with both precipitation and
temperature the effect of putting most of the weight
on models with larger changes. For temperature,
about 41% of the weight is put on the simulation with
the greatest temperature change, pushing the en -
semble mean weighted with f1 outside of the signifi-
cance bounds. With precipitation, 81% of the weight
ends up on the 2 simulations with the greatest posi-
tive change, leading the ensemble mean weighted
with f1 to be at the very edge of what is possible
within the ‘all possible weights’ distribution.

When f1 is included in the final weight in particu-
lar, it is not uncommon for a metric-weighted mean to
be significantly different than the unweighted mean,
but this is because most of the weight is put on a sim-
ulation or two with more extreme changes relative to
the rest of the simulations. This is particularly com-
mon in winter temperature changes, where this hap-
pens in 14 of the 16 regions (88%), and 7 of the 16
regions (44%) for winter precipitation. It is otherwise
much less common when the weights are more
evenly distributed (when f2−f6 are used only) or
weighting favors simulations with changes that are
near the mean. For summer precipitation, this occurs
in 2 regions, and for temperature in 6, while for the
annual mean change, it occurs in 3 regions for pre-
cipitation and 2 for temperature.

Overall, the results of this experiment show that a
large percentage of weight must be put on a model or
models with values towards the extremes of the
ensemble of possible changes to obtain an ensemble
mean that is significantly different than the un -
weighted ensemble mean. It also illustrates that this
is an unlikely outcome in any weighting system
where the weights must sum to 1, unless there is one
factor that dominates over all the rest, justified or not,
as f1 does here.

3.5.  Metrics vs. in-depth analysis

The ENSEMBLES metrics were developed to be
generally useful in measuring RCM performance
over any region. Therefore, regionally specific pro-
cesses that may be of great importance to the per-
ceived quality of an RCM simulation are not included
in the metrics or final weights. It may be possible, as
a result, for a model to ‘score’ well and have prob-
lems that are not clearly captured by the metrics. To
illustrate this point, we will briefly compare and con-
trast the results of this weighting effort with the
results of in-depth NARCCAP analyses that have
been completed over 2 very different regions in sum-
mer with a focus on precipitation.

3.5.1.  North American Southwest

Summer precipitation in the North American SW
region is produced as a part of the North American
monsoon system (NAMS). There are a number of well-
defined processes that encompass NAMS that affect
when and where precipitation falls. Bukovsky et al.
(2013, 2015) (hereafter BUK1315) provide an  indepth
examination of the NARCCAP simulations with the
explicit goal of establishing their differential credibil-
ity in simulating NAMS. The overall results of
BUK1315 for the NCEP-driven simulations do not
deviate substantially from those of the combined
metrics, excluding f1, in that the simulations are of a
similar quality, as each simulation has variables/pro-
cesses that it reproduces slightly better or worse than
the others. Here, if the final weight excluding f1 is
used to rank the NCEP-driven simulations, the
WRFG is weighted highest, followed by the ECP2,
RCM3, HRM3, MM5I, and finally the CRCM. In
BUK1315, the WRFG, HRM3, and CRCM are found
to be the better performing simulations mostly be -
cause they reproduce the Gulf of California low-level
jet best, which is important for moisture flux into the
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SW, and therefore precipitation production. The
MM5I, for example, in BUK1315 is the poorest per-
forming RCM, as it has the weakest onshore flux of
moisture (no low-level jet), and a very strong dry-
bias in SW-area monsoon precipitation as a result,
which is consistent with its lower weight. The metrics
agree with BUK1315 when weighting the WRFG
highly, but the HRM3 always contains a weight that
falls in the bottom half of the results, contrary to the
process-level assessment.

The differential performance of the GCM-driven
simulations using the metrics versus the results of the
in-depth analysis in BUK1315 is much more complex,
and there are some striking differences. Using the
final summer weights to rank the simulations, the
HRM3-gfdl is the best performer in the SW excluding
f1, followed by the RCM3-gfdl, ECP2-hadcm3, and
HRM3-hadcm3. The CRCM-ccsm receives the low-
est weight without f1. When f1 is included, the
CRCM-ccsm receives the most weight, followed
by the HRM3-hadcm3, MM5I-ccsm, WRFG-cgcm3,
WRFG-ccsm, and RCM3-cgcm3. The others receive
weights that are virtually 0. Specifically, in Bukovsky
et al. (2015), the model that evaluated as most credi-
ble was the HRM3-hadcm3 for the SW. This is partly
because this RCM captures regional processes well,
but also because the HADCM3 GCM provided the
least biased boundary conditions for this region. That
this simulation is ranked in the top half when f1 is
excluded and is second overall when f1 is included
is consistent with the assessment of BUK1315. We
see the greatest disagreement in the other highly
weighted simulations.

BUK1315 show that the other GCM-driven simula-
tions all have significant problems, most of which are
inherited from the GCMs, and some of which are
quite detrimental to the simulations, but few of these
are picked up on using the metrics. For example, the
GFDL-driven simulations, 2 of which receive the most
weight when f1 is excluded, inherit a large-scale forc-
ing problem from the GFDL that causes an extraordi-
narily high precipitation bias from mid-summer into
winter over the SW. This does present itself in the raw
results of f6 in the annual cycle of precipitation to
some extent (not shown), but once averaged with the
temperature sub-component of f6 and normalized,
this problem is washed out in the results (see Fig. 7).
Additionally, according to metric f1, the CCSM and
its child RCMs reproduce North American large-
scale weather regimes in a way that is relatively
better than the others. Therefore, they receive much
of the weight when f1 is included. However, the
CCSM-driven simulations in BUK1315 are found to

be the least credible. This is due to their inability to
well simulate many important monsoon-related pro-
cesses (e.g. the monsoon anticyclone, tropical easterly
waves, the El Niño−Southern Oscillation, atmos phe -
ric moisture content, etc.). This combination of prob-
lems results in these simulations containing almost no
precipitation in the SW in summer, which affects met-
rics f2−f6 and the final weight when f1 is excluded.
When the weights are used on the ensemble mean,
these differences are observable. When the set of
weights excluding f1 is used (Fig. S5e), the bias in SW
summer precipitation de creases, as putting more
weight on the wetter simulations compensates for the
propensity of dry biased simulations in the ensemble.
When the set of weights with f1 is applied to the en-
semble mean (Fig. S5f), the dry bias is exacerbated,
as most of the weight is then from simulations that
have very insufficient precipitation during monsoon
season. This again suggests that f1 is not an appropri-
ate metric for performance in this region.

3.5.2.  North Atlantic

Thibeault & Seth (2015) (hereafter TS15) evaluated
the credibility of the NARCCAP GCM-driven simula-
tions for summer in the North Atlantic region (NA).
They focused on factors that are important in dis -
tinguishing wet summers versus dry summers and
whether or not the models capture the relevant pro-
cesses. This included anomalies of 500 hPa heights,
850 hPa winds, and moisture convergence. In the
end, no model performed well in all measures, but
TS15 did identify 4 ‘better’ models, the MM5I-ccsm,
WRFG-ccsm, HRM3-gfdl, and RCM3-gfdl, in no par-
ticular order. In the NA region, 2 of these are consis-
tent with the metric weighting, the WRFG-ccsm and
MM5I-ccsm are weighted highest when f1 is ex -
cluded, and because the CCSM-driven runs do well
with metric f1 in summer, they still receive high
weights when f1 in included (Fig. 9). The 2 GFDL-
driven simulations may do well using the region-spe-
cific measures in TS15, but they do not both perform
well in all of the metrics. While no model receives a
particularly low weight in the NA when f1 is ex -
cluded, the HRM3-gfdl does receive one of the high-
est weights and the RCM3-gfdl one of the lowest,
and none of the GFDL-driven simulations receive a
non-negligible weight when f1 is included. In TS15,
the GFDL-driven simulations best reproduce the ob -
served large-scale circulation anomalies associated
with wet summers. Clearly there is a difference, then,
in the ability to reproduce the observed large-scale
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weather regimes over North America in metric f1,
and the ability to reproduce the large-scale drivers of
wet and dry climates in the NA. This is similar to
what is seen in the Southwest in Bukovsky et al.
(2015), with the CCSM-driven simulations having
the greatest error in the placement and magnitude
of the monsoon anticyclone, a regionally important
large-scale feature, and the GFDL- and HADCM-dri-
ven simulations having the least error. Therefore, we
would again argue that f1, as it is currently formu-
lated, may not be the best measure of large-scale cir-
culation performance in the RCMs, particularly in
summer for regions in North America.

4.  CONCLUSIONS

Performance metrics and weights initially created
for use with the ENSEMBLES simulations were ap -
plied here to the NARCCAP simulations. While we
can obtain a model with the highest ‘score’ within the
NCEP-driven simulations, the final weights do not
substantially differentiate performance between the
models in many regions, across seasons, or across the
whole USA combined unless the large-scale metric,
f1, is included (Fig. 6). This is because, as expected,
the models that are nudged to the large-scale, per-
form better in the large-scale metric. That the metrics
did not substantially differentiate between the mod-
els when only f2−f6 are used is similar to the result
obtained in Christensen et al. (2010); however, one of
the ENSEMBLES reanalysis-driven simulations did
emerge as a ‘winner’ over Europe with a substan-
tially higher weight, unlike here. In Christensen et al.
(2010), nudged models were not included in the ana -
lysis, so the beneficial effect of nudging did not cause
interpretation problems in f1 results, or a uniformly
strong differentiation of weights in all regions, as it
does here. In metrics f2−f6, though, the skill of an
RCM usually depends on what metric, season, or re -
gion is examined. Generally, any one simulation does
not perform uniformly well everywhere in all metrics
at all times of the year, and all RCMs have similar
performance everywhere in several metrics.

Similar results are found for the GCM-driven simu-
lations, with relatively little differentiation when only
metrics f2−f6 are used. Again, the skill of a simulation
depends heavily on which metric or region is consid-
ered. The RCMs perform similarly to one another in
metrics f3−f6, with some slight differentiation via f2,
the mesoscale metric. As with the NCEP-driven sim-
ulations, while we could identify a ‘best’ simulation
given the metrics, the final weights (without f1) are

fairly uniform (with weights ranging from 0.04−0.11,
where 0.083 would be the weight in a ‘model democ-
racy’; see Fig. S3). Overall, however, for both the
GCM-driven and NCEP-driven results, RCM3 and
WRFG simulations always rank in the top, higher-
weighted half of simulations, with CRCM in the bot-
tom-half, and HRM3, ECP2, and MM5I simulations
mixed within the ensembles (regardless of driver), if
rank is determined by the average annual weight
across all regions excluding f1 (cf. Fig. 6, Fig. S3).
Within the GCM-driven ensemble only, there is no
clear delineation in performance/rank by parent
GCM using the same measure. This suggests that the
purposeful design of metrics f2−f6 for RCM-specific
performance evaluation may in fact provide some
delineation of performance by RCM, with less regard
for the quality of the boundary conditions, at least in
this case. As the ENSEMBLES program did not apply
the metrics to GCM-driven simulations, it is un -
known if the relative performance by total weight for
their RCMs would carry through to the GCM-driven
simulations. This could also be difficult to assess
without an ensemble like NARCCAP where each
RCM systematically downscaled multiple GCMs.

However, when the metric-based weights are used
on the ensemble mean, we show that they do not
consistently improve the bias over the unweighted
ensemble mean for precipitation or temperature in
the NCEP- or GCM-driven simulations (see Sec-
tion 3.3.). This result is similar to the findings in other
studies (e.g. Fowler and Ekström 2009, Christensen
et al. 2010, Knutti et al. 2010, Weigel et al. 2010). The
in creased bias in some regions with weighting is
likely the result of a combination of factors. (1) There
is no direct measure of mean bias in the metrics; (2)
the metrics do not capture all of the possible errors or
processes that could feed into model mean skill; and
(3) relative performance can still give high weight to
models that are not performing well (as in Klocke et
al. 2011).

Comparing weights in 2 regions to in-depth analy-
ses in Section 3.5 highlights the fact that metrics that
are expected to be meaningful across a wide variety
of regions clearly fail to take account of the effects of
important region-specific processes. This is evi-
denced when the universal metrics do not identify
the same well or poor performing simulations as the
in-depth analyses. Creating weights that are specifi-
cally tailored to a region’s processes based on in-
depth analysis may be a worthwhile exercise, but
may also be subject to similar complications. For ex -
ample, in Bukovsky et al. (2015), a binary quasi-
metric based on process-level analysis was explored
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in the discussion, and it successfully differentiated
the quality of the simulations, and may have pro-
duced a wide range of weights. However, a similar
ap proach would likely not work to substantially dif-
ferentiate credibility or produce diverse weights in
TS15, as no simulation performed similarly well
across all process-based measures.

Given the experiment in Section 3.3 using baseline
climate simulations, the number of metrics and sub-
metrics included in the final weights, and the 0−1
normalization required for application of the weights,
we believed that using the metric-based weights on
our ensemble means for climate projections would
not produce substantial differences in the regional
mean climate projections. Thus, when applying the
metric-based weights to the projections in Sec-
tion 3.4., we also applied a large, generic set of ‘all
possible weights’ to create a PDF of possible climate
changes that could result from any similar weighting
scheme.

Overall, the results of this latter experiment illus-
trate that it is unlikely that a weighted ensemble
mean change will be significantly different than an
unweighted ensemble mean change in any weight-
ing system where the weights must sum to 1 unless,
unsurprisingly, there is one factor that dominates
over the rest. If a large percentage of weight is put on
a simulation or the simulations that are correspond-
ingly more extreme than the rest, then significant dif-
ferences in ensemble means are possible, but one
would need to closely examine whether or not that
outcome was credible.

Consequently, we find that weighting ‘does make a
difference’, in that it can change the ensemble mean.
But, the difference after weighting is not always bet-
ter, meaningful, or significant. We also find that
weighting ‘can make a difference’, but this depends
heavily on the distribution of weight, and usually
requires that most of the weight go to few of the more
extreme simulations.

Overall, we do not judge these metrics as useless.
On their own, the sub-metrics are useful for high-
lighting potential model problems. They become di -
luted in combination though, and do not substantially
differentiate the simulations. We also do not see
these outcomes regarding the weighting as an argu-
ment for ‘model democracy’ in an ensemble. It is
clear from in-depth analyses that some simulations
are more credible than others, and should be given
more weight. However, given this work, weighting
an ensemble in any systematic, meaningful way
across many regions using performance metrics is
likely to bear limited fruit.
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