
CLIMATE RESEARCH
Clim Res

Vol. 35: 37–58, 2007
doi: 10.3354/cr00713

Published December 31

1.  RECENT CHANGES IN MIGRATION DATES

The alteration of climatic patterns in recent decades
has already had an impact on organisms (Peñuelas &
Filella 2001, IPCC 2002, Walther et al. 2002, Parmesan
& Yohe 2003, Root et al. 2003, 2005, Parmesan 2006).
One of the most evident changes has been the alter-
ation of seasonal timing in northern latitudes (Sparks &
Crick 1999, Sparks & Menzel 2002). At present, spring
is beginning earlier, while autumn arrival is being
delayed (Menzel et al. 2006). The potential effects of
such changes on organisms’ life-cycles are large and

range from ecosystem functioning to species’ competi-
tive abilities (Walther et al. 2002, Visser & Both 2005,
Parmesan 2006).

In the case of migratory bird species, a growing num-
ber of studies have reported shifts in the timing of their
migrations during the last decades (Sparks 1999, Sanz
2002, Root et al. 2003, Crick 2004, Lehikoinen et al.
2004, Crick & Sparks 2006, Jian-bin et al. 2006, Rubo-
lini et al. 2007b, this issue). In most cases, a trend
toward earlier spring arrival of birds has been detected
at European and North American breeding grounds,
especially since the 1970s. Hence, migratory birds are
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advancing their arrivals. The advancement
of spring migratory phenology has been
attributed to climate change, with special
regard to global warming. In most cases, a
negative relationship has been found be-
tween arrival dates and spring temperatures
(Lehikoinen et al. 2004, Root et al. 2005,
Gienapp et al. 2007, this issue), i.e. birds ar-
rive earlier when spring temperatures are
higher. Higher temperatures also advance
the spring phenology of plants and insects in
the European and North American passage
and breeding areas (Menzel et al. 2006,
Gordo & Sanz 2006b, Schwartz et al. 2006)
which may improve ecological conditions
for migration through these temperate re-
gions due to increased food availability
(Huin & Sparks 1998, Hüppop & Hüppop
2003, Ahola et al. 2004, Vähätalo et al. 2004,
Both et al. 2005, Mitrus et al. 2005, Hüppop
& Winkel 2006, Rainio et al. 2006). Warmer
springs are also related to more benign
weather, thus meteorological conditions for
travel are improved (Forchhammer et al.
2002, Boyd 2003, Tryjanowski et al. 2002, Vä-
hätalo et al. 2004, Marra et al. 2005, Zalake-
vicius et al. 2006, Sinelschikova et al. 2007).

However, those changes recorded in the
arrival date at the southern fringe of the
breeding distributions (such as the Mediter-
ranean region for trans-Saharan migrants;
Gordo & Sanz 2005, 2006a, Gordo et al. 2005,
Rodríguez-Teijeiro et al. 2005, Jonzén et
al. 2006, Rubolini et al. 2007a, Saino et al.
2007, this issue) cannot be attributed to the
previously cited mechanisms. There, individ-
uals do not pass through Europe or North
America, and, consequently, they cannot be
affected by conditions in temperate latitudes.
Conditions during the spring in Europe and
North America are overrepresented, because
the overwhelming majority of studies have
been conducted in northern latitudes (see
Fig. 1). Individuals must fly for days or weeks
through Europe or North America before
reaching these northern localities (e.g.
Southern 1938). In these cases, arrival dates
will indeed be strongly driven by weather
and climatic fluctuations occurring during
the end of their travel at European and North
American grounds.

The advancement of spring arrival is also
expected based on the effects of climate
change on the balance between the bene-
fits and costs of the arrival date (Jonzén et
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Fig. 1. Locations of recent studies on long-term changes in bird migratory
phenology and climate change in Europe (a) and North America (b; see
reference list). Dot size indicates the number of species analyzed at each
site. Countries with diagonal shading indicate studies that used some kind
of monitoring network covering several localities at a national level (Huin
& Sparks 1998, 2000, Sparks & Braslavská 2001, Forchhammer et al. 2002,
Boyd 2003, Gordo & Sanz 2006a). (c) Distribution of studies according to
latitude (5° intervals) in the Northern Hemisphere. Solid bars: European 

studies; open bars: North American studies
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al. 2007a). An early arrival at the breeding grounds has
many benefits for individuals: best breeding territories,
increased chances to obtain a mate, better quality
mates, increased chances for extra clutches and higher
survival rates of offspring (Møller 1994, Kokko 1999,
Forstmeier 2002, Dunn 2004, Bearhop et al. 2005, New-
ton 2006). However, arrival date cannot be too early
because of costs in terms of mortality due to the
absence of suitable ecological conditions in the breed-
ing grounds at the beginning of spring (e.g. low tem-
peratures, food scarcity; Brown & Brown 2000, Jonzén
et al. 2007a, Newton 2007). With the advancement of
spring phenology, food supplies have become avail-
able at earlier dates and the mortality rate between
arrival and breeding is reduced due to milder weather
(Møller 2004). Therefore, advancement of arrival dates
can also be interpreted as the response of individuals
in order to optimize the benefits of early arrival.

Nevertheless, some populations have not changed
(or have even delayed) their arrival dates during the
last few decades, in spite of the favourable changes in
spring climate and phenology in their breeding
grounds (e.g. Inouye et al. 2000, Wilson et al. 2000,
Both & Visser 2001, Strode 2003, Gordo et al. 2005,
Weidinger & Král 2007). This fact would imply a mal-
adaptive response under previous assumptions of the
optimization hypothesis. However, this hypothesis is
simplistic, since spring phenology at the breeding
grounds cannot be the only pressure for the best
adjustment of arrival dates. Migratory birds spread
out their annual cycles over different geographical
areas and, consequently, suffer several environmental
changes in each of these areas (Coppack & Both 2002).
Therefore, it is necessary to examine other environ-
mental pressures apart from those, such as the
increase of temperature, recorded in the breeding
grounds (Inouye et al. 2000, Saino et al. 2004b, 2007,
Gordo et al. 2005, Both et al. 2006, Gordo & Sanz
2006a, Sinelschikova et al. 2007, Sparks & Tryjanowski
2007, this issue). Furthermore, the timing of life-cycle
events of migratory birds is under the control of
endogenous rhythms (Berthold 1996, Gwinner 1996),
which could constrain the plasticity of responses of
some species to climatic changes (Both & Visser 2001).
Finally, a population decline can override the advance-
ment of spring migration due to a decrease in the like-
lihood of the first individuals’ detection (Sparks et al.
2001, Tryjanowski et al. 2005, Croxton et al. 2006,
Sparks et al. 2007).

There is a third mechanism by which spring arrival
can be advanced. Individuals can change the locations
of the wintering grounds. In Spain, the white stork
Ciconia ciconia has advanced its arrival by 1 mo since
the 1980s (Gordo & Sanz 2006a), while the number of
wintering individuals on the Iberian Peninsula has

increased sharply since then (Molina & Del Moral
2005). Bearhop et al. (2005) showed that blackcap
Sylvia atricapilla males overwintering in Britain arrive
earlier at their German breeding grounds than their
conspecifics overwintering in Iberia. Indoor experi-
ments with 3 trans-Saharan species (garden warbler
Sylvia borin, common redstart Phoenicurus phoenicu-
rus and pied flycatcher Ficedula hypoleuca) have
demonstrated that phenotypic plasticity in response to
novel photoperiodic conditions from northern winter-
ing grounds could be the cause of such advancement
(Coppack et al. 2003; see also Coppack & Both 2002,
Coppack & Pulido 2004).

In the case of autumn migratory phenology, there
has been evidence of delays and advances (Gatter
1992, Bezzel & Jetz 1995, Sokolov et al. 1999, Bairlein
& Winkel 2001, Sparks & Braslavská 2001, Sparks &
Mason 2001, Gilyazov & Sparks 2002, Cotton 2003,
Jenni & Kéry 2003, Witt 2004, Hüppop & Hüppop 2005,
Mills 2005, Gordo & Sanz 2006a, Tøttrup et al. 2006b,
MacMynowski & Root 2007, Peron et al. 2007, this
issue Sparks et al. 2007). In contrast to spring arrival
dates there is no clear picture, as temporal trends of
autumn migratory dates are strongly species specific.
The optimal migratory strategy would fall under differ-
ent pressures between long- and short-distance
migrants during autumn migration (Jenni & Kéry
2003). Long-distance migrants should depart as early
as possible to profit from the abundance peak of
resources at the end of the summer and the beginning
of the autumn in some of their tropical passage and/or
wintering areas (e.g. the Sahel; Morel 1973). In the
case of single-brood species with earlier spring arrivals
and/or earlier breeding dates, an advancement of
departures should be expected as a result of a shift in
the whole annual cycle (Fig. 2; Ellegren 1990, Sokolov
2000, Bojarinova et al. 2002). However, the advance-
ment of spring arrivals and/or breeding dates could
paradoxically delay autumn departures in multiple-
brood species, because they could profit from this shift
in the annual cycle by increasing the proportion of
pairs that can lay second or third clutches (Fig. 2;
Møller 2002).

Short-distance migrants are under different evolu-
tionary pressures as a result of the ecological charac-
teristics of their wintering areas. Ecological conditions
of wintering areas of short-distance migrants (e.g.
Mediterranean basin for European species) improve
throughout autumn thanks to abundant rainfall during
this season and the consequent end of summer drought
conditions. Therefore, an overly early arrival to the
wintering grounds could be constrained by the poor
ecological conditions at the end of the summer and
their potential costs in terms of survival. However,
costs of remaining at the breeding grounds increase as
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autumn progresses, because of unexpected adverse
weather conditions (Newton 2007). Future climatic
scenarios predict milder conditions in northern lati-
tudes. Therefore, short-distance migrants could post-
pone (or even suppress) departure from their breeding
grounds in order to profit from milder conditions in
northern latitudes resulting from climate change
(Bezzel & Jetz 1995, Jenni & Kéry 2003).

Other characteristics of autumn migration could
mask temporal patterns on departure dates. In many
species autumn departures are furtive, which hinders
the precise detection of this phenomenon through
observation. Observational records of autumn migra-
tion are also unprotected against the stronger mixture
of individuals of different ages (juveniles and adults),
sexes (males do not precede females) and natal origin
(common in the southern areas of species’ distribution)
during autumn than during spring migration. Finally,
the increase in temperatures is not homogeneous
throughout the year, being especially slight or even
non-existent in autumn (Karl et al. 1993, Easterling et
al. 1997, Klein Tank et al. 2005). Hence, if autumn
migration is affected by climate, but autumnal climate
has not changed, then there are no climatic pressures
to shift post-nuptial migratory phenology.

In summary, there is irrefutable evidence that avian
migratory phenology has shifted during recent
decades, but is climate change the true cause for such
shifts? In spite of a consensus answering this question
affirmatively (Sparks & Crick 1999, Walther et al. 2002,
Parmesan & Yohe 2003, Root et al. 2003, Crick 2004,
Root et al. 2005, Crick & Sparks 2006), there is a lack

of consensus regarding the mechanisms by
which climatic changes can induce such
shifts (Both 2007, Jonzén et al. 2007b),
maybe as a result of the complex evolution-
ary pressures involved in the optimization of
the arrival date together with geographical
variability and a strong species-specific
component of reported responses (Both & te
Marvelde 2007 this issue, Rubolini et al.
2007b). The aim of this paper is to review
the potential climatic and weather mecha-
nisms underlying the recently detected
shifts in migratory dates. I pursue this objec-
tive in 2 steps in the present paper. First, I
review direct and indirect effects of climate
and weather from departure and passage
areas on avian migratory phenology. Sec-
ond, I review the use of climatic variables in
recent studies of bird migratory phenology
and climate change. By means of a quantita-
tive assessment I want to highlight what we
know and what we need to address in future
research. I also identify the main advan-

tages and pitfalls related to each type of climatic
variable. The temporal patterns of advancements and
delays are already well described (e.g. Lehikoinen et
al. 2004); now is the time to delve into the underlying
mechanisms for these patterns, especially those
regarding climate and weather.

2.  EFFECTS OF CLIMATE AND WEATHER ON
MIGRATORY PHENOLOGY

The arrival date of a migrant bird will depend on
what happens between individual departure from its
origin to individual arrival at its destination. Therefore,
arrival date will be a function of both the moment of
departure and the time spent moving from its origin to
its destination. The later the departure and the longer
the time spent moving, the later the birds arrive.
The time necessary to move between one place and
another will, in turn, depend on: (1) the speed of pro-
gression through passage areas and (2) the total time
spent at stopovers. Therefore, if we want to know what
affects the arrival date of a migratory bird recorded at
a certain place, we should examine those environmen-
tal elements that can potentially influence departure
date from the origin, speed of progression (i.e. average
movement rate between consecutive stopping places)
and frequency (i.e. the number of stops during the
whole journey) and length (i.e. the average duration of
the stay in each refuelling site) of stopovers (Fig. 3).

Conditions at the end of the migratory journey, i.e.
the goal area, have not been taken into account in this
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sketch of migration (Fig. 3). However, the overwhelm-
ing majority of studies included some kind of climatic
variable from the same site where arrivals are re-
corded (Mason 1995, Loxton et al. 1998, Sokolov et al.
1998, Ahas 1999, Loxton & Sparks 1999, Sparks &
Mason 2001, Sueur & Triplet 2001, Barrett 2002, Try-
janowski et al. 2002, Dolenec 2003, Lane & Pearman
2003, Ptaszyk et al. 2003, Murphy-Klassen et al. 2005,
Askeyev et al. 2007, Sparks & Tryjanowski 2007). Birds
depart from sites at 100s or 1000s of kilometres away
from their goal areas (e.g. their wintering grounds in
the tropics), and, thus, it is unlikely that they can accu-
rately assess the climatic conditions at their destination
sites (e.g. breeding grounds in temperate latitudes).
The high number of significant relationships reported
between the arrival at a certain place and the climate
there can be attributed to the strong spatial autocor-
relation of climatic variables, especially temperatures
(Huin & Sparks 1998, Ahola et al. 2004, Mitrus et al.
2005, Murphy-Klassen et al. 2005, Zalakevicius et al.
2006, Sparks et al. 2007). For example, in the case of
spring arrivals, warmer springs at the breeding site are
also related to warmer springs in the nearby passage
areas that are traversed by individuals during the
preceding days. Weather is governed by large-scale
atmospheric circulatory systems, which can influence
areas of 100s of kilometres. Therefore, climatic condi-
tions at the study site are a surrogate for climatic con-
ditions in a broader surrounding area. Relationships
between arrivals and local climate at the study site can
consequently be interpreted as effects of climate on
progression speed or time spent at stopovers during
the previous days of the migratory journey.

The huge number of significant relation-
ships reported between climatic variables
and arrival dates reflect complex under-
lying mechanisms rather than a single
cause–effect relationship between 1 re-
sponse variable (i.e. arrival) and 1 predictor
variable (i.e. climate; see Fig. 3). Indeed,
climate is the ultimate cause of arrival date
variability, but there are several non-exclu-
sionary ways to mediate climatic effects on
avian migratory phenology. These ways
(arrows in Fig. 3) can be classified as direct
or indirect effects. Direct effects refer to
those direct impacts of weather on depar-
ture decisions, progression speed, or
stopover duration. Indirect effects refer to
the cascade of effects derived from
changes in the ecological conditions driven
by interannual climatic fluctuations. Harsh
climatic conditions (e.g. drought in arid re-
gions or low temperature during winter in
temperate regions) are associated with

poor and restrictive ecological conditions. If ecological
conditions are poor and restrictive, food resources will
be scarce, and this will have negative repercussions on
the survival and physiology of individuals.

The sketch proposed in Fig. 3 would be valid for both
the arrival at the breeding grounds as well as at the
wintering grounds, although, in the latter case, the
effects of breeding phenology over departure must be
included (Ellegren 1990, Sokolov 2000, Bojarinova et
al. 2002). Nevertheless, there is little empirical evi-
dence on the arrival dates at the wintering grounds
(Sparks & Mason 2004, Gordo & Sanz 2005), and cli-
mate impacts over these dates have rarely been
assessed (Sparks & Mason 2004, see also Shamoun-
Baranes et al. 2006). For this reason, I will focus exam-
ples mainly on spring arrivals at breeding grounds.

Climatic impacts on departure phenology from both
breeding and wintering grounds can be evaluated
following Fig. 3. In fact, departure and arrival should be
considered as the beginning and end, respectively, of the
same phenomenon: migration. Therefore, a comprehen-
sive search of the climatic mechanisms underlying arrival
date variability must include an assessment of climatic ef-
fects on departures because departures are a key piece
of the migratory puzzle. Unfortunately, there is little
knowledge about departure dates from wintering
grounds (Kok et al. 1991, Sparks & Mason 2004, Gordo &
Sanz 2005) in comparison to their coupled arrivals at the
breeding grounds. However, the opposite situation is
found for autumn migration: many studies have analysed
departures from breeding grounds, but few have as-
sessed the arrivals at the wintering areas (Kok et al.
1991, Sparks & Mason 2004, Gordo & Sanz 2005).
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3.  EFFECTS OF CLIMATE AND WEATHER IN
DEPARTURE AREAS

This section will be focussed on the direct and indi-
rect ways in which climate and weather affect the
departure date from a certain area (i.e. all arrows and
boxes between climate and departure date in Fig. 3).
Since the final aim is to assess the effect of departure
date on arrival date, and primarily the latter is avail-
able for the breeding grounds, most of this discussion
will be focussed on spring pre-nuptial migration.

3.1.  Plasticity of migration onset

Photoperiod is the most reliable calendar, and for this
reason birds use it to trigger their migration (Berthold
1996, Gwinner 1996). However, environmental condi-
tions encountered by individuals in departure areas are
different each year at the same date (i.e. interannual
variability), and, consequently, they should be flexible
in their responses (i.e. departure dates) in order to
make the best decision. The evidence about internal
clocks and the relevance of photoperiod as a trigger of
migration are irrefutable (Berthold 1996). Nevertheless,
such evidence has been obtained only for a few song-
bird species and under captive conditions. These ex-
perimental conditions are far from the complex situa-
tion found by migrant birds in the wild. In nature,
individuals must evaluate many other environmental
cues (e.g. weather, food supplies) before choosing a
well-balanced response. For example, autumn depar-
ture dates can show large differences from year to year
related to weather, which suggests a fine tuning of en-
dogenous rhythms according to the particular environ-
mental conditions (see Shamoun-Baranes et al. 2006).
Furthermore, interannual climatic fluctuations could in-
directly affect departure decisions of individuals due to
food supplies (Fig. 3), which affect individuals’ physio-
logical status (Bairlein 1985, Biebach 1985, Biebach
et al. 1986, Gwinner et al. 1988). Endogenous rhythms
would trigger migratory restlessness, but migratory on-
set should not be effective until the individual’s body
condition is sufficiently prepared. Leaner individuals
would delay departure to obtain all the necessary fuel
reserves to ensure their survival during migratory
flight. Therefore, the potential effect of climate at win-
tering grounds on migratory onset through ecological
conditions and food availability should be taken into
account (Studds & Marra 2007, this issue).

Recent studies have reported evidence in favour of a
certain phenotypic plasticity in migratory phenology,
in response to variable ecological conditions in the
wintering quarters. The arrival date of barn swallows
Hirundo rustica in northern Italy between 1993 and

2001 was earlier after winters with favourable ecologi-
cal conditions in their African wintering grounds, as
was reflected by higher values of the normalized dif-
ference vegetation index (NDVI; Saino et al. 2004b).
Interestingly, this effect was only detected in old indi-
viduals (i.e. individuals of 2 or more years). The arrival
of 1 yr old individuals was not related to wintering con-
ditions, due to the time taken to choose a colony in
their first breeding season, which is independent of
conditions in Africa. In turn, arrival dates had an effect
on breeding success, and, consequently, ecological
conditions during winter showed an indirect effect on
individuals’ fitness (see also Dallinga & Schoenmakers
1987, Marra et al. 1998, Hötker 2002, Norris et al.
2004a). In a locality from north-eastern Spain, 6 com-
mon trans-Saharan bird species delayed their arrival
dates between 1953 and 2004 (Gordo et al. 2005). This
delay was unexpected, since all spring phenological
events (e.g. leaf unfolding, flowering and insect appear-
ance) were advanced (Peñuelas et al. 2002). In 5 out of
6 species, rainy years in Africa, especially in the Sahel
region, were linked to an earlier arrival. Since precipi-
tation has decreased in that region, as a result of the
persistent droughts during the last decades (Zeng
2003, Dai et al. 2004), individuals arrive later in re-
sponse to impaired ecological conditions there. Results
for this single population have been confirmed in 100s
of localities spread throughout Spain for several spe-
cies (Gordo & Sanz 2006a). In the case of the barn
swallow, the effect of conditions in wintering grounds
was even greater than that of Spanish temperatures
(Fig. 4). Dallinga & Schoenmakers (1987) drew similar
conclusions from the negative relationship between
white stork Ciconia ciconia arrivals in Alsace (France)
and the discharge of the Niger and Senegal Rivers dur-
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ing the preceding rainy season. Flows of these rivers
are a good proxy for the amount of rainfall in the Sahel
region (the wintering region of western white storks;
Fiedler 2001) and, thus, of the ecological conditions
there. In an arid region, such as the Sahel, wet years
are benign years, while dry years are restrictive.
Forchhammer et al. (2002) found a negative relation-
ship between the NAO index and the arrival of 2 long-
distance migrants, the cuckoo Cuculus canorus and
the barn swallow Hirundo rustica, to Norway. Since
high NAO values are related to increased vegetation
productivity in southern Africa (the wintering quarter
of these populations), the authors suggest that im-
proved foraging conditions would allow individuals to
depart earlier from Africa as a result of an improved
body condition.

3.2.  Population numbers

Food availability could affect departure date in 2
non-exclusionary ways, which can be designated long-
and short-term effects (Fig. 3). The long-term effects
refer to the ecological conditions during the period that
individuals remain in a certain area. Such ecological
conditions can affect population numbers through
survival. Poor ecological conditions can increase both
inter- and intraspecific competition for resources and,
consequently, increase the mortality risk due to starva-
tion. A large number of studies have demonstrated the
connection between poor environmental conditions in
wintering grounds and the low survival rates of indi-
viduals in the following breeding season (Winstanley
et al. 1974, Den Held 1981, Cavé 1983, Svensson 1985,
Dallinga & Schoenmakers 1987, Kanyamibwa et al.
1990, Peach et al. 1991, Marchant 1992, Kanyamibwa
et al. 1993, Møller 1994, Szép 1995, Barbraud et al.
1999, Foppen et al. 1999, Sillett et al. 2000, Boano et al.
2004, Newton 2004, Sæther et al. 2006). Population
size can directly affect the recorded arrival date
through a methodological artefact. Migrant individuals
can be recorded earlier in larger populations simply
due to the increased opportunities to detect an individ-
ual. This kind of bias would be especially probable
when arrival dates of populations are quantified by the
individuals that arrive first (Tryjanowski et al. 2005).
Tryjanowski & Sparks (2001) showed for a red-backed
shrike Lanius collurio population from western Poland
that the advancement of the arrival date during the
period from 1983 to 2000 was related to the increase of
the studied breeding population. The authors pro-
posed 2 potential factors acting simultaneously: (1) the
higher probability of observing an early individual in a
larger population and (2) the increased singing activity
in denser populations. Similar effects of population

size over arrivals have been found for the turtle dove
Streptopelia decaocto (Sparks 1999, but see Browne &
Aebischer 2003), the nightingale Luscinia megarhyn-
chos (Huin & Sparks 2000), the blackcap (Sparks et al.
2001) and many other migrants (Croxton et al. 2006,
Sparks et al. 2007) from Britain. This bias due to popu-
lation size could be especially serious for those more
cryptic and skulking species for which chances of
observation are even more strongly constrained by
species behaviour. Unfortunately, population number
trends are rarely available to test this potential effect.

Wintering population size could also directly affect
departure date from wintering grounds through
competitiveness among males for an early return in
protandry species (Morbey & Ydenberg 2001). It could
be predicted that competition for a breeding territory,
as well as sexual selection, become more marked the
higher the number of males (e.g. due to high wintering
survival; Kokko 1999, Møller 2004, Coppack et al.
2006, Kokko et al. 2006, Jonzén et al. 2007a, Møller
2007, Rainio et al. 2007, this issue). Since important
features for individual fitness, such as mate quality,
resource availability during breeding season, or the
number of offspring, rely largely on the acquisition of
breeding territory and its characteristics, selection
pressures over this parameter should be very strong
and will be stronger as competition increases for terri-
tory acquisition. On the other hand, Spottiswoode et al.
(2006) demonstrated that those species under the
strongest sexual selection show the steepest advance-
ment in their arrival dates (but see Rainio et al. 2007).
Therefore, the mating system could also help to
explain the variability in the adaptive responses of
migratory bird species to climate change, since
stronger responses should be expected in those species
under stronger sexual selection.

3.3.  Physiological condition

The short-term climatic effect refers to the hypothet-
ical effect of food availability on individual body con-
dition in departure areas during the days or weeks
preceding migration onset (Fig. 3). Individuals undergo
surprising behavioural and physiological changes be-
fore migration (Berthold 1996). The time required for
the acquisition of the necessary pre-migratory body
condition (i.e. fuel stores) will depend on the foraging
opportunities offered by the occupied habitat as well
as the foraging abilities of each individual. In an envi-
ronment with scarce food supply, individuals will need
more time to store the necessary fuel reserves to guar-
antee the onset of the migratory journey. Marra et al.
(1998) demonstrated that winter habitat may be limit-
ing for breeding success and fitness of migrants (see
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also Sherry & Holmes 1996, Norris et al. 2004a). Indi-
viduals’ migratory schedule and physiological status
in the American redstart Setophaga ruticilla was de-
termined by the habitat occupied during the winter
(Studds & Marra 2007). In the Jamaican wintering
grounds, those individuals from scrub habitat (i.e. poor
environment) showed several deteriorating physical
features (e.g. loss of body mass during winter, elevated
plasma corticosterone; see also Marra & Holberton
1998) and departed significantly later than those indi-
viduals from forest habitat (i.e. rich environment). In
the breeding grounds of central New Hampshire
(USA), individuals that arrived earlier showed isotopic
signatures related to wetter tropical habitats (i.e. rich),
which suggests that earlier individuals occupy better
wintering habitats. Similar conclusions were obtained
for individuals on passage through the Caribbean of
another neotropical migrant species, the black-throated
blue warbler Dendroica caerulescens (Bearhop et al.
2004). Those migrant individuals with better body con-
dition showed isotopic signatures belonging to moist
forest habitats, i.e. good habitats. However, those indi-
viduals overwintering in poor, xeric environments
returned to the breeding grounds in poorer physical
condition, which could be detrimental to their fitness
by means of later arrivals and increased risk of mortal-
ity during migration. In Iceland, the arrival date of
individuals of the black-tailed godwit Limosa limosa
islandica was strongly dependent on the population
trend detected at the site selected to overwinter (Gill et
al. 2001). Those individuals from increasing wintering
populations arrive later than those from stable popula-
tions, because food intake rates previous to migration
were lower in the increasing populations. A later
arrival date has negative impacts on breeding success,
because late individuals are relegated to lower quality
territories (Gunnarsson et al. 2005, 2006).

3.4.  Moult

Food availability in departure areas could have indi-
rect effects on arrival dates through moulting (Fig. 3).
Birds replace their feathers during moult, a costly
process (Dietz et al. 1992, Schieltz & Murphy 1995, Por-
tugal et al. 2007) that takes place before pre- and post-
nuptial migration. Moult can be affected by resource
availability, which, in turn, depends on climatic vari-
ability (Fig. 3). Van den Brink et al. (2000) showed that
the rate of primary and tail moult in barn swallows
was closely related to environmental conditions en-
countered by this species in their African wintering
grounds. The rate of moult was higher in those years
with higher amounts of rainfall during winter. Wet
years were associated with a greater abundance of

insects and, by implication, to an improvement in forag-
ing conditions of insectivorous birds, such as barn swal-
lows. Furthermore, in this species, the availability of
roosting habitat (i.e. reedbeds), which depends on river
discharge (which, in turn, depends on rainfall), affects
the density of individuals and the distance to reach the
foraging areas. In dry years, roosting habitat is scarce,
and barn swallows are forced to concentrate in a few
places. This fact implies a higher competition for aerial
insects and a necessity to move further to forage.

Moult can affect migratory phenology through: (1)
time constraints and (2) quality of replaced feathers.
Time constraints refer to potential delay of departure un-
til the moult is complete. Due to the costs of moult (Dietz
et al. 1992, Schieltz & Murphy 1995, Portugal et al. 2007),
individuals avoid overlapping this process with breeding
(Hemborg et al. 1998, Hall & Fransson 2000, Morales et
al. 2007) or migration (Gorney & Yom-Tov 2001, Pérez-
Tris et al. 2001, Norris et al. 2004b). However, this is not
always possible. At high latitudes, summer is too short
and imposes a trade-off on the time allocation for breed-
ing, moult and preparation for autumn migration (Hem-
borg et al. 1998, 2001). Late individuals in the breeding
season are also affected by this trade-off (Svensson &
Nilsson 1997, Hall & Fransson 2000). Nevertheless, time
constraints can be dealt with by overlapping moult and
breeding (Underhill et al. 1992, Svensson & Nilsson
1997, Hemborg et al. 1998, 2001), accelerating feather
growth (Hall & Fransson 2000), suppressing moult before
migration onset (Hall & Fransson 2001), or overlapping
moult and migration (Norris et al. 2004b). Therefore, in-
dividuals have mechanisms to avoid the time constraints
that moult imposes on autumn departure date. In the
case of pre-nuptial moult, individuals are relatively free
of time constraints, and it may be for this reason that re-
placement of the same feathers takes more time in the
pre-nuptial moult in some species (Underhill et al. 1992).

The quality of replaced feathers depends on the
moult rate (Dawson et al. 2000) and food availability
(Van den Brink et al. 2000, Saino et al. 2004a; but see
Salewski et al. 2004). The quality of feathers affects the
manoeuvrability and flying performance of individuals
(Swaddle et al. 1996, Gorney & Yom-Tov 2001), as well
as the resistance to abrasion, thermoregulatory capac-
ity and coloration (Serra et al. 2007). In aerial feeders,
like the barn swallow, this could have serious reper-
cussions on its foraging ability and thus on body condi-
tion (Fig. 3; Pérez-Tris et al. 2001, Rubolini et al. 2002).

Moreover, consequences of moult through pheno-
logy can go beyond the level of individual success.
When feathers constitute a sexual character, they
undergo strong selective pressures. Saino et al. (2004a)
demonstrated that the length of the tail ornament in
barn swallow males from northern Italy was longer
after winters with good ecological conditions in Africa.
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Since male sexual attractiveness depends on tail orna-
ments (Møller 1988), ecological conditions in wintering
quarters affect an individual’s fitness through sexual
selection during the following breeding season. In
species with sexual selection, the sex under selection
must develop high-quality ornaments to attract mates.
When feathers are a sexual trait, the development of
such traits requires time (i.e. moulting period). The
longer the moulting period, the better, potentially, the
feather quality (Dawson et al. 2000, Hall & Fransson
2000) and, consequently, the better the sexual charac-
ter phenotype (Serra et al. 2007). Therefore, it is inter-
esting to note the potential existence of a trade-off
between moulting and departure time, which merits
further attention (Saino et al. 2004a, Serra et al. 2007).

4.  EFFECTS OF CLIMATE AND WEATHER EN ROUTE

4.1.  Progression speed

En route, climatic effects can act on the progression
speed as well as on the frequency and duration of the
stopovers, both directly and indirectly (Fig. 3). In
the case of progression speed, a direct effect would be
the weather conditions during travel, which can
reduce or increase the flying speed under unfavour-
able (e.g. rainfall) or favourable (e.g. tailwinds) con-
ditions, respectively (reviewed in Richardson 1978,
Richardson 1990; see also Bernis 1966, Alerstam 1990,
Newton 2007). The median date of spring passage of
the song thrush Turdus philomelos has advanced by
10 d during the last 4 decades in the south-eastern
Baltic region (Sinelschikova & Sokolov 2004). The
main factor controlling the number of trapped song
thrushes at the ringing station of Rybachy (SE Baltic)
was the frequency and speed of tailwinds from France
to the Baltic region during the spring (Sinelschikova
et al. 2007). Interestingly, frequency and speed of
tailwinds over central Europe have increased during
the last 40 yr. Therefore, flight conditions have been
improved. This fact has allowed an increase in the pro-
gression speed of song thrushes and, subsequently, an
advancement of arrival dates. In Norway, arrivals of
the song thrush, as well as the skylark Alauda arvensis
and the starling Sturnus vulgaris (both short-distance
migrants), were affected by the NAO (Forchhammer et
al. 2002)—the higher the NAO, the earlier the arrival
date. The effect of the NAO index would also be
through wind and, consequently, progression speed en
route, since high values of the NAO are related to
favourable wind conditions for northward migration.

An individual’s progression speed could also be
affected indirectly by climate through body condition
and quality of replaced feathers (see Sections 3.3 and

3.4). Lean individuals can better avoid predation (Lind
et al. 1999, Kullberg et al. 2000, Cimprich & Moore
2006), but a lighter body mass would be penalized with
a shorter flight autonomy. Therefore, lean individuals
must stop to replenish their fuel reserves more fre-
quently (Bairlein 1985, Biebach 1985, Biebach et al.
1986, Yosef et al. 2006).

4.2.  Stopover frequency and duration

Stopovers are key periods for migrant birds in spite
of their short duration within the annual schedule.
Indeed, success of the migratory journey depends
greatly on what happens during stopover periods and
at stopover sites (Newton 2006). The greater amount of
time spent at stopovers, the greater the delay in the
arrival date, with all else being equal. Climate can
impact the number and duration of stopovers directly
through en route weather conditions. Bad weather
conditions can force individuals to land without physi-
ological necessity (i.e. without empty fuel reserves)
and to remain stopped until weather becomes suitable
for flying (Zalakevicius 2001, Barriocanal et al. 2002,
Gordo 2006). Weather conditions can also be important
in take-off decisions. Nocturnal migrant passerines
that stopped at Ottenby (Sweden) preferably resumed
their migration on those days with tailwinds (Åkesson
& Hedenström 2000).

Climate can affect the time spent at a stopover
through the ecological conditions imposed at the
stopover site (Fig. 3). Refuelling opportunities can be
determined by the amount of food supplies, which, in
turn, depends on ecological conditions. Food supplies
at stopover sites can vary greatly both inter- and
intrannually. An example of the interannual variation
effect is provided by rufous hummingbirds Selaspho-
rus rufus during their autumn migration in North
America (Russell et al. 1994). The density of nectar-
providing flowers was low in dry years. During those
years, the stopover duration of rufous hummingbirds in
the Sierra Nevada (California, USA) was longer as a
result of the impaired refuelling opportunities and low
body mass of incoming birds. At temperate latitudes,
interannual variability can also be due to the degree of
phenological development of the ecological conditions
at stopover sites. An advanced year as a result of
a warmer spring can notably improve foraging oppor-
tunities, especially in insectivorous birds, because
arthropod abundance is higher during dry and warm
days, which could enhance feeding rates (Schaub &
Jenni 2001). Intrannual variation refers to changes in
food supplies within the course of migration. Several
studies have reported a depletion of resources by the
first arriving migrants (Ottich & Dierschke 2003). This
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fact imposes poor conditions for late migrants, which
will spend more time in efforts to replenish their fuel
reserves as a consequence of food scarcity (Russell et
al. 1994, Nolet & Drent 1998).

4.3.  Northern versus southern populations

Ecological and weather conditions during the spring
at northern latitudes have improved in recent decades
thanks to recent climatic changes. Progression through
these areas is faster due to increased flight speed as a
consequence of more favourable weather (Sinelschi-
kova et al. 2007) and reduced time spent at the stop-
over sites as a consequence of improved foraging con-
ditions due to advanced spring phenology (e.g. Huin &
Sparks 1998). However, most of the studied popula-
tions were located at high (or very high) latitudes (Bar-
rett 2002, Forchhammer et al. 2002, Gilyazov & Sparks
2002, Vähätalo et al. 2004, Stervander et al. 2005,
Rainio et al. 2006; see Fig. 1), where en route climate
conditions have greater opportunities to impact migra-
tory phenology in the later stages of migration through
Europe or North America. For example, if we consider
pre-nuptial migration of a widespread trans-Saharan
migrant such as the barn swallow, a Scandinavian indi-
vidual is just at the halfway point of its migratory jour-
ney when it reaches the breeding area of the Moroc-
can individuals (Southern 1938). Therefore, we should
expect a greater impact of climate from temperate
regions as we analyse arrival dates from northern pop-
ulations. In this sense, the study of southern popula-
tions (Dolenec 2003, Gordo & Sanz 2005, Gordo et al.
2005, Rodríguez-Teijeiro et al. 2005, Gordo & Sanz
2006a, Rubolini et al. 2007a) becomes a good alterna-
tive to determine the relative importance of climatic
changes in temperate passage regions versus climatic
changes in departure areas on migratory phenology of
populations from northern latitudes.

5.  VARIABLES EMPLOYED TO ASSESS CLIMATE
CHANGE EFFECTS ON MIGRATORY PHENOLOGY

5.1.  A quantitative analysis of a difficult choice

In facing the challenge of the assessment of climate
change effects on avian migratory phenology, the first
pitfall is the plethora of variables that quantify climatic
fluctuations. Climatologists have developed a huge
number of variables to quantify the complexities of the
atmosphere, but which variables should ecologists
select? In general, climate variables show a strong
collinearity because they summarize the same pheno-
menon: weather. Weather results from a complex and

unique combination of physical atmospheric features
at a certain time and place. Nevertheless, all of these
features always covary in the same way. A simple
example: temperature is usually lower when it is rain-
ing. Therefore, it is not surprising to find significant
relationships between a single time series of arrival
dates and several climatic variables. All of these rela-
tionships indicate the same thing: arrivals are affected
by climate and are earlier (or later) under certain
weather conditions. Therefore, large numbers of cli-
matic explanatory variables, which are usually charac-
terized by their high collinearity, should be summa-
rized by applying multivariate techniques, such as
principal component analysis or partial least squares
regression (Gordo et al. 2005, Saino et al. 2007). Cli-
matic indices, such as the NAO, are also a good sum-
mary of weather conditions in a single value. Multiple
regression would also be a preferable alternative to
many simple correlations in order to account simulta-
neously for the effects of several explanatory variables,
especially in those cases where the geographical and
temporal identity of key climate variables is unknown.
Furthermore, some kind of selection procedure of the
best subset of explanatory variables in multiple regres-
sion models can help us to reveal the most relevant cli-
matic variables for the analysed arrival dates.

An overview of the studies dealing with temporal
shifts in arrival date reveals that temperature is by far
the most often employed explanatory variable (Fig. 5a;
see also Appendix 1). Indeed, the main mechanism
suggested for the advancement of arrival dates is
global warming (see Section 1). In a minority of stud-
ies, other meteorological variables, such as precipita-
tion (Sparks & Carey 1995, Huin & Sparks 1998, 2000,
Boyd 2003, Sokolov & Kosarev 2003, Kaňuščák et al.
2004, Chambers 2005, Gordo et al. 2005, Gordo & Sanz
2006a, Sokolov 2006, Zalakevicius et al. 2006, Beau-
mont et al. 2007, Rubolini et al. 2007a, Saino et al.
2007, Sinelschikova et al. 2007, Studds & Marra 2007)
or wind (Boyd 2003, Sinelschikova et al. 2007) have
been assessed in addition to temperature. The use of
wind has been almost anecdotal (Boyd 2003,
Sinelschikova et al. 2007), in spite of the fact that it is
traditionally recognized as one of the most important
drivers of migratory progression (Richardson 1978,
1990; see also Ball 1983). Only Boyd (2003) assessed
the effects of all 3 types of variables in the arrival dates
of 4 migratory birds to Iceland during the 20th century.
In fact, this is probably the study with the most com-
prehensive examination of potential climatic influ-
ences on arrival dates, since he also evaluated the
effects of NAO, snowmelt date, atmospheric pressure
at sea level and plant growth as other potential
explanatory variables. Furthermore, he used variables
from departure, passage and breeding areas. Interest-
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ingly, the only goal of some studies was the detection
of temporal trends of bird arrivals (Wilson et al. 2000,
Witt 2004, Mills 2005, Reichholf 2005, Tøttrup et al.
2006a), and thus the effect of climate in these time
series remains to be assessed. In other studies, tempo-
ral trends of climatic variables were assessed, but
there were no explicit relationships between pheno-
logical variables and climatic ones (Jenkins & Watson
2000, Butler 2003, Gordo & Sanz 2005, Beaumont et al.
2006).

Climatic indices, such as the NAO or El Niño–
Southern Oscillation (ENSO), have been used in a
noteworthy number of studies (Fig. 5a). This is mean-
ingful because climatic indices as explanatory vari-
ables of long-term trends in bird migratory phenology
were applied for the first time only a few years ago
(Forchhammer et al. 2002). Only 3 studies have evalu-
ated the ENSO (Cotton 2003, Barbraud & Weimers-
kirch 2006, MacMynowski & Root 2007), in comparison
to 22 that have used the NAO, due to the fact that the
overwhelming majority of studies have been con-
ducted in the Northern Hemisphere (see Fig. 1), where

the NAO is probably the most important large-scale
climate driver (Hurrell & Van Loon 1997, Ottersen et al.
2001, Stenseth et al. 2003). Interestingly, none of the 3
studies found significant effects of the ENSO on arrival
dates. The NAO has been evaluated in addition to
other variables, such as temperature and precipitation,
with only 8 studies exclusively using the NAO (Forch-
hammer et al. 2002, Hubálek 2003, 2004, Vähätalo et
al. 2004, Stervander et al. 2005, Ahas & Aasa 2006,
Jonzén et al. 2006, Rainio et al. 2006). Only Barbraud &
Weimerskirch (2006) used another climatic index, the
Southern Annular Mode, which did not have effects on
the arrival of Antarctic birds.

Finally, I have found only 7 studies in which other
types of variables have been used to assess the mecha-
nisms underlying long-term trends in migratory phe-
nology. These variables were related to atmospheric
pressure (Boyd 2003, Zalakevicius et al. 2006), snow
melting (Inouye et al. 2000, Boyd 2003), plant pheno-
logy (Boyd 2003, Marra et al. 2005, Sokolov 2006), veg-
etation productivity (Saino et al. 2004b) and sea ice
extent (Barbraud & Weimerskirch 2006).
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In summary, the assessment of climate on bird
arrivals is strongly focussed on temperatures and the
NAO (e.g. Gienapp et al. 2007). One reason for this
prevalence could be the availability and ease of inter-
pretation of both variables. Another non-exclusionary
reason could be the geographical location of the study
sites (see Fig. 1). Most of the studies have been con-
ducted at northern latitudes, especially in the Atlantic
and Baltic regions of Europe, where both temperature
and the NAO are very important drivers for ecosystem
functioning. More research is urgently needed in
populations from southern latitudes, as well as studies
employing several types of climatic explanatory vari-
ables (Boyd 2003, Kaňuščák et al. 2004, Sokolov 2006,
Zalakevicius et al. 2006).

5.2.  Temperature

High values of temperature in tropical departure
areas can be linked to an impairment of ecological con-
ditions as a result of an increase in aridity. However,
high temperatures are linked to advancement of spring
course (Menzel et al. 2006) and improved weather for
progression (Zalakevicius et al. 2006) at temperate
latitudes. Therefore, global warming could have the
opposite effect on arrival dates, depending on the area
considered: in tropical arid areas, it could delay depar-
ture or progression (but see Saino et al. 2007), while, in
temperate regions, global warming could favour faster
passage.

Significant relationships between arrival dates and
temperature at the study locality do indeed reflect the
effect of temperatures in the previously traversed pas-
sage areas due to the strong spatial autocorrelation of
temperature. Zalakevicius et al. (2006) related the first
arrival date of 40 species in areas around Vilnius
(Lithuania) between 1971 and 2004 with temperature
records from several European and North African
cities. The overwhelming majority of species affected
by temperatures showed simultaneously significant
relationships with several cities. Does this mean that
migrant individuals pass through all of them? No, it
does not. This trend is simply due to the fact that tem-
perature patterns from closely situated cities are quite
similar (i.e. strong spatial autocorrelation). Hüppop &
Winkel (2006) related the arrival of several central
European populations of pied flycatchers and temper-
ature patterns throughout Europe. They found signifi-
cant correlations between arrivals and many of the
2.5° × 2.5° European grids. This massive effect of tem-
perature is due simply to the climatic resemblance
between neighbouring grids, because they are under a
common pattern of climatic variability. Sparks et al.
(2007) showed that the arrival of 10 common species to

6 different areas of the United Kingdom was related to
March temperatures in both England and Spain. How-
ever, temperatures in both places had quite similar
interannual variations (r = 0.76).

Temperatures also suffer from temporal autocorrela-
tion (i.e. temperatures between 2 consecutive moments
are not fully independent). This would explain why
species phenology is usually affected by several months
(Loxton et al. 1998, Sokolov et al. 1998, 1999, Loxton
& Sparks 1999, Sokolov 2000, Tryjanowski et al. 2002,
Sokolov & Kosarev 2003, Zalakevicius et al. 2006,
Croxton et al. 2006, Sparks et al. 2007). Does this mean
that migrant individuals are migrating over the period
of several months? No, it does not. This is simply
because interannual fluctuations in temperatures for 2
consecutive months are usually similar. Ahola et al.
(2004) studied the effect of climate along the migratory
route and at the breeding grounds in the migration and
breeding dates of pied flycatchers from south-western
Finland for the period from 1970 to 2002. According to
ringing recoveries, they selected 8 European cities
along the migratory route and calculated mean tem-
peratures during a time window of 3 wk. The authors
made an accurate selection of the key period of
temperatures for arrivals (i.e. highest correlation) by
moving this time window in 3 d steps from 1 March
onwards. Consecutive time windows showed very
similar correlation coefficients with arrival dates of
pied flycatchers. This similarity was maintained even
between time windows with few overlapped days. This
study stresses the strong temporal autocorrelation of
temperatures and the necessity of an accurate selec-
tion of the time window of the climatic variables.

5.3.  Precipitation

The direct and immediate effect of rainfall is to hin-
der individuals’ flight and force them to land even
when precipitation is scarce (Bernis 1966, Richardson
1978, 1990, Gordo 2006, Newton 2007). Therefore,
rainfall slows migratory progression and could delay
arrival date. Precipitation can also impact migratory
phenology through indirect effects on ecological con-
ditions (Fig. 3). In arid regions (e.g. the Sahel or
Mediterranean region), a higher amount of rainfall
improves ecological conditions, since water is a rest-
rictive element for ecosystem productivity (Vicente-
Serrano & Heredia-Laclaustra 2004, Herrmann et al.
2005). Nevertheless, ecosystem response to rainfall is
not immediate (i.e. plants need time to grow). Time
is also needed before primary production leads to an
increase in arthropod populations. Furthermore, eco-
system response can be maintained even well after the
occurrence of rainfall, e.g. by means of soil moisture.
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Hence, lag effects could be especially relevant in the
study of this variable.

One interesting feature of precipitation is the latitu-
dinal change in its ecological significance. Birds com-
ing from the equator must face a minimum rainfall gra-
dient around the tropics (Jones 1995, Salewski & Jones
2006). As a result, rainfall becomes crucial in tropical
environments, especially those that are more arid such
as the African Sahel, where the alternation of dry and
wet seasons is the most important determinant of
intrannual variations in ecological conditions (Herr-
mann et al. 2005). However, it can become a nuisance
for progression at northern latitudes where water is not
a restrictive element.

5.4.  North Atlantic Oscillation

Climatic indices, such as the NAO or ENSO, have
received much attention due to their ability to assess
general climatic conditions over large areas (Holmgren
et al. 2001, Ottersen et al. 2001, Blenckner & Hille-
brand 2002, Hallett et al. 2002, Stenseth et al. 2003,
Forchhammer & Post 2004, Stenseth & Mysterud 2005).
Indeed, they avoid redundancy and spatial autocorre-
lation of meteorological variables because they sum-
marize climatic conditions into a single value.

Many studies have shown that migrants advance
their spring arrivals after winters with a positive phase
of the NAO (Forchhammer et al. 2002, Boyd 2003,
Hubálek 2003, 2004, Hüppop & Hüppop 2003, Sokolov
& Kosarev 2003, Ahola et al. 2004, Kaňuščák et al.
2004, Vähätalo et al. 2004, Sparks et al. 2005, Stervan-
der et al. 2005, Ahas & Aasa 2006, Gunnarsson et al.
2006, Jonzén et al. 2006, Rainio et al. 2006, Zalakevi-
cius et al. 2006, MacMynowski & Root 2007; see a
meta-analysis in Gienapp et al. 2007). Positive values
of the NAO are linked to increased temperatures and
precipitation in northern Europe and south-eastern
North America and dry anomalies in the Mediter-
ranean basin (Hurrell 1995, Hurrell & Van Loon 1997).
Therefore, a positive NAO index means ecologically
improved conditions at northern latitudes, such as in
central and northern Europe, as a result of advanced
spring phenology (Aasa et al. 2004, Menzel et al. 2005).
Migratory birds would progress quickly through Euro-
pean areas during those years with a positive NAO and
would consequently arrive at their destinations earlier.
Furthermore, a positive NAO is also associated with
westerly and southerly tailwinds in western Europe,
which favours northward flight of migrants (Forch-
hammer et al. 2002, Zalakevicius et al. 2006, Sinel-
schikova et al. 2007). Therefore, the advance of arrival
dates observed during recent decades could be due to
the prevalence of the positive mode of the NAO from

1980 onwards, especially during the winter (Visbeck et
al. 2001, Osborn 2006).

In the case of North American migrants, only 2 stud-
ies have assessed the effects of the NAO on migration
dates (Marra et al. 2005, MacMynowski & Root 2007).
Marra et al. (2005) found few relationships between
the NAO and migration dates at both the Powdermill
ringing station (Pennsylvania, USA) and the Long
Point Bird Observatory (Ontario, Canada). However,
MacMynowski & Root (2007) found that the early
phase of migration of 73% of long-distance migrants
and 18% of short-distance migrants had a significantly
negative correlation (p < 0.1) with NAO values at
McCormick (near Chicago, USA). Nonetheless, more
studies are necessary in order to draw conclusions
about the effect of the NAO on American migrants.

5.5.  Normalized difference vegetation index

At present, new analytical techniques offer possibili-
ties to indirectly explore ecology of migratory birds
(Pettorelli et al. 2005, Szép & Møller 2005). Satellites
of the U.S. National Oceanic and Atmosphere Ad-
ministration (NOAA) have been measuring the daily
reflected radiation of the earth’s surface since 1981.
Based on this collection of satellite data, anyone can
obtain a value of the amount and vigour of vegetation
on any land surface of the globe, expressed as the nor-
malized difference vegetation index (NDVI), which
relates reflected wave-lengths to the level of photo-
synthetic activity (Nicholson et al. 1998).

Satellite measurements are especially suitable for
isolated and sparsely populated areas, such as most
tropical wintering quarters of migratory birds, where
ground climatic measures are scarce or even nonexis-
tent. Another advantage of the NDVI is the fact that
precise knowledge about the functioning of ecosys-
tems is unnecessary. High values of NDVI are related
to higher photosynthetic activity and, consequently,
primary productivity (Nicholson et al. 1998, Nemani et
al. 2003, Vicente-Serrano & Heredia-Laclaustra 2004,
Herrmann et al. 2005). Higher primary productivity
can, in turn, increase food abundance in higher trophic
levels, such as arthropods, the main food supply for
most migratory birds. Therefore, high NDVI values
will be related to improved ecological conditions and
this can be related to earlier arrival (Fig. 3; see also
previous sections). Unfortunately, NDVI data have
only been available since 1981, which constrains the
analysis of time series over a longer time span or end-
ing before this decade.

Recent studies have demonstrated the huge poten-
tial of remote sensing to assess the effect of ecological
conditions in wintering areas on biological features,
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such as arrivals, sexual selection and reproductive suc-
cess of migratory birds (Saino et al. 2004a,b, Møller
2004, Møller & Merilä 2004, Møller & Szép 2005). Szép
et al. (2006) employed NDVI data to predict wintering
areas of Danish barn swallows on the basis of survival
rate observed at the breeding grounds. Wintering mor-
tality of the studied population was strongly related to
NDVI values in some areas in South Africa. Authors
suggest using this result as a guide to focus ringing
efforts on concrete areas of wintering grounds. Both et
al. (2006) showed that NDVI in wintering (western
Africa) and passage (northern Africa) areas have
effects on the laying phenology of the pied flycatcher.
Nevertheless, the effect of NDVI in Africa was only
significant for early European populations. These pop-
ulations advanced their laying dates in those years
with more vegetation productivity in Africa, maybe as
a result of an earlier migratory onset and faster pro-
gression.

Nevertheless, there are still few studies that have
employed remote sensing, and only two have related
arrival dates to NDVI (Saino et al. 2004b, Gordo & Sanz
2008). Furthermore, most studies are focussed on a few
Danish and Italian populations of a single species (the
barn swallow). Hence, further studies would be neces-
sary to generalize the usefulness of the NDVI.

6.  SPATIAL AND TEMPORAL DEFINITIONS OF
PREDICTORS TO ASSESS CLIMATIC EFFECTS

6.1.  Quantitative analysis according to spatial criterion

Explanatory variables used for the assessment of cli-
mate change impacts over bird migratory phenology
can be classified in 3 groups according to their geo-
graphical origin: variables from departure area, vari-
ables from passage areas and variables from the
arrival area. As shown in Fig. 5b, I have quantified the
number of occurrences, i.e. the number of studies, for
each geographical origin (see also Appendix 1). I have
only considered studies dealing with spring arrivals,
and I have not included climatic indices because of
their large-scale influence. Variables from the arrival
area (i.e. breeding grounds) are by far the most fre-
quently employed. Moreover, they have been the only
type of explanatory variable employed in 29 out of 46
studies that use variables from the arrival area. How-
ever, the effects found for climate from arrival area
would be better attributed to climate from passage
areas (see Section 4.3). This would be especially valid
for those studies that used regional instead of local
data from the study area (Marra et al. 2005, Hüppop
& Winkel 2006, MacMynowski & Root 2007). Mac-
Mynowski & Root (2007) used monthly temperatures

calculated for a 5° × 5° grid, because they considered
local temperatures to be too strongly influenced by
Lake Michigan and unrepresentative of spring condi-
tions at about 42° latitude in North America.

The number of studies that have explicitly included
variables from passage areas are few (Fig. 5b; Huin
& Sparks 1998, 2000, Boyd 2003, Sokolov & Kosarev
2003, Strode 2003, Ahola et al. 2004, Both et al. 2005,
Chambers 2005, Mitrus et al. 2005, Rodríguez-Teijeiro
et al. 2005, Croxton et al. 2006, Hüppop & Winkel 2006,
Sokolov 2006, Zalakevicius et al. 2006, Sinelschikova
et al. 2007, Sparks & Tryjanowski 2007, Sparks et al.
2007, Weidinger & Král 2007) and all of them also
included variables from the arrival area. Few studies
have used variables from the departure area (i.e.
wintering grounds; Boyd 2003, Cotton 2003, Kaňuščák
et al. 2004, Saino et al. 2004b, Gordo et al. 2005, Mitrus
et al. 2005, Rodríguez-Teijeiro et al. 2005, Gordo &
Sanz 2006a, Sokolov 2006, Zalakevicius et al. 2006,
Saino et al. 2007, Sinelschikova et al. 2007, Weidinger
& Král 2007). Most of them also included variables
from passage and arrival areas (exception Saino et al.
2004b). In summary, there is a strong bias toward the
use of climate from arrival areas, probably because
these are the variables most easily available to
researchers. More research is needed to clarify the
true extent of the relevance of climate at departure and
passage areas on arrival dates.

6.2.  Quantitative analysis according to temporal criteria

According to the temporal interval during which cli-
matic variables are measured, I have identified 3 cate-
gories: daily, monthly and annual. In the case of spring
migration, the overwhelming majority of studies have
used variables calculated over months (Fig. 5c). Within
this category there are diverse criteria to select the best
temporal interval according to the type of variable
(Fig. 5d). If we focus on temperature, most studies
examined temperature only during a 1 mo period, espe-
cially the month of bird arrivals (Fig. 5e). Only a few
studies have averaged monthly temperatures over sev-
eral months to evaluate conditions during a longer tem-
poral interval (2 mo: Loxton et al. 1998, Loxton & Sparks
1999, Ptaszyk et al. 2003, Ledneva et al. 2004, Gordo et
al. 2005, Marra et al. 2005, Gordo & Sanz 2006a; 3 mo:
Sparks & Mason 2001, Dolenec 2003, Beaumont et al.
2006; or 4 mo: Kaňuščák et al. 2004). However, in the
case of the NAO, there is an opposite trend (i.e. most
studies use NAO values averaged over several months;
see Fig. 5d). Studies that used the NAO during 4 mo are
those that used the winter NAO (from December to
March). The winter NAO is an especially important
measure for climatic and ecological conditions during
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the spring in the Northern Hemisphere (Ottersen et al.
2001, Stenseth et al. 2003). Only a few studies have
evaluated the NAO for different periods and intervals
(1 mo: Boyd 2003, Sokolov & Kosarev 2003, Ahas &
Aasa 2006, MacMynowski & Root 2007; 2 mo: Sokolov
2006; or 3 mo: Cotton 2003, Hubálek 2003, Sokolov &
Kosarev 2003, Hubálek 2004, Ahas & Aasa 2006, Zala-
kevicius et al. 2006, Rubolini et al. 2007a).

Only a few studies have used climatic data on a daily
basis (Hüppop & Hüppop 2003, 2005, Strode 2003,
Ahola et al. 2004, Hüppop & Winkel 2006). Daily data
are preferable to any other kind of temporal interval
because they allow climate conditions to be defined
during precise periods of biological relevance (Hüp-
pop & Hüppop 2003, 2005, Ahola et al. 2004).

Climatic conditions during a complete annual cycle
have been reported in some studies (Sparks & Carey
1995, Chambers 2005, Gordo et al. 2005). However, an
entire year seems to be too long a period for migratory
birds (Fig. 3), as they spend only part of the year in
the same place.

In summary, there is a strong bias toward the use
of variables within a monthly time frame, probably
because variables are typically reported in climatic
databases by monthly averages. However, the month
is a temporal interval imposed by the human calendar,
but without any biological relevance. More research
with daily values averaged over periods designed ad
hoc (e.g. Ahola et al. 2004) is needed for a precise
assessment of sensitive periods. It can be concluded
that the existence of a strong bias in the spatial and
temporal definition of variables presents serious con-
cerns about the reported magnitudes of climate over
arrival dates.

6.3.  Problems with the spatial and temporal
definition of variables

The correct selection of the type of explanatory vari-
ables, as well as a precise definition of their geograph-
ical and temporal range, is essential for the correct
assessment of climate impacts (Stenseth & Mysterud
2005). It is expected that climate will affect individuals
just during a certain time period in a certain place, i.e.
birds become sensitive to particular meteorological
conditions (Shamoun-Baranes et al. 2006). In the case
of the spring migration, it is expected a priori that there
will be an effect of climate in wintering and passage
areas during wintering and passage times because
these are sites where and moments when individuals
can be affected. Unfortunately, in most species there is
no precise knowledge about the wintering and pas-
sage areas used during migration or about the period
for each population. This is especially evident in most

European long-distance migrants (Walther & Rahbek
2002, Kaňuščák et al. 2004, Walther et al. 2004). Fur-
thermore, some climatic variables can affect migrants
through lag effects (e.g. precipitation or winter NAO),
and, consequently, their effects could occur beyond
wintering or passage dates.

Another added difficulty is the apparently low fidelity
to the wintering grounds shown by many migratory
species. In the case of the Palaearctic-African migra-
tory system, recurrence of migratory species at African
wintering grounds has been reported for only 60 spe-
cies (Salewski et al. 2000a). This low fidelity at the
species level is much lower at the individual level.
Salewski et al. (2000a,b) found that just 4 out of 16
ringed species in the Comoé National Park (Ivory
Coast) recurred in successive winters in the same ring-
ing area. Individual recurrence ranged from 1 to 40%
within these 4 species. In fact, most migrant species in
sub-Saharan Africa show itinerancy within the winter-
ing areas (Moreau 1972, Jones 1995), in some cases
even performing well-defined intra-African migrations
during winter. Such movements would be promoted by
the progression of the dry season and a subsequent
decline in the available resources (Jones 1995). This
could be the reason for the low repeatability detected
in the arrival dates of individuals for some species
(Potti 1998, Hötker 2002, Berthold et al. 2004; but see
Battley 2006). Since individuals overwinter in different
areas each year, they would be affected by different
conditions (Berthold et al. 2004).

If we do not know the precise wintering location of
the studied population or we are studying a species
with low wintering ground fidelity, 2 alternative meth-
ods can be used. Gordo et al. (2005) applied a conserv-
ative approach and considered all wintering ranges
defined for the species, since they did not know the
precise wintering area for their studied populations.
For those species with broader wintering distribution,
wintering range was divided into several climatic sub-
regions to avoid the potentially confounding effect of
the different intra- and interannual patterns of climatic
variability. This approximation could also be useful to
determine wintering areas. If we assume that inter-
annual variability of arrival dates can be partially due
to the variability in the departure date (Fig. 3, see Sec-
tion 3.1), then those wintering areas with the strongest
relationship to climatic patterns would be potential
wintering area for the species (Rodríguez-Teijeiro et al.
2005, see also Szép et al. 2006). The same argument
could be applied to determine the most important pas-
sage areas through the degree of association between
arrivals and climatic patterns at those locations (Huin
& Sparks 1998, 2000, Sokolov & Kosarev 2003, Ahola et
al. 2004, Croxton et al. 2006, Hüppop & Winkel 2006,
Sokolov 2006, Zalakevicius et al. 2006).

51



Clim Res 35: 37–58, 2007

A second method would be the use of measures of
arrival dates beyond 1 population (e.g. average for
several populations; Gordo & Sanz 2006a) or the first
sighted individual (e.g. total distribution of arrivals;
Knudsen et al. 2007, this issue). Such measures would
summarize the interannual variability for a bulk of
populations or individuals, which offers a much better
suited measure of migratory phenology. Furthermore,
since these measures are a summary of migratory
behaviour of many individuals, they would be more
comparable to regional climatic measures (e.g. gridded
or country data), because both variables would be
working on a macroscale.
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Appendix 1. List of studies used for the quantitative assessment of climatic variables classified in each of the categories defined for 
Figs. 5a to e. In the case of Fig. 5d, the exact number of months used in each study is shown

Source Type of explanatory Geographical Temporal No. of Month 
variable (Fig. 5a) origin definition months (Fig. 5e)

(Fig. 5b) (Fig. 5c) (Fig. 5d)

Ahas & Aasa (2006) X X 1, 3
Ahola et al. (2004) X X X X X X 4
Askeyev et al. (2007) X X X 1 X X
Barbraud & Weimerskirch (2006) X X X X X 1 X
Barrett (2002) X X X 1 X
Beaumont et al. (2006) X X X X 3
Both & Visser (2001) X X X 1 X
Both et al. (2005) X X X X 1 X
Boyd (2003) X X X X X X X X X 1 1, 4
Bradley et al. (1999) X X X 1
Browne & Aebischer (2003) X X X 1 X X
Butler (2003) X X X 1
Chambers (2005) X X X X X
Cotton (2003) X X X X X 3 3
Croxton et al. (2006) X X X X 1 X X X X
Dolenec (2003) X X X 3
Forchhammer et al. (2002) X X 4
Gordo & Sanz (2006a) X X X X X 2 X X
Gordo et al. (2005) X X X X X X 2 X X
Hubálek (2003) X X 3
Hubálek (2004) X X 3, 4
Huin & Sparks (1998) X X X X X 1 X
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