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1.  INTRODUCTION

Tropospheric ozone is a powerful greenhouse gas
(Forster et al. 2007, IPCC 2013) with high oxidation
capacity and well-known negative effects on human
and animal health, vegetation and crops (The Royal
Society 2008, Cooper et al. 2014). It is generated by
atmospheric electric discharge (lightning), anthro-
pogenic emissions (UNEP & WMO 2011) and by the
photochemical interaction of nitrogen oxides (NOx)

and volatile organic compounds (VOCs) in the pres-
ence of light. The process is complex and involves
interactions between air mass circulation (transport
from the stratosphere to the troposphere), tempera-
ture, wind speed, solar radiation, NOx emissions and
environmental concentrations of VOCs (Monks 2000,
Trainer et al. 2000, Demuzere et al. 2009, Adame
Carnero et al. 2010).

The ozone concentration usually exhibits strong
inter-annual variability due to various factors affect-
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ing production and residence time in the atmos-
pheric boundary layer, such as cloudiness, temper-
ature and stability (Jonson et al. 2006, Tørseth et al.
2012). In addition, the spatial and temporal distri-
bution of its precursors, the long-range transport of
air pollutants and the increment of global back-
ground concentrations in the Northern Hemisphere
contributes to ozone’s inter-annual variability
(Mircea et al. 2014, Monks et al. 2015). In Europe,
ozone follows  well-recognized daily and seasonal
cycles; presenting higher values during daytime
and in the spring/summer months and lower con-
centrations at night and in winter (Nolle et al. 2005,
Tarasova et al. 2007). Furthermore, a combination
of pollutant emissions and VOCs induces the
‘weekend effect’, consisting of higher ozone values
on Saturdays and Sun days.  NOx (particularly NO;
Querol et al. 2014) and VOC emissions are gener-
ally lower on these days because of lower levels of
human activity. For this reason less ozone is con-
sumed to produce NO2 (Jiménez et al. 2005,
Castell-Balaguer et al. 2012).

On a monthly scale, ozone spring maximum values
are detected in northern Europe and summer maxi-
mum values in the Mediterranean region, particu-
larly in north-western Italy. Generally, this is attrib-
uted to differences in its precursors (Monks 2000,
Ordóñez et al. 2017). While it is accepted that solar
radiation is the major factor responsible for the max-
imum summer ozone production, the origin of the
spring maximum is not so well understood (Sánchez
et al. 2008), although it has been attributed to the
dominant role of photochemistry in the observed build-
up of tropospheric ozone in the winter−spring transi-
tion period (Zanis et al. 2007, Monks et al. 2015).

Several studies have been conducted to detect
temporal and spatial variability in ozone concentra-
tion, especially in relation to meteorological condi-
tions (Di Carlo et al. 2007), large-scale processes (e.g.
North Atlantic Oscillation; Pausata et al. 2012) and
regional climate characteristics around the Mediter-
ranean basin (Huszar et al. 2012). In this region,
due to the high frequency of anticyclone conditions,
with high temperatures and stagnant meteorological
 conditions, frequent peaks in ozone values can be
caused by photochemical reactions during summer-
time (Silibello et al. 1998, Vecchi & Valli 1998, Nolle
et al. 2002, Vautard et al. 2005, Jacob & Winner 2009,
Schurmann et al. 2009, Gottardini et al. 2010, Zanis
et al. 2014). These ozone concentration values around
the Mediterranean basin are usually higher than
those in northern Europe (EEA 2016). Furthermore,
air-mass transport from the stratosphere to lower tro-

pospheric levels has recently been suggested as one
of the reasons for summer ozone enhancement in the
Mediterranean area, due to high ozone concentration
in the stratosphere (Kalabokas et al. 2013, Zanis et al.
2014, Cristofanelli et al. 2015, Monks et al. 2015).
Finally, comparison between atmospheric patterns
and ozone concentration around the Mediterranean
basin have shown differences in both absolute values
and monthly peaks between inland (summer peak)
and coastal (spring peak) cities (Sánchez et al. 2008,
Castell-Balaguer et al. 2012, Santurtún et al. 2015).

At a global level, surface ozone trends are difficult
to estimate because they are extremely variable.
Indeed, ozone values depend on season, elevation,
region, meteorological conditions and proximity to
precursor emissions (Gaudel et al. 2018). In Europe, a
slight reduction in ozone precursor emissions has
caused a decrease in extreme ozone levels in rural
and urban sites (Derwent et al. 2010, Simpson et al.
2014, EEA 2016). However, it is impossible to draft
a generalized statement regarding ozone trends,
because of its high spatial and seasonal variability
(Gaudel et al. 2018, Yan et al. 2018).

In this research, we analyzed the ozone concentra-
tions in north-western Italy, where regional studies
have not yet been carried out. The period analyzed
was 2003−2014. Our main objectives were to (1) char-
acterize the ozone concentrations inland in the Pied-
mont region and coastal areas in the Liguria region,
and (2) identify whether any correlations exist be -
tween ozone concentration, climate variables and
the atmospheric conditions defined by weather types
(WTs).

2.  MATERIALS AND METHODS

2.1.  Site description

Four ozone monitoring stations located in the NW
of Italy (Turin, Asti, Genoa and Savona) were ana-
lyzed. Turin and Asti were chosen as representative
of the Piedmont inland region, while Genoa and
Savona were selected for the Liguria coastland area
(Fig. 1). The selected stations were those holding
long-term measurements with ozone records; 3 of the
stations are located in background areas and one sta-
tion is an industrial areas (Savona).

The stations in the Piedmont area are located in the
cities of Turin (243 m a.s.l.) and Asti (149 m a.s.l.).
Turin is located on the Po River plain, while Asti is in
a hilly area. Both cities are characterized by conti-
nental climate conditions with hot summers and cold

78



Giaccone et al: Ozone and weather types in NW Italy

winters (i.e. a high annual temperature range), and
bimodal precipitation regime (spring and autumn),
with higher annual mean precipitation in Turin
(847 mm yr−1) than in Asti (662 mm yr−1; Baronetti et
al. 2018). Two main factors induce these  thermal-
pluviometric characteristics: the surrounding oro -
graphy and the atmospheric circulation (Fazzini et al.
2004, Fratianni & Acquaotta 2017). The dry continen-
tal air masses flow from the north-west and the moist
air masses are mainly from the eastern part of the Po
Valley (Fratianni et al. 2005, Terzago et al. 2012).
Moreover, numerous foehn episodes coming from
the north, north-west and west occur. They are com-
bined with sunny weather and low precipitation.
Southern foehn events are also normal, but less
 frequent (Fratianni et al. 2009).

The coastal stations in Liguria are located in Genoa
(33 m a.s.l.) and Savona (31 m a.s.l.). These cities
are characterized by a moderate temperature range,
with high precipitation in autumn and winter (ARPAL−
CFMI-PC 2013, Brandolini et al. 2017). In Genoa, the
annual mean precipitation value is higher than in
Savona (1357 and 826 mm yr−1 respectively; Acqua -
otta et al. 2018a,b).

Turin and Genoa are densely populated cities, with
well-developed industrial and commercial districts.
Furthermore, Genoa has many ports for commercial
and tourism activities. Asti and Savona are less pop-
ulated, but Savona is surrounded by an industrial
area. From a climate point of view, the most evident
climate differences between Piedmont and Liguria
emerge mainly because mountain ranges (Alps and
Apennines) isolate the inland (Piedmont) from the
coastal areas (Liguria).

2.2.  Classification of WTs

Daily WTs were obtained for the
2003− 2014 period from the daily
mean sea level pressure (SLP) grid of
the NCEP/NCAR reanalysis data set
(Kistler et al. 2001). Classification fol-
lowed the original Lamb’s WT catalog
developed by Jenkinson & Collison
(1977) and Jones et al. (1993, 2013),
initially developed for the British
Isles. The WTs were determined with
the methodology described for Portu-
gal by Trigo & DaCamara (2000). The
classification applies geometrical and
physical characteristics, such as the
strength and direction of the airflow
and the degree of vorticity. The fol-
lowing geostrophic indices were used:

southerly flow (SF), westerly flow (WF), total flow
(F), southerly shear vorticity (ZS), westerly shear
vorticity (ZW) and total shear vorticity (Z). These
were calculated using SLP values acquired from 16
grid points (defined by the coordinates from point
p1 to point p16) over southern Europe, centered on
Turin (45° N, 7.5° E; Fig. 2). As reported in the
methodology proposed by Trigo & DaCamara
(2000) and adopted by Cortesi et al. (2013), the fol-
lowing equations, readjusted to our area, were
used:

SF = SF1 [0.25(p5 + 2p9 + p13) (1)
− 0.25(p4 + 2p8 + p12)]

WF = [0.5(p12 + p13) − 0.5(p4 + p5)] (2)
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Fig. 1. The 4 monitoring stations analyzed in this study: Turin (45.0249° N,
7.6490° E), Asti (44.9089° N, 8.2054° E), Genoa (44.4181° N, 8.9273° E) and 

Savona (44.2871° N, 8.4316° E)

Fig. 2. 16 grid points centered over Turin used to calculate
the flow indices and vorticity. Distance between points: 10° 

longitude and 5° latitude 
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ZS = ZS1 [0.25(p6 + 2p10 + p14) 
− 0.25(p5 + 2p9 + p13) − 0.25(p4 + 2p8 + p12) 
+ 0.25(p3 + 2p7 + p11)] (3)

ZW = ZW1 [0.5(p15 + p16) − 0.5(p8 + p9)] − ZW2
[0.5(p8 + p9) − 0.5(p1 + p2)] (4)

F = (SF2 + WF2)1/2 (5)

Z = ZS + ZW (6)

where SF1 = 1 / cos(PC); ZS1 = 1 / (2 × cos2[PC]);
ZW1 = sin(PC) / sin(PS); and ZW2 = sin(PC) / sin(PN).
PC is the latitude of the center of the 16-point grid;
PS the latitude of the row of grid points 11, 12, 13 and
14 in Fig. 2; and PN the latitude of the row of grid
points 3, 4, 5 and 6 (both rows are at 5° latitudinal dis-
tance from the central row). The conditions defining
the different types of circulation are the same as
those established in Trigo & DaCamara (2000), and
are explained as follows:

1. Direction of flow was given by tan−1 (WF / SF),
180° was added if WF was positive. The appropriate
direction was calculated using an 8-point compass,
allowing 45° sector−1.

2. If |Z| < F, the flow is essentially straight and
classed as a pure directional type (8 different cases,
according to the compass directions).

3. If |Z| > 2F, the pattern was classed as a pure cy-
clonic type if Z > 0, or a pure anticyclonic type if Z < 0.

4. If F < |Z| < 2F, the flow was classed as a hybrid
type and was, therefore, characterized by both direc-
tion and circulation (8 × 2 different types).

This procedure enabled 26 different WTs to be
identified at daily scale: 8 pure directional types (N,
NE, E, SE, S, SW, W, NW); 2 pure types, determined
by the vorticity strength (cyclonic, C and anticyclonic,
A); and 16 hybrid types (8 cyclonic and 8 anticyclonic
for each direction). Unlike some other authors (Jenk-
inson & Collison 1977, Jones et al. 1993), an unclassi-
fied class was not defined because we opted to dis -
tribute the fairly few cases (<2%) with possibly
un classified situations among the retained classes.
Before being correlated with ozone data, the 26 WTs
were regrouped into 10 distinct types by classifying
hybrid types as purely directional (Russo et al. 2014).
This choice stemed from the need to highlight the im-
portance of air mass direction, which is extremely in-
fluential in the transport of ozone precursors.

2.3.  Statistical analysis

The original hourly data of the surface ozone con-
centration (1 January 2003−31 December 2014) were

obtained from the regional agencies for environmen-
tal protection, Arpa Piedmont and Arpa Liguria.

Mean daily data were calculated as a 24 h
 average (00:00−23:59 h). To identify the daily and
weekly cycles, daytime and nighttime ozone con-
centrations were calculated from hourly data.
 Diurnal (daytime) was defined as the 12 h average
between 08:00 and 19:00 h, and the nocturnal
(nighttime) as the average between 19:00 and 08:00
h of the following day. The daily average values of
weekdays (Monday to Friday) were compared with
the average weekend values (Saturday and Sunday)
to detect the ‘weekend effect’, a well-known pro-
cess related to change in precursors during Satur-
days and Sundays (Querol et al. 2014). Monthly,
seasonal and annual aggregations were performed
by obtaining an average of the daily values, done
only when >85% of original hourly data were
available in accordance with Annex I of the
2008/50/EC Directive (Russo et al. 2014). Monthly
values are useful to provide an overview about sea-
sonal cyclic behavior and in calculating the annual
range.

For the same period (2003−2014), daily data for
NO2 (a well-recognized precursor of ozone), tem -
perature, precipitation and wind speed were down-
loaded from the Arpa Piedmont and Liguria data-
base. When data availability was >85%, the daily
data were aggregated monthly and annually and
compared with the ozone data. The percentage of
missing daily data was between 7 and 10% for O3,
NO2 and meteorological variables.

Annual trends were assessed using the Mann-
Kendall non-parametric test to verify statistical sig-
nificance, assuming a 95% probability level (Mann
1945, Kendall 1975). The series were not detrended
because their trends were not autocorrelated.

To assess the correlation between daily ozone and
the predictor variables (daily values of NO2, temper-
ature, precipitation and wind speed), linear models
were performed in R v.3.2.3 (R Development Core
Team 2015).

To investigate the relationship between ozone con-
centration and WTs, we applied an ANOVA with
repeated measurements in time (e.g. Linn et al. 1988,
Clark et al. 2000, Cotrozzi et al. 2018). A comparison
of marginal mean values was performed between
inland stations and coastal stations and the differ-
ences in ozone concentration between seasons and
WTs were highlighted (e.g Demuzere at al. 2009,
Russo et al. 2014). An a posteriori Bonferroni test
(Dunn 1961) was applied to detect significant differ-
ences.
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3.  RESULTS

3.1.  Ozone cycles

In the 4 stations, ozone is characterized by both
daily and seasonal cycles, with the concentration being
higher during daytime (08:00−19:00 h) than night-
time (19:00−08:00 h) throughout the year (Table 1).
Genoa is an exception, because from October to Feb-
ruary, the average nighttime values are higher those
in daytime. The mean differences between daytime
and nighttime values are particularly noticeable in
Asti (33 µg m−3) and Turin (24 µg m−3), while they are
lower in Savona (18 µg m−3) and non-existent in
Genoa (0 µg m−3).

The differences between diurnal and nocturnal
concentration increase in the spring−summer months,
particularly in the Piedmont cities, and reach their
minimum in winter. The intra-annual range (maxi-
mum−minimum difference of monthly mean values)
differs between inland/coastal cities and daytime/
nighttime average values, being higher in Piedmont
inland stations and during daytime (daytime differ-
ence in Turin and Asti: 98 µg m−3, nighttime differ-
ence: 55 and 46 µg m−3, respectively). For the coastal
stations, 2 tendencies were highlighted: Savona has
a similar pattern to the inland stations, with a nar-
rower intra-annual range, while Genoa has a single
trend with few marked differences and nighttime
values higher than daytime in autumn and winter.

The mean daily ozone values prove the existence
of the weekend effect: the ozone concentration
 certainly increases during Saturdays and Sundays,

from 6% (Savona) to 11% (Turin) compared to those
 during weekdays (Fig. 3).

The seasonal ozone cycle is characterized by a win-
ter minimum and a summer maximum. The maxi-
mum summer mean value is found in July for the
 stations of Turin (86 µg m−3), Asti (83 µg m−3) and
Savona (83 µg m−3), and in August for the city of
Genoa (81 µg m−3). In the coastal cities, a secondary
maximum in May was observed. The winter mini-
mum is found in December in Piedmont cities (9 and
12 µg m−3 for Turin and Asti, respectively), and in
Genoa (35 µg m−3) and in November in Savona (36 µg
m−3) (Fig. 4).

As expected, the NO2 monthly values present a
seasonal cycle opposite to that of ozone, with a winter
maximum and a summer minimum (Fig. 4).

Annual average values of surface ozone are higher
in the coastal cities of Liguria (Genoa 58 µg m−3,
Savona 60 µg m−3) than in the cities in Piedmont

(Turin 43 µg m−3, Asti 44 µg m−3). The
ANOVA with repeated measurements
in time reinforces the annual and indi-
vidual results for each station, showing
that there are significant differences in
the daily ozone concentration between
inland and coastal cities, and among
WTs and between sites and seasons (p <
0.001; Table 2). In particular, there is a
noticeable difference in ozone concen-
tration between coastal and inland sta-
tions (i.e. higher concentrations in
coastal stations, with an average of 59
µg m−3 compared to inland, 43 µg m−3).
The highest values of ozone are reached
in summer (78 µg m−3), whereas the
lowest are in winter (27 µg m−3), con-
firming the seasonal cycle. Further-
more, at a seasonal level, the ozone val-
ues of winter, autumn and spring are

81

Savona
Genoa
Asti
Turin

O
zo

ne
 (µ

g 
m

–3
)

Fig. 3. Mean ozone concentrations at the 4 analyzed moni-
toring stations during the week

Daytime (08:00−19:00 h) Nighttime (19:00−08:00 h)
Turin Asti Genoa Savona Turin Asti Genoa Savona

Jan 13 16 34 42 9 11 41 37
Feb 26 29 44 57 13 11 49 48
Mar 52 60 58 73 27 24 58 59
Apr 66 78 65 83 42 38 65 64
May 83 92 68 90 51 45 69 66
Jun 101 104 75 93 59 50 67 64
Jul 108 112 84 102 63 54 74 67
Aug 95 100 85 93 54 45 78 62
Sep 71 73 70 79 31 27 71 57
Oct 30 33 47 58 11 10 51 42
Nov 12 16 36 39 7 9 43 33
Dec 11 14 33 41 8 10 42 37

Aver. 56 61 58 71 31 28 59 53
St. dev. 37 37 19 23 22 18 13 13

Table 1. Monthly daytime and nighttime ozone values (µg m−3) in north-
western Italy, with annual average and standard deviation
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lower in Piedmont than  Liguria, unlike in the sum-
mer, when the measurements are reversed (Fig. 5).

The annual trends are not significant, because of
the high variability in ozone concentration. Also, the
series is too short to have significant statistical trends.

3.2.  Relationship between ozone, WTs, climatic
variables and NO2

In the NW of Italy, the most frequent WT is the anti-
cyclonic type (A; 19%) with an annual average of
around 69 d yr−1, generally associated with medium-
high values of SLP. The second most frequent is the
northeasterly type (NE; 16%) with 58 d yr−1 and
medium-high values of SLP; the third is the northerly
type (N; 12%) with 43 d, characterized by low SLP.
Type A is most frequent in August, NE is the most
frequent in June and N in July (Figs. 6 & 7).

Based on ANOVA and Bonferroni tests, the differ-
ences in ozone concentration under the 10 WTs ana-
lyzed are significant (p < 0.001). The highest average
for daily ozone concentration occurs within the
 easterly and southeasterly circulation patterns (62.0
and 55.8 µg m−3, see Table 2). The minimum ozone
concentration values are found under the influ -
ence of the cyclonic (39.1 µg m−3) and westerly types
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Fig. 4. Monthly mean values of (top) ozone and (bottom) 
NO2 at the 4 analyzed monitoring stations

Fig. 5. Seasonal pattern of mean daily ozone concentrations
(µg m−3) in all 4 monitoring stations, regrouped based on
seasons. Box and whiskers present the median, first and
third quantiles, minimum and maximum value and possible
outliers. Winter: DJF; spring: MAM; summer: JJA; autumn: 

SON. TO: Turin; AT: Asti; GE; Genoa; SV: Savona

Variable Mean Error 95% CI
(µg m−3) Lower Upper 

bound bound

Localization
Coastal 58.9 0.5 57.9 59.8
Inland 43.2 0.5 42.3 44.1

Season
Winter 27.0 0.7 25.7 28.3
Autumn 39.7 0.7 38.4 41.1
Spring 61.1 0.6 59.8 62.3
Summer 78.2 0.7 76.7 79.6

Weather types
A 51.6 1.0 49.6 53.6
C 39.1 1.2 36.7 41.6
E 62.0 1.3 59.4 64.6
N 52.6 1.0 50.6 54.5
NE 53.7 1.0 51.7 55.6
NW 49.2 1.0 47.1 51.2
S 50.0 1.0 48.0 51.9
SE 55.8 1.0 53.9 57.8
SW 49.0 1.0 47.0 51.1
W 43.2 1.4 40.4 46.0

Localization × season
Coastal Winter 40.3 0.9 38.4 42.1

Autumn 51.6 1.0 49.7 53.6
Spring 67.6 0.9 65.8 69.5
Summer 77.0 1.1 74.8 79.1

Inland Winter 13.8 0.9 12.0 15.6
Autumn 27.9 1.0 25.9 29.8
Spring 54.5 0.9 52.8 56.3
Summer 79.4 1.0 77.4 81.3

Table 2. Main results of the Bonferroni post hoc test. Weather
types: directional (E, N, NE, NW, S, SE, SW, W) and pure 

(cyclonic, C; anticyclonic, A)
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(43.2 µg m−3). In Fig. 8, the box and whiskers plots
help us to better understand the ozone distribution
based on WTs, separately for each station and each
season and then regrouped into inland (Turin and
Asti) and coastal (Genoa and Savona) regions. In
general, it is evident that ozone has wider range in
Turin and Asti, even if many outliers are present in
Genoa and Savona (Fig. 8a−d). In Turin (Fig. 8a), the

highest maximum concentrations of
ozone can be observed under NE and A
types, while the highest median values
are seen under N and NW types. In Asti
(Fig. 8b), the highest maximum concen-
trations are under S and SE types, and
the highest median values under N and
NE types. In Genoa (Fig. 8c), SW and N
types are responsible for the most ele-
vated maximum concentrations; how-
ever, N, E, NE and NW give rise to the
highest median values. In Savona
(Fig. 8d), S and E types cause the highest
maximum values of ozone, E and NE
types the highest me dian values. NE, N,
E and A types in crease the ozone con-
centration in winter, SE and E mainly
during spring and autumn, E and S in
summer (Fig. 8e−h). In the inland sta-
tions, the highest maximum ozone is
reached with S and NE types, the highest
median with N and NE types. In coast-
land cities, the highest maximum values
are recorded with S and SE types, the
highest median values with E, N and NE.

Temperature, precipitation and wind
speed daily values for the 4 stations were
analyzed to search for a correlation with
the ozone concentration during the same
period (2003−2014). The full results are
shown in Table 3. The ozone is signifi-
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Fig. 6. Monthly frequency of the 10 weather types (WTs):
 directional (E, N, NE, NW, S, SE, SW, W) and pure (C: 

cyclonic; A: anticyclonic)

Fig. 7. Multi-panel maps of the mean sea-level
pressure (MSLP) and its anomalies during the
selected weather types (WTs) based on winter
(DJF). The WTs were calculated centered on
Turin, also for the other 3 cities. Lines display
MSLP levels (hPa); colors are the anomalies.
The patterns of other the seasons are similar
to the winter pattern, but show less intensity
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cantly and positively correlated with
the temperatures in all stations (p <
0.001). Precipitation has a significant
negative influence on the ozone con -
cen tration, even if the correlation is
weak (p < 0.001) in Asti, Genoa and
Savona. In Turin, there is no correlation
or statistical significance (p = 0.96).

Different relationships between wind
speed and ozone were found: the inland
stations recorded positive and signifi-
cant correlations (p < 0.001), while in
the coastland they were negative and
significant (p < 0.003).

The daily NO2 values are negatively
and significantly correlated with the
ozone concentration for all analyzed
cities (p < 0.001; Table 3).

4.  DISCUSSION

The ozone concentration follows both
a daily and weekly cycle, influenced by
solar radiation which affects its forma-
tion processes (Zvyagintsev et al. 2008),
and by the production of pollutants and
VOCs (Castell-Balaguer et al. 2012,
Jiménez et al. 2005). Ozone levels are
normally higher in daytime and lower
during nighttime throughout the year,
except in Genoa where the nighttime
values are higher than in daytime in the
autumn and winter months (Table 2). A
similar pattern has also been reported
for the northern Spanish coastal stations
(Santurtún et al. 2015). This situation
could be connected to the differences in
commercial activities between the cities,
as explained in Section 2.1. The in -
tensity of port activities also causes a
higher concentration of ozone precur-
sors at night. The weekend effect is
present in all 4 stations. As these are
located in or near cities, this effect is
more noticeable due to the reduction in
NOx emissions (Castell-Balaguer et al.
2012, Jiménez et al. 2005).

The wide range of ozone values in
inland cities could be caused by the
diurnal temperature range because of
their inland location, photochemical
activity, air stagnation in the Po river
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Fig. 8. Daily mean of ozone concentration (µg m−3) based on the selected 10
weather types (WTs) separately for the (a−d) stations and (e−h) seasons. Box
and whiskers present the median, first and third quantiles, minimum and max-
imum value and possible outliers. Winter: DJF; spring: MAM; summer: JJA; 

autumn: SON
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plain and precursor production in local areas (Gabusi
& Volta 2005, Russo et al. 2014). Furthermore, as pre-
viously noted, ozone has a high spatial variability,
which has also been observed in other studies (e.g.
Dueñas et al. 2002, Gottardini et al. 2010).

Regarding the seasonal cycle (Fig. 4), the minimum
values in winter have also been recorded in other
research (e.g. Cristofanelli et al. 2015). The summer
maximum is typical of southern Europe and the
Mediterranean basin (Scheel et al. 1997, Steiner et
al. 2014), because of high insolation rates which can
facilitate photochemical action on regional emissions
(Zanis et al. 2007, Monks et al. 2009).

In the coastal stations (Savona and Genoa), a sec-
ondary peak is visible in spring (Fig. 4). This situa-
tion is similar to Spain, where coastal cities have an
ozone peak in spring and inland cities have it
during the summer (Santurtún et al. 2015). Taking
global and local factors into consideration, the dif-
ferences in the monthly maxima are understood to
be a combination of background ‘hemispheric-scale’
impact, the influence of the sea (which decreases
the temperature range) and early photochemical
activity in spring (Atlas et al. 2003, Fernández-
Fernández et al. 2011).

In the coastal areas, ozone has the highest annual
average concentrations compared to the inland
cities, because of greater solar radiation (Table 2).
This has been observed in the AMS-MINNI (Atmos-
pheric Modelling System-Italian Integrated Assess-
ment Modelling System) modelling system adopted
for the year 2005 by Mircea et al. (2014), along with
elevated concentrations of NO2 in the cities of the Po
plain (e.g. Turin and Milan) and other polluted cities
(e.g. Genoa, Rome and Naples). Thus, places such as
Turin, with high industrial activity, a well-developed
tertiary sector and a large population, do not neces-
sarily show higher values of ozone concentration.

Since ozone is dangerous for the health of people
and animals, as well as having detrimental effects
on vegetation (e.g. Cooper et al. 2014), it is very
important to identify its climate drivers, to assess
the associated risk for the human population and to
adopt the necessary political measures. In this
research, we found a significant correlation between
ozone concentration and atmospheric circulation
patterns (Fig. 8, Table 2), which enhances ongoing
research on the relationship between the circulation
of weather types and atmospheric pollutants (e.g.
Demuzere et al. 2009, Huszar et al. 2012, Saavedra
et al. 2012, Russo et al. 2014).

Maximum ozone levels are generally linked to the
NE, E and SE WTs, which carry air from the Po valley
and the Gulf of Liguria. These conditions are corre-
lated with a high-pressure zone in northern Europe
which reaches the north-central part of Italy, and can
be present in all seasons. Normally, this is character-
ized by stable, sunny conditions and dry air masses,
which reduce pollution dispersion and deposition
(e.g. Rao et al. 2003, Santurtún et al. 2015). Turin is
an exception, because high median values are regis-
tered under N−NW WTs. These phenomena can be
associated with foehn episodes, which are frequent
during the winter (Fratianni et al. 2009).

Differences reported between maximum and me -
dian values of ozone based on 10 WTs in each city
depend on regional and long-distance transport of
pollutants and ozone precursors, in particular for the
maxima values (Saavedra et al. 2012, Russo et al.
2014). The high values during the summer could be
related to the presence of subtropical ridges in the
European sector, at longitude 0−15° E. According to
research carried out by Ordóñez et al. (2017), this
synoptic condition is responsible for the rise in ozone
above the local 90th percentile of its seasonal distri-
bution, especially in the Po basin, where the increase
occurs on >60% of days. The minimum values corre-
late to cyclonic and westerly types. During the
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Linear correlation R2 p-value

Temperature (°C)
Asti 2.89x + 5.79 0.63 <0.001
Turin 3.09x − 1.76 0.66 <0.001
Genoa 2.09x + 23.84 0.28 <0.001
Savona 1.89x + 30.09 0.27 <0.001

Precipitation (mm)
Asti −0.33x + 45.13 0 <0.001
Turin −0.00x + 43.31 0 0.96
Genoa −0.29x + 59.33 0.01 <0.001
Savona −0.37x + 62.83 0.03 <0.001

Wind speed (m s−1)
Asti 19.18x + 16.75 0.15 <0.001
Turin 33.17x + 0.97 0.21 <0.001
Genoa −1.3x + 64.88 0 <0.003
Savona −3.04x + 71.1 0.02 <0.001

NO2 (µg m−3)
Asti −1.28x + 85.51 0.43 <0.001
Turin −0.86x + 84.44 0.47 <0.001
Genoa −0.46x + 78.49 0.08 <0.001
Savona −1.3x + 84.85 0.2 <0.001

Table 3. Relationships between ozone (µg m−3) and tempera-
ture (°C), precipitation (mm), wind speed (m s−1) and NO2 (µg
m−3). All values employed to calculate the relationships are
daily. Equation of linear correlation, coefficient of determina-

tion (R2) and p-value (indicating significance)
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cyclonic type, a low-pressure zone is centered in
Italy. During the westerly type, a strong low pressure
zone is centered in northern Europe, extending to
northern and central Italy (see Fig. 8). These WTs are
usually connected to atmospheric perturbations, cool
conditions and precipitation, which reduce ozone
concentration (e.g. Comrie & Yarnal 1992).

Climatic variables affect ozone values in different
ways (see Table 3). Warmer temperatures cause an
ozone increase everywhere, as reported in the litera-
ture; e.g. Demuzere et al. (2009) reported a clear
relationship between temperature and ozone during
the summer in the Netherlands. In fact, temperature
enhances the propagation rate of the radical chain
that leads to ozone formation (Ruiz-Suárez et al.
1995). Meanwhile, the relationship with precipitation
is apparently negative, because on rainy days, cloud
cover and atmospheric instability lower the tempera-
ture and the amount of solar radiation reaching the
ground (Camalier et al. 2007).

From our results, it seems evident that wind
(speed and direction) is a triggering factor for the
dispersion of ozone precursors from local hotspots
and for ozone transport from the stratosphere.
Sea/land breeze systems also play a significant role
in the transport of ozone from urban to coastal and
mountain areas, contributing significantly to high
ozone episodes in the coastal regions (Liu et al.
2002), all which could explain the negative relation-
ship with wind detected in Savona and Genoa. On
the other hand, in Turin the positive relationship
between ozone and wind could be associated with
winter foehn episodes generally linked to N and
NW WTs, coupled with an adiabatic increase in
temperature. For example, in the foehn event of 16−
18 December 2005 which reached the Po plain and
Turin from the Western Alps, the meteorological
station registered a maximum temperature increase
of >5°C and an ozone increase of 16 µg m−3 com-
pared to the previous and following days (see Fra-
tianni et al. 2009). Indeed, the foehn conditions
caused a clear sky and a higher maximum tempera-
ture, together with greater solar radiation and a
reduction in NO2. These conditions facilitated the
generation of ozone, which increased by up to 30 µg
m−3 compared to the previous days.

5.  CONCLUSIONS

In this research we analyzed the surface ozone
concentration and its relationship with atmospheric
conditions and climate variables in north-western

Italy, where regional studies have not yet been
 carried out. The period analyzed was 2003−2014. In
the study area, we detected the well-known daily,
weekly and seasonal ozone cycles: ozone concen -
tration is generally higher during daytime (08:00−
19:00 h) than nighttime (19:00−08:00 h) and during
weekends. The ozone levels reach a winter minimum
in December and January, and a summer maximum
in July and August. In the coastal cities, a secondary
maximum in May has been observed. In the studied
period, no significant trends in ozone concentra-
tion were assessed because of strong inter-annual
variability.

The WT analysis indicates that the most frequent
WT is the anticyclonic type, followed by north-
easterly and northerly type. Relationships between
ozone and WTs were significant. The highest values
of daily ozone concentration occur within the east-
erly and south-easterly WTs, which are typically
associated with stable, sunny conditions and lack of
precipitation. The minimum ozone concentration
values are found under the influence of the cyclonic
and westerly types, which are usually connected to
atmo spheric perturbations and precipitation in our
study area.

Temperature has a positive influence on the ozone
concentration, while precipitation has a negative one.
Wind affects ozone values positively in Piedmont
(especially during the foehn winter episodes reach-
ing Turin) and negatively in Liguria.

This study adds a crucial component to better
understand the daily behavior of ozone, including
the differences in this between coastal and inland
regions in north-western Italy. However, supplemen-
tary integration with a longer data series would be
useful to expand our knowledge regarding ozone
variability. Furthermore, it would be advisable to
carry out additional research into peak hourly con-
centrations, to verify the critical level of ozone pollu-
tion in the research area, according to the threshold
proposed by the Air Quality Directive (2008/50/EC)
of the European Union.
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