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1.  INTRODUCTION

Surface air temperatures can persist on timescales
of weeks, months, and even years. Consequently, at -
mospheric persistence is an essential component of
climate forecasting. One of the simplest methods for
forecasting on subseasonal-to-seasonal timescales in -
volves persisting an initial set of conditions into the
future (Doblas-Reyes et al. 2013). Persistence is com-
monly used at subseasonal-to-seasonal timescales as
a baseline metric for forecast skill. Persistence is also
used as a predictor variable in operational statistical
forecast tools developed by the Climate Prediction
Center (CPC) such as canonical correlation analysis,

screening multiple linear regression, and the optimal
climate normal method (O’Lenic et al. 2008). Pre -
vious research has shown that persistence-based
monthly temperature forecasts provide statistically
significant improvements over climatology-based
forecasts at 1 mo (Dickson 1967) and 3 mo timescales
(Namias 1978).

Subseasonal-to-seasonal forecast skill and the
sources of forecast skill vary by season. The highest
forecast skill occurs during the cool season and is
 primarily attributed to teleconnections and resultant
circulation patterns (Peng et al. 2012). Persistence-
based temperature forecasts tend to have higher
forecast skill during the warm season, especially
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in continental locations (Dickson 1967, Namias 1978,
Barnett 1981, Barnett & Preisendorfer 1987, Lyon
1991, Peng et al. 2012). Evidence suggests that
 temp erature persistence is closely related to quasi-
stationary geopotential height patterns at the 500 mb
(Lyon 1991) and 700 mb (Namias 1978, van den Dool
et al. 1986) levels. These upper-level patterns over
the Pacific Ocean have an inverse relationship with
temperature persistence in the United States due to
downstream modifications of the Rossby wave train.
Negative geopotential height anomalies over the
Pacific Ocean lead to the persistence of anomalously
warm conditions over the United States, whereas
positive height anomalies lead to the persistence of
cooler than normal conditions (Lyon 1991). During
the cool season, persistent geopotential height pat-
terns may be attributed to the well-known relation-
ship between Northern Hemisphere climatic vari-
ability and teleconnections such as ENSO (Yu et al.
2015). During the warm season, boundary conditions
(i.e. land−atmosphere interactions) can also be an
important contributor to temperature persistence.
When temperatures are higher, latent heat fluxes
near the surface decrease because evapotranspira-
tion is limited by lower soil moisture (Fischer et al.
2007). Thus, a positive land−atmosphere feedback
cycle can occur as sensible heat fluxes increase and
warm the boundary layer atmosphere. These 2
mechanisms explain some of the intra-regional varia-
tions in temperature persistence within the south-
central US.

The spatiotemporal characteristics of temperature
persistence have been well documented in previous
studies (Dickson 1967, Namias 1978, van den Dool et
al. 1986, Lyon 1991). Temperature persistence tends
to be higher in coastal locations than in continental
locations. The strongest areas of persistence in the
US are located along the Pacific and Atlantic coast-
lines due to the influence of sea surface temperatures
(Monetti et al. 2003) and a prevailing sea breeze,
which dampens seasonal variations in temperature
(Namias 1978, van den Dool et al. 1986). This study
reexamines spatiotemporal variations in temperature
persistence using a high-resolution gridded data set.
It focuses on the south-central US (Texas, Oklahoma,
Arkansas, Louisiana, Mississippi, and Tennessee) be -
cause this study was supported by the Southern
 Climate Impacts Planning Program (SCIPP; www.
southernclimate.org).

Research examining temperature persistence has
been largely absent in recent years. Previous studies
have provided adequate descriptions of spatiotempo-
ral trends in monthly temperature persistence. Based

on these findings, persistence has been assimilated
as a predictor in complex statistical and dynamical
forecasts which have replaced simple persistence
forecasts. As a result, persistence may be overlooked
as a source of forecast skill despite situations in
which the use of persistence could yield skillful fore-
casts. For example, do anomalously warm conditions
tend to be more or less persistent than near-normal
temperatures? Few studies have examined whether
temperature persistence is a function of the magni-
tude of antecedent temperature anomalies. In this
study, we examine spatiotemporal variations in tem-
perature persistence using a high-resolution data set
as well as performing a comprehensive examination
of persistence forecast skill and examining how skill
varies with antecedent conditions. This is important
be cause it may lead to improved forecast accuracy
during anomalous conditions, such as heat events.
Prolonged extreme heat is a frequent climate hazard
within the south-central US, where portions of the
SCIPP region have been identified as hotspots of
increased land−atmosphere coupling (Koster et al.
2004). Current seasonal forecasts struggle to accu-
rately predict temperatures within the SCIPP region
(Livezey & Timofeyeva 2008). Two of the most not -
able heat events in the south-central US occurred in
the summer of 1980 (Lyon & Dole 1995) and the sum-
mer of 2011, when the state of Texas observed its
highest monthly temperature on record (Hoerling
et al. 2013). Both extreme heat events persisted for
many months and are evident when examining mean
monthly maximum temperatures. Extreme and pro-
longed heat can result in stress on the body and
cause a wide variety of health problems including
dehydration, heat stroke, and a variety of pulmonary
and cardiovascular maladies (Kalkstein & Greene
1997). Better planning is essential for preventing
heat-related deaths, and improved seasonal climate
forecasting is an important component of mitigation
efforts (Changnon et al. 1996, Lowe et al. 2016).

2.  DATA

We used monthly temperature data from Para -
meter-Elevation Regression on Independent Slopes
Model (PRISM; Daly et al. 1994). PRISM was devel-
oped by the Spatial Climate Analysis Service at Ore-
gon State University and provides temperature data
on a 4 km grid. These data are interpolated using a
climate−elevation regression on temperature meas-
urements made by 11 different observation networks,
including the Cooperative Observer Program (COOP)
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and Automated Surface Observing Systems (ASOS)
networks (Daly et al. 2000). This study specifically
used the PRISM ‘AN81m’ data set, which is en -
hanced by climatological-aided interpolation (CAI).
The climatological normals of nearby stations are
weighted by elevation, distance, clustering, and topo -
graphy and estimated using a 2-layer atmosphere,
terrain weights, and coastal proximity (Daly et al.
1994, Daly 2000). The PRISM model develops a unique
calculation for each grid cell, providing a versatile
approach for different climatic types (Daly et al. 2000).

Daly et al. (2008) used a jackknife cross-validation
to assess the accuracy of PRISM temperature data.
The mean absolute error (MAE) for July maximum
temperatures was less than 1°C across the  south-
central US, except for western Texas and 3 isolated
stations located elsewhere, with no evidence of any
systematic biases (Daly et al. 2008). When PRISM
was compared to 2 widely used gridded products,
WorldClim and Daymet, PRISM temperature data
were found to be more accurate (Daly et al. 2008).
The high quality and stringent vetting of PRISM tem-
perature data makes it an ideal data set for studying
temperature persistence.

Monthly maximum temperature from 1900−2015
were extracted for 75 312 PRISM grid cells in the
south-central US. Temperature data (T) were desea-
sonalized by converting the values to anomalies (T ’)
using Eq. (1), where m is a given month and y is a
given year:

T ’(y,m) = T ’(y,m) – T
–

(m) (1)

These data were acquired from the PRISM data set,
and the 30 yr normal (T

–
) was calculated using data

from 1981−2010.

3.  METHODS

3.1.  Temporal autocorrelation

Temperature persistence is defined as the magni-
tude of correlation between temporally adjacent
 values (i.e. autocorrelation; Chandrasekhar & Dimri
2014). Our goal was to find instances of red noise,
defined in this study as a positive autocorrelation
between 2 monthly vectors of temperature anom-
alies. Our analysis rarely identified any statistically
significant monthly persistence beyond timescales
of 3 mo. Therefore, this study focused on 1 and 3 mo
temperature persistence. Positive temperature per-
sistence indicates the continuation of a monthly tem-
perature regime. An example of positive temperature

persistence is when a month with above-normal tem-
peratures is followed by another month with above-
normal temperatures. Pearson’s correlation coeffi-
cient (r) was used to calculate the autocorrelation
between 2 vectors of temperature anomalies (Weida
1927, McGrew & Monroe 2009), given as:

(2)

where x0 is a temperature anomaly for the initial
month (t0) of year i, xk is a temperature anomaly for
the month (tk) with k-lag (in months) after the initial
month, and n is the number of years in the time series.

Since we are analyzing temperatures in anomaly
space (i.e. x0 = xk = 0), the correlation in Eq. (2) can
be simplified to:

(3)

The temporal autocorrelation calculated in Eq. (3)
gives a normalized indicator r (t0, tk), with positive
values indicating persistence of temperatures and
negative values indicating a reversal in the tempera-
ture regime (i.e. above-normal temperatures to be -
low-normal temperatures, or vice versa). We con-
ducted a 2-tailed Student’s t-test for autocorrelation
against the null hypothesis of no correlation using α =
0.05 (95% significance). The t-statistic for Pearson’s
correlation (from McGrew & Monroe 2009), using τ
to differentiate from t, is:

(4)

3.2.  Heidke skill scores

We also examined the Heidke skill scores (HSS) of
persistence-based temperature forecasts. While cor-
relations were used to identify spatiotemporal pat-
terns of persistence, HSS values can identify condi-
tions when persistence plays an important role in
seasonal prediction. The HSS framework for evaluat-
ing forecast skill begins by grouping monthly tem-
perature anomalies into terciles, such that forecasts
can be identified as ‘above normal’, ‘normal’, or ‘be -
low normal’, each having an equal probability of
occurrence. Temperature data are classified as ter-
ciles based on the percentiles of the monthly temper-
ature distribution. The HSS metric is computed as:
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(5)

where C is the number of correct forecasts, N is the
total number of forecasts, and E is the number of
 random (climatology) forecasts expected to verify.
1HSS values greater than zero indicate the ability of
a forecast using persistence to improve upon one
only utilizing climatology (i.e. skill). Utilizing HSS
values allows us to quantify the value of using per-
sistence for seasonal temperature forecasting over
using only a climatological forecast. To create each
forecast, observations for a given month, n, are used
as predictions for time lags of one (n + 1) and three
(n + 3) months. If the predicted tercile matches the
tercile of the temperature observations, a correct
forecast is produced.

3.3.  Conrad continentality index

The Conrad continentality index was used to ex -
amine the relationship between continentality and
temperature persistence (Conrad 1946). The dif -
ference in continental and marine climates is best de -
scribed by variations in the annual temperature
range. The Conrad continentality index (kc) is fre-
quently expressed as a percentage and calculated as:

(6)

where A is the difference in mean monthly tempera-
tures between the warmest and coldest months and ϕ
is the latitude. The Conrad index can be used to com-
pare the continentality between locations, where
higher values indicate more continental climates.

4.  RESULTS

4.1.  Seasonality of temperature persistence

Fig. 1 illustrates how persistence varies on both
monthly (Fig. 1A) and seasonal (Fig. 1B) timescales.
The medians in Fig. 1 are based on all 75 312 vector
pairs in our study region. The strongest 1 mo temper-
ature persistence occurs during the summer, with a
median value of r (Jul, Aug) = 0.44. The strength of
temperature persistence steadily decreases through-
out the fall with a minimum median value of r (Nov,
Dec) = 0.11. The cool season maximum r occurs in
January−February, with a median value of r (Jan,
Feb) = 0.27. The greatest variability in temperature

persistence across the study region occurs in March−
April.

While the magnitude of the 3 mo autocorrelations
are generally weaker (Fig. 1B) than those at 1 mo
(Fig. 1A), there is still evidence of seasonality. The
maximum 3 mo autocorrelation is r (Jun, Sep) = 0.27
and the minimum is r (Jan, Apr) = 0.01. The seasonal
variations in 3 mo temperature persistence are simi-
lar to the 1 mo persistence, but they occur 2−3 mo
earlier. For example, the strength of the 3 mo temper-
ature persistence increases from January through
June, while the strength of the 1 mo persistence
increases from March to August. There is a relative
maximum that occurs in October, coinciding with the
secondary maximum that occurs in January for the
1 mo persistence. Temperature persistence was also
examined at longer timescales (6, 9, and 12 mo), but
there were no statistically significant patterns in our
study region.

4.2.  Spatial variability of temperature persistence

4.2.1.  One-month autocorrelations

The variations in temperature persistence across
the study region are shown for both 1 mo (Fig. 2) and
3 mo timescales (Fig. 3). Most locations that are close
to the Gulf of Mexico tend to have statistically signif-
icant temperature persistence at the 1 mo timescale
throughout the year (Fig. 2). This is in agreement
with previous studies that found the strongest tem-
perature persistence in coastal locations (Namias
1978, van den Dool 1984, van den Dool et al. 1986,
Eichner et al. 2003, Monetti et al. 2003, Triacca et al.
2014). However, there is substantial spatial variabil-
ity in the strength of temperature persistence across
the south-central US. During the winter (DJF), the
strongest autocorrelations are found in locations
close to the Gulf of Mexico, although autocorrela-
tions are statistically significant across most of the
study area in January. Beginning in February, the
locations with the strongest 1 mo temperature per-
sistence shifts into southwestern Texas (the region
near the Rio Grande bordering Mexico), and this
lasts through spring. Beginning in June, the core
region with the strongest temperature persistence
shifts northeastward into Oklahoma and southwest-
ern Arkansas. These findings also agree with pre -
vious research which found that temperature per -
sistence is strongly related to continentality during
the summer (Dickson 1967, Namias 1978, Barnett
& Preisendorfer 1987, Lyon 1991). In July, west Texas
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is the region with the weakest temperature persist-
ence, but by October, the strongest temperature per-
sistence is again found in southwestern Texas.

It is also instructive to compare months with funda-
mentally different spatial patterns of temperature
persistence. In March, there is a strong gradient in
temperature persistence across the study region from
southwest to northeast. The autocorrelations vary
from −0.2 near the Ozark Mountains to 0.5 in south-
west Texas. However, in July, relatively strong auto-
correlations are found throughout most of the study
region and the range of autocorrelations is much less
(~0.45). The relatively weak temperature persistence
during July in western Texas may be due to the onset
of the North American Monsoon (NAM). The NAM

influences much of the southwestern US during the
summer and is responsible for the majority of the
annual precipitation. This may contribute to the rela-
tive low temperature persistence in the western part
of the study region during this time.

Outside of the NAM, there are statistically sig -
nificant autocorrelations which occur during most
months in southwestern Texas. However, they are
somewhat at odds with the expected relationship
between persistence and continentality. Outside of
the summer months, most previous research found
that temperature persistence is weaker in continental
locations (e.g. van den Dool et al. 1986). Perhaps the
limited precipitation and higher temperatures in this
region allows land−atmosphere interactions to con-
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Fig. 1. Distributions of temporal
autocorrelations of temperatures
at (A) 1 mo and (B) 3 mo time
lags. The month along the x-axis
represents the initial month, and
the autocorrelation reflects the
strength with which the initial
temperature anomaly persists.
Horizontal black dashed line: an
autocorrelation of zero; magenta
dashed line: the critical auto -
correlation value (0.183) for a
95% significance level. The top
of each box represents the 75th

percentile of the distribution; the
bottom represents the 25th per-
centile. Solid red line: median of
the distribution; whiskers extend
to ±2.7 SD from the mean and all
other values are considered out-
liers and plotted as black dots
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Fig. 2. Temporal autocorrelations of maximum monthly temperatures at a 1 mo time lag. Only positive autocorrelations which 
are statistically significant at a 95% confidence level are displayed

Fig. 3. Temporal autocorrelations of maximum monthly temperatures at a 3 mo time lag. Only positive autocorrelations which 
are statistically significant at a 95% confidence level are displayed
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trol temperature persistence in a lengthier warm sea-
son relative to the study area, as Lyon (1991) sug-
gested. Namias (1978) and Lyon (1991) both sug-
gested that temperature persistence is correlated to
persistent flows at the 500 mb level. In the cool sea-
son, southwest Texas is typically too far south of the
polar branch of the jet stream to be affected, leading
to persistent zonal flow.

Temperature persistence is weak during the winter
months at most locations in the study region. The
northern portions of the study region have the weak-
est temperature persistence in the winter, although
there is a widespread increase in temperature per-
sistence during January. According to Lyon (1991),
persistent circulation patterns are often responsible
for increases in temperature persistence during win-
ter. During spring, weak 1 mo autocorrelations are
widespread throughout the eastern portion of the
study region. The negative autocorrelations in the
northeast cover more than one-third of the study
region. This is likely due to this area’s proximity to a
climatological storm track (Namias 1978) and high
month-to-month variability as the jet stream retreats
northward during the spring (Hoskins & Hodges
2002). Small changes in the mean storm track from
March to April can diminish any temperature persist-
ence signals.

4.2.2.  Three-month autocorrelations

There are fewer statistically significant autocorre-
lations at the 3 mo than at the 1 mo timescale. How-
ever, there are still coherent spatial patterns in 3 mo
temperature persistence (Fig. 3). During the cool sea-
son, the only statistically significant autocorrelations
are in southwestern Texas. Starting in April, there is
a large area of statistically significant temperature

persistence covering about 59% of the study region.
During the warm season, the strongest temperature
persistence is in continental locations, similar to the
spatial patterns of 1 mo temperature persistence. The
3 mo temperature persistence maxima occur in April
and June, suggesting that there is an established
spatial pattern of persistence during spring and
early summer. Namias (1978) also found significant
autocorrelations at a seasonal (3 mo) timescales to
be widespread across the south-central US during
spring and summer. Both of these results suggest that
both springtime and early summertime maximum
monthly temperatures have an impact on tempera-
tures during the subsequent season. The relative
decrease in persistence during May could be attrib-
uted to a transition between the patterns of persist-
ence during spring and early summer. It is also evi-
dent that persistence is strongest in early summer
and there is a sharp decrease in persistence begin-
ning in July. The 3 mo temperature persistence
 during late summer and fall is not statistically sig -
nificant. This suggests that there are both spatial and
temporal variations in temperature persistence in the
south central US. Therefore, temperature persistence
can be an important source of monthly-to-seasonal
forecast skill, but only in certain locations and months.

5.  HEIDKE SKILL SCORES

5.1.  Overall performance of one-month persistence
forecasts

The mean forecast skill for all 1 mo persistence
forecasts across the study region (Fig. 4) confirms
that persistence-based forecasts have more skill than
a climatology-based forecast. HSS values are consis-
tently positive for all 1 mo forecasts, indicating that
a persistence-based forecast accurately predicts the
correct monthly temperature tercile more than one-
third of the time. Even the minimum skill score of
0.054 indicates an improvement (~4%) from the
 climatology-based forecast. The mean forecast skill
in each month shows a coherent spatial pattern
(Fig. 4). Forecast skill tends to be lower in continental
locations and higher in maritime locations. However,
these spatial variations may be driven by latitude
rather than continentality. The highest skill scores
(>0.15) are found in coastal locations and most of
southwestern Texas. In these areas, more than 43%
of persistence tercile forecasts are correct. High tem-
perature persistence in southwestern Texas was also
noted using temporal autocorrelations in Section 4.2.1.
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Fig. 4. Heidke skill scores for all 1 mo temperature persist-
ence forecasts made from January 1900 to November 2015
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The largest HSS value of 0.24 is associated with a
continental location in southern Texas. The lowest
skill scores are largely concentrated in northern
Oklahoma, northern Arkansas, and Tennessee. The
evaluation of all forecasts confirms that persistence
forecasting is consistently higher than climatology-
based forecasts.

5.2.  Application to extreme heat events

Fig. 5 shows that there is a relationship between
the magnitude of the antecedent monthly tempera-
ture percentile and the HSS. That is, the skill of per-
sistence-based temperature forecasts increases as a
function of the magnitude of the antecedent tem -
perature anomalies. The median skill score for 1 mo
forecasts approximately doubles when comparing all
forecasts (0.13) to forecasts when the antecedent
temperature is greater than or equal to the 90th

 percentile (0.25). This relationship is also apparent
when examining the persistence of below-normal
temperatures. The median skill score is 0.26 when
the antecedent temperature is less than or equal to
the 10th percentile. It should be noted that the vari-
ability in HSS values also increases when binning
antecedent temperature because of the decreasing
sample size. For example, 696 forecasts are evalu-
ated when antecedent temperatures greater than or
equal to the 50th percentile while only 70 forecasts
are evaluated for the 95th percentile. When the sam-
ple size is reduced, each individual forecast holds
more weight in the skill score calculation, increasing
the variability. The skill of all 1 mo persistence fore-
casts is largely due to the increase in persistence with

increasing or decreasing antecedent temperature per -
centiles. The median skill scores for forecasts when
antecedent temperatures are below normal (0.16)
and above normal (0.18) are higher than when ante -
cedent temperatures are near normal (0.04). How-
ever, even when temperatures are near normal,
 persistence-based forecasts perform better than
 climatology-based forecasts in 92% of grid cells.

Fig. 6 shows that anomalous temperatures lead to
increases in 1 mo persistence forecast skill for at
least 35% of the study area. This is consistent for all
months of the year. When antecedent monthly tem-
peratures are greater than or equal to the 90th per-
centile, there is an increase in 1 mo forecast skill for at
least 70% of the region from May to January. Accord-
ingly, the smallest increases in forecast skill occur
during the spring for both anomalously cool and
warm conditions. The spatial patterns of 1 mo fore -
cast skill given antecedent temperatures greater than
the 90th percentile are amplified when compared to
general 1 mo temperature persistence in Section 4.2.1.
For example, a strong dipole of skill scores was pres-
ent in April as opposed to a widespread increase in
forecast skill during the summer months.

Skillful forecasts of extreme heat in the  south-
central US are of particular interest. Therefore, we
identified antecedent conditions that have a tendency
to lead to extreme heat. This is defined as skill scores
that indicate a greater than 50% chance of persistence
when antecedent temperatures are greater than or
equal to the 90th percentile. At a 1 mo timescale, most
of the study area displays the tendency for warm tem-
peratures to persist from May to September (Fig. 7).
This tendency is widespread during June (88%) and
July (89%). This is not surprising given that this
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Fig. 5. Heidke skill scores for all
1 mo temperature persistence
forecasts made from January 1900
to December 2015 ac cording to
the percentile of the  antecedent
monthly temperature. The top of
each box rep resents the 75th per-
centile of the distribution; the bot-
tom represents the 25th percentile.
Solid red line: median of the dis -
tribution; whiskers extend to ±2.7
SD from the mean and all other
values are considered outliers and 

plotted as black dots
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region is a hotspot for  land− atmosphere interactions
(Koster et al. 2004, Merrifield et al. 2017). These posi-
tive land−atmosphere feedbacks may lead to in-
creased temperature persistence during the warmest
months. In addition, there is also a tendency for

warmer than normal temperatures to persist across
the majority of the study area in January.

There are also months where large portions of the
study area exhibit the tendency for anomalously
warm temperatures to persist when considering the

3 mo timescale (Fig. 7). Similar to Fig. 1, seasonal
trends in 3 mo persistence are offset from those
observed at a 1 mo timescale. There are 2 peaks
in 3 mo persistence, once from April to June and
another from September to November. Both of
these show that persistence-based temperature
forecasts are skill ful in approximately half of the
study region. This finding is significant, because
it indicates that anomalously warm springtime
temperatures (e.g. April) can be used as a skillful
predictor of extreme summer temperatures. This
is particularly pronounced in the northern part of
the study region. In addition, when temperatures
are anomalously warm in early summer (e.g.
June), this is also associated with increased fore-
cast skill. However, anomalously warm tempera-
tures during July and August do not provide
skillful forecasts of fall temperatures. The ten-
dency for 3 mo persistence also exists during
September to November for the majority (>55%)
of the study area. While this is interesting,
extreme heat is less likely to result in adverse
health or environmental impacts in fall.
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6.  SUMMARY AND DISCUSSION

This study utilized a high-resolution data set to
establish a temperature persistence climatology for
the south-central US. Our results affirm many of
the findings of past studies. Similar to Barnett &
Preisendorfer (1987), Dickson (1967), Lyon (1991),
Namias (1978), van den Dool (1984), and van den
Dool et al. (1986), our work demonstrates that the
strongest temperature persistence occurs in summer.
Temperature persistence at a 1 mo timescale was
also statistically significant in January for much of
the study region (Dickson 1967, Lyon 1991). Namias
(1978) found statistically significant autocorrelations
at 3 to 6 mo timescales during spring and summer.
This agrees with the lag in the seasonal cycle of
 temperature persistence that we found in our study
(Figs. 1b & 7). For example, we found that most
 locations had significant 3 mo autocorrelations from
April to June.

Our results also illustrate that monthly tempera-
ture persistence varies spatially within the south-
central US, as van den Dool et al. (1986) suggested.
Fig. 8 utilizes the Conrad index (Conrad 1946) to
explore the relationship between persistence and
continentality. There are moderate to strong corre-
lations be tween temperature persistence and conti-
nentality during the fall and winter (Fig. 8A,D). This
suggests that, on average, temperature persistence

increases as one moves closer to the coast. Interest-
ingly, during the summer, the strongest temperature
persistence occurs at locations that are ~400 km
inland from the Gulf of Mexico (Fig. 2). As Fig. 8C
shows, most of the highest autocorrelations during
summer months occur with moderate values of the
Conrad index. These locations are still close enough
to the Gulf of Mexico to experience the moderating
influence of the ocean, but there are obviously other
factors that are also important for explaining the
spatial patterns in temperature persistence (Namias
1978, van den Dool 1984, Van den Dool et al. 1986).
As a result, the correlation coefficient, which should
measure a  linear relationship between continental-
ity and persistence, fails to capture the quadratic
trend during summer months (Fig. 8C). Lyon (1991)
suggested that the inland maxima in summertime
temperature persistence (seen in Fig. 8C) can be
partly attributed to land−atmosphere interactions.
Strong land− atmosphere coupling influences much
of our study region. While it was not an objective of
this study to conduct an attribution analysis to iden-
tify all of the factors that explain the patterns of
temperature persistence in the south-central US, the
locations and times when temperature persistence
is strongest are consistent with when and where
land−atmosphere interactions are thought to be
most influential (Koster et al. 2004, Merrifield et al.
2017).
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Fig. 8. Relationship between the temporal autocorrelation of monthly temperatures in the south central US and the Conrad in-
dex of continentality. For each season, the monthly temporal autocorrelations were averaged at each grid cell. The coefficient
of correlations displayed quantify the relationship between the temporal autocorrelation and the Conrad index. The climato-

logical seasons are constructed as follows: (A) Winter (DJF), (B) Spring (MAM), (C) Summer (JJA), and (D) Fall (SON)
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The most significant finding of this study is that there
is a systematic increase in temperature persistence
with more anomalous antecedent temperatures. The
use of the HSS allows us to quantify this effect. Both
anomalously warm and cool temperatures promote
temperature persistence. While anomalous  conditions
promote higher persistence forecast skill, there are
seasonal variations in the strength of this effect. Per-
sistence of anomalously warm temperatures is most
important during the summer. Lyon & Dole (1995)
found that extreme heat during the  summer tends to
persist until a strong, dynamically forced atmospheric
event disrupts the feedback cycle. Additionally, anom-
alously warm temperatures during spring were also
shown to be a skillful predictor of above-normal sum-
mer temperatures. Perhaps this is due to the higher
 potential evapotranspiration associated with high tem-
peratures during the warm season. Previous research
has shown that low soil moisture can provide early
warning of extreme heat events (Ford & Quiring 2014).

The results of this study provide information to in -
form the development of more skillful seasonal tem-
perature forecasts. Persistence is a basic, yet impor-
tant, source of subseasonal-to-seasonal forecast skill.
Knowledge of where and when persistence is strong
can help to identify conditions when persistence can
be used as a successful forecasting technique. Many
previous studies have examined the charac teristics
of temperature persistence, but failed to demonstrate
seasonal predictability using persistence. Therefore,
we have demonstrated the utility of this information
using monthly tercile temperature forecasts. Our re-
sults show that the importance of persistence grows
with the magnitude of the ante cedent temperature
anomalies. When there are large temperature anom-
alies, the skill for 1 mo temperature persistence fore-
casts increases. This study recommends the use of
both 1 and 3 mo persistence forecasts when forecast-
ing anomalously warm temperatures during the sum-
mer. This information can enhance seasonal forecast
skill in a region that frequently experiences the ad-
verse effects of extreme heat events.
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