Modelling near-surface temperature conditions in high mountain environments: an appraisal

Roland Pape1,2,*, Dirk Wundram1, Jörg Löffler1

1Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany
2Department of Biology and Environmental Sciences, University of Oldenburg, PO Box, 26111 Oldenburg, Germany

ABSTRACT: In response to the paucity of temperature data for high mountain environments at spatial and temporal resolutions reasonable for ecological modelling, this study evaluated both physically and statistically based modelling (or interpolation) of near-surface temperatures in a high mountain environment at sub-daily time scales and differing spatial scales. We placed emphasis on the selection of guiding environmental variables for temperature interpolation at a macro-scale, on a comparison of physically and statistically based modelling at meso- and micro-scale, and on a discussion of scaling issues. Geostatistical interpolation was found to perform very well at a macro-scale if additional topographic and atmospheric covariables—the latter provided by remote sensing—are considered. Physically based modelling performed best at a nano-scale, but revealed limits of spatial applicability due to limited input data. Statistical modelling based on multiple linear regression, however, showed results of intermediate accuracy throughout the spatial scales, providing encouraging evidence that we can find a simple approach to estimate near-surface temperature fields in high mountain environments. Attention to scaling issues proved to be important to achieve accurate results, though this was hampered by the starting point of the study: the lack of observational data at finer spatial scales.

KEY WORDS: Surface energy balance model · Spatial interpolation · Ecologically relevant temperatures · Scaling · Scandes

1. INTRODUCTION

Mountain environments are extremely sensitive to changes in environmental conditions, and thus to climatic change (Beniston et al. 1997, Pauli et al. 2001, Theurillat & Guisan 2001, Dirnböck et al. 2003). For example, the distribution of plants is, to a major extent, determined by spatial variation in temperature, soil moisture conditions and snow cover (Gjære-voll 1990, Dahl 1998, Wielgolaski 1998, Moen 1999, Löffler 2005, Löffler & Pape 2008)—3 environmental factors directly affected by climatic change. Studies on vegetation patterns, however, often rely on a single proxy variable—elevation—as a convenient way of representing these environmental factors (Whittaker 1978, Grytnes 2003). Obviously, regimes of both temperature and moisture are related to elevation due to the environmental lapse rate and the increase in precipitation with altitude, but these vary substantially in space and time (Rolland 2003). With such variation, the common practice of adjusting mean station temperatures to a reference altitude using solely lapse rates is likely to produce non-comparable and therefore misleading results (Barry 2008). Moreover, large-scale patterns related to altitude or climatic regime (i.e. degree of continentality) are strongly modified by effects of local topography, and the latter can even be superimposed on the former (e.g. Löffler & Pape 2004, Löffler et al. 2006). Consequently, Lookingbill & Urban (2003) stress the necessity to use more descriptive means to characterize key ecological constraints directly affected by climatic change—i.e. temperature rather than elevation—in order to model future ecological processes.
In order to be sufficiently accurate to capture detailed environmental patterns, models of ecosystem response need to be run at the meso- or micro-scale, where such patterns—which tend to level off at regional to global scales—cannot be ignored. Since the overall spatial performance of these models is essentially dependent on the accuracy of input data, climatic data also have to be provided at this spatial scale. However, obtaining these data at sufficient levels of accuracy is hampered by two logistical issues. (1) Since routine meteorological observations are available at discrete points in space, typically separated by a distance of 30 to 50 km or more, a spatial interpolation is necessary to produce data with a sufficient resolution. However, weather stations are particularly sparse in mountain regions, and tend to be located mainly at populated lower elevations (Barry 2008)—a fact that is likely to limit interpolation accuracy over mountainous regions. (2) Climate models are still particularly inaccurate at the micro-scale (Chen et al. 1999), since the required resolution is far below the typical grid-size even of the highest resolution numerical models (e.g. Rivington et al. 2008). Since numerous climatological details of mountain environments are simply overlooked by common climate models, it has consequently been recognised that comprehensive physically based land-surface schemes are needed in atmospheric models to adequately simulate near-surface exchanges of heat, moisture and momentum (e.g. Saunders et al. 1999a,b). However, the required input data for these schemes, especially vegetation physiological parameters and soil characteristics, are commonly unavailable at larger spatial scales in remote mountainous regions. Thus, there has recently been a large number of environment-related studies (often using remotely sensed data) on (geo)statistical approaches for interpolating climatic parameters at high spatio-temporal resolution (e.g. Lookingbill & Urban 2003, Joly et al. 2003, Chung & Yun 2004, Chung et al. 2006, Stahl et al. 2006, Joly & Brossard 2007).

The present paper evaluates both physically and statistically based modelling and interpolation of near-surface temperatures in a high mountain environment at sub-daily time scales and differing spatial scales with the following specific objectives:

1. To determine environmental variables that aid (guide) the spatial interpolation of temperatures at different scales;
2. To compare the performance of physically based modelling and statistically based interpolation;
3. To determine whether there are scale-limits in modelling and interpolation approaches, and address such scaling issues in order to develop an improved approach.

2. DATA AND METHODS

2.1. Data

2.1.1. Study areas

The study was conducted in central Norway along 62°N, representing the macro-scale (Fig. 1A). The mountain chain of the Scandes reaches 2469 m a.s.l. (above sea level) elevation in this region, resulting in a clearly defined oceanic–continental gradient between the western and eastern slopes of the mountain chain. Within the frame of a long-term ecological project (Löffler 2002, 2003, Löffler & Finch 2005) 2 meso-scaled areas were chosen to represent the climatic differences. Geiranger (62° 03’ N, 7° 15’ E, Fig. 1B) within the inner fjords region of western Norway is climatically characterized as sub-oceanic with annual precipitation of 1500 to 2000 mm in the valleys (Moen 1999). A more continental climate is found only 150 km east of the coast in Vågå (61° 53’ N, 9° 15’ E; Fig. 1C), the most arid area in Norway Moen (1999), with annual precipitation of about 300 to 400 mm in the valleys. The alpine ecological zone extends from the tree-line at ~840 to 880 m a.s.l. (Geiranger) or 1000 to 1050 m a.s.l. (Vågå), to the highest peaks at 1775 m a.s.l. in Geiranger and 1618 m a.s.l. in Vågå. It comprises the low-alpine zone characterized by dwarf-shrub and lichen heaths, the middle-alpine zone dominated by chionophobous lichens and graminoid species; and in Geiranger, also the high-alpine zone with glaciated areas. Figs. 1B and 1C illustrate the contrast in topography of the Geiranger and Vågå areas (steeply and gently sloping, respectively). In both areas, 2 micro-scaled catchments were chosen to represent the low- and middle-alpine zones; the Vågå area in the low-alpine (Fig. 1D,E) was chosen for exemplary micro-scaled modelling.

2.1.2. Climatological data

The climatological data used for this study were obtained from 45 weather stations at locations shown in Fig. 1A. The stations are operated by the Norwegian Meteorological Service (38 stations, Det norske meteorologiske institutt, DNMI, data available at www. eklima.no), the Norwegian Geological Service in the Geiranger area (3 stations, Norges geologiske undersøkelse, NGU) and our own in the Geiranger and Vågå area (4 stations, Geografisches Institut der Universität Bonn, GIUB). In addition to 1 weather station, 4 data loggers are located in the micro-scaled catchment representing main topographic positions (Fig. 1D). The data comprised air temperatures at 2 m height (T_{a}) for 2004 as daily maxima (T_{amx}) and minima (T_{amin}) for the DNMI.
Fig. 1. Study areas in central Norway. (A) Macro-scale—light gray: areas above alpine tree-line; (B,C) meso-scale—dark gray: water surface, dots: weather stations; (D) micro-scale—dots: near-surface temperature data loggers; (E) Photograph depicting part of area shown in (D) (arrow in [D] shows direction of view), giving an impression of the fine-scaled variability.
stations, 1 and 2 h means (GIUB and NGU, respectively). The data loggers record soil and air temperatures as hourly means at –15, –1 and +15 cm distance from the soil surface, hereafter referred to as T_{S}, T_{SFC}, and T_{A15} respectively. These temperatures are also recorded at the GIUB stations, along with the additional measurements of global short-wave radiation ($K_{↓}$), precipitation, relative humidity, wind speed at 2 m above ground (u) and wind direction. To ensure data quality as well as comparability of the three different networks, prior to further analysis, all data were checked with regard to data range, temporal change, plausibility, and synchronicity, according to methods described by Rissanen et al. (2000). In addition, absolute deviations between the NGU and GIUB networks were compared at 2 neighbouring stations; no deviations >1 K were detected.

2.1.3. Remote sensing data

To complement the ground-based observations, spatial data on land surface temperature (LST) with a resolution of 1 km were obtained for each day/night in 2004 from thermal infrared (TIR) MODIS (Moderate Resolution Imaging Spectroradiometer) data. Additional data on LST at 60 m resolution were available for 10 August 2004, originating from an overflight of Landsat 7 Enhanced Thematic Mapper (ETM) at 10:36 h. Ancillary data on daily (for some MODIS products: 8 d period) cloud cover, snow cover, surface albedo, and normalized difference vegetation index (NDVI) were also derived from the MODIS and Landsat ETM data. For the micro-scaled catchment, high-resolution (0.1 m) 3-band (red-green-blue, RGB) images and TIR aerial photos based on kite aerial photography (Wundram & Löffler 2008) were available for 14:30 h on 4 October 2004. Spatial patterns of vegetation at meso- and micro-scale were derived by maximum likelihood classification based on ground truthing plots.

2.1.4. Topographic data

For the macro-scale, a digital elevation model (DEM) with a spatial resolution of 500 m was derived from the Global 30 Arc-Second Elevation Data Set (GTOPO30), projected to Universal Transverse Mercator (UTM) Zone 32, resulting in a spatial resolution of 500 m. At meso-scale, a DEM with a resolution of 30 m (to match the Landsat ETM scene) is based on topographic maps of the Norwegian Mapping Authority at scale 1:50 000. For the micro-scale, a DEM at 0.1 m resolution was derived by photogrammetry from kite aerial photos in conjunction with stadia surveying of ground control points (Wundram & Löffler 2008).

2.2. Methods

2.2.1. Model scales

Based on the abovementioned data (Sections 2.1.2 to 2.1.4) available for further analyses, interpolation and modelling of temperatures involved 4 different spatial scales: (1) the macro-scale comprises an area of roughly 88 000 km2 with a grid cell resolution of 500 m; (2) at meso-scale there are 2 areas of about 100 and 80 km2, respectively, with a resolution of 30 m; (3) at micro-scale there is an area of 0.04 km2 with a resolution of 0.1 m2; and (4) the nano-scale refers to point specific approaches without spatial dimensions.

2.2.2. Geostatistical interpolation of T_{AMX} and T_{AMN}

Over extensive areas like our macro-scaled region, deriving spatially distributed data using process-based approaches may be impractical for reasons of computational and theoretical complexity or the unavailability of data. Grid-based interpolation was used instead, adopting a ‘middle ground’ between data-based geostatistical interpolation and process-based meteorological modelling (Jarvis & Stuart 2001). This approach is achieved by spatially interpolating temperature at the macro-scale using indices developed from atmospheric, topographic and land cover data that we hypothesized to influence the climatic conditions.

A set of 16 potential guiding variables (Table 1) was derived, accounting in particular for topographic effects that might affect temperature patterns: easting and northing describe the x, y-coordinates in the UTM zone 32 grid; potential solar radiation was calculated for each time step considered in further analyses using

<table>
<thead>
<tr>
<th>Table 1. Potential guiding variables for temperature interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northing</td>
</tr>
<tr>
<td>3 spatial levels of height above local minimum</td>
</tr>
<tr>
<td>$(3 \times 3, 5 \times 5, 7 \times 7 \text{ window})$</td>
</tr>
<tr>
<td>Terrain ruggedness (as standard deviation of elevation)</td>
</tr>
<tr>
<td>within $(3 \times 3, 5 \times 5, 7 \times 7 \text{ window})$</td>
</tr>
</tbody>
</table>
the r.sun module of GRASS (geographic information system [GIS] software) that also accounts for topographic masks (Hoferka & Suri 2002), and height above local minimum (below local maximum) was calculated in a moving window of 3×3, 5×5 and 7×7 grid cells as the difference between elevation of the centre cell and lowest (highest) elevation in the surroundings. Terrain ruggedness was calculated as the standard deviation of elevation for the same window sizes. To address cold air drainage and accumulation, an approach commonly used in hydrology was adopted: flow accumulation was calculated using the r.terafloow module of GRASS. In a first step, the power of explanation for each single variable with regard to temperature patterns was tested separately for T_{AMX} and T_{AMN} using stepwise linear regression with collinearity diagnostics for 52 independent days in 2004. The 5 variables that were most included in the regressions and had the highest partial correlations were then chosen as environmental guiding variables for the actual interpolation approach. Second order partial thin-plate splines were used for interpolation, with easting and northing as independent variables and the environmental guiding variables as multiple linear covariates (Hutchinson 1991, Jarvis & Stuart 2001). A cross-validation estimate of error within the resulting temperature maps was achieved by jackknifing at known data points. The resulting error estimation was differentiated for alpine and non-alpine data points used for jackknifing, since differences in sensitivity between these 2 groups have to be expected: 1 station left out within a sparse station record is likely to produce a more pronounced error than within a comparatively dense station record.

2.2.3. Physically based LST modelling

Due to the limited amount of input data available compared to the input data needed for land surface schemes, we chose a rather simple energy balance approach developed for such data-limited applications (Pape & Löffler 2004). The model estimates surface temperatures by iterative solution of the energy balance constituted by net radiation (Q^*) lead-in to $G_0 = aQ^*$, with a chosen as (i) a constant value of 0.15, and (ii) $-0.27 \text{ NDVI} + 0.39$, to account for its dependence on vegetation cover (Jacobsen & Hansen 1999). The factor a is different for daytime and night-time, because during daytime the energy provided by Q^* is shared between G_0 and the turbulent heat fluxes, while these are nearly negligible during night-time and G_0 makes up the largest part of Q^*. Thus, the modelling approach was restricted to daytime.

Evapotranspiration was estimated by the modified Priestley-Taylor concept (Priestley & Taylor 1972, van Ulden & Holtslag 1985, de Rooy & Holtslag 1998) instead of the original Penman-Monteith approach (Monteith 1981) in order to avoid the estimation of aerodynamic and surface resistances.

The resulting set of equations is as follows, where the energy balance is given by

$$Q^* = H + LE + G_0$$

with net radiation according to de Bruin & Holtslag (1982) estimated by

$$Q^* = K\downarrow - K\uparrow + L\downarrow - L\uparrow = (1 - A)K\downarrow + 5.31 \times 10^{-13} T_A^6 - 0.95\sigma T_0^4$$

where K and L denote short- and longwave radiation, respectively (\downarrow: incoming; \uparrow: outgoing), A denotes the albedo, σ the Stefan-Boltzmann constant [W m$^{-2}$ K$^{-1}$] and T_0 the temperature at the effective surface taken as LST. Both temperatures are given as absolute temperatures [K]. In our case, $K\downarrow$ was based on reference observations spatially corrected for topography (Oke 2001) while A was estimated from remote sensing data. The air temperature T_a was at meso-scale application taken from the above-mentioned interpolation approach of T_{AMX} (see Section 2.2.2.) and at micro- and nano-scale applications from hourly measurements at 1 site within the area, but corrected for the higher resolution-topography at finer scales using actual temperature lapse rates derived from measurements.

H is estimated using an aerodynamic approach (Oke 2001):

$$H = -C_a k^2 u(T_A - T_0) / \left[\ln \left(z_A / z_0 \right) \right]^2 (\phi_{n,0})^{-1}$$

where C_a is the heat capacity of air (J m$^{-3}$ K$^{-1}$), k is the von Karman’s constant (0.41 m), u is the windspeed at 2 m, z_A is the height of air temperature measurement (2 m), z_0 is the surface roughness length (m), and finally $(\phi_{n,0})^{-1}$ is a stability correction dependent on the Richardson number R_i during stable cases ($R_i > 0$) by

$$(\phi_{n,0})^{-1} = (1 - 5R_i)^2$$

and during unstable cases ($R_i < 0$) by

$$(\phi_{n,0})^{-1} = (1 - 16R_i)^{3/4}$$
The Richardson number itself is estimated by

\[Ri = g / T \left[(T_A - T_0) \left(z_A - z_0 \right) \right] / u^2 \]

(5)

where \(g \) is the acceleration due to gravity (m s\(^{-2}\)) and \(T \) without subscript is the mean of \(T_A \) and \(T_0 \).

Since this approach requires a spatial wind field, the distribution of wind speed within the area was approximated using a simple approach proposed by Böhner (2004): the relative increase or decrease in wind speed reflects specific distance-related effects of orography due to wind- and lee exposure. For eight discrete sectors of wind direction (N, NE, E, ...) a coefficient of wind speed reduction is derived that enables a spatial quantification of variations in wind speed determined by orography, if observations at one reference station are provided. The coefficient \((W)\) comprised of slope angle functions upward (subscript \(u \)) and downwind (subscript \(d \)), given by

\[
W_u = \sum_{i=1}^{n} 1/d_{du} \tan^{-1}(d_{du} / d_{du}^{0.5}) / \sum_{i=1}^{n} 1/d_{du} + \sum_{i=1}^{n} 1/d_{du}
\]

(6a)

\[
W_d = \sum_{i=1}^{n} 1/\ln(d_{du} \tan^{-1}(d_{du} / d_{du}^{0.5}) / \sum_{i=1}^{n} 1/\ln(d_{du})
\]

(6b)

where \(d_{du} \) is the distance to raster cell \(i \), and \(d_{du} \) is the difference in height to raster cell \(i \). The corresponding parameter functions are given by

\[
luv = 1 + \ln(1 + W_u) \text{ if } W_u > 0
\]

(7a)

\[
lee = [1 + \ln(1 - W_u)]^{-1} \text{ if } W_u < 0
\]

(7b)

Finally, the wind speed \(u \) is calculated using the reference observation \(u \), by

\[
u = u_l (\text{luv} \times \text{lee})^{0.25}
\]

(8)

Since it is known that spatial wind fields in mountainous terrain are highly difficult to estimate, results were compared to hand-held measurements.

LE is calculated, according to the modified Priestley-Taylor concept, by

\[
LE = \alpha s(Q^* - G_0)/(s + \gamma) + \beta
\]

(9)

where \(\alpha \) is an empirical constant ranging from 0 (for very dry conditions when no evaporation occurs) to 1.26 (for saturated conditions), \(s \) is the slope of saturation vapour versus temperature curve [Pa K\(^{-1}\)], \(\gamma \) is the psychrometric constant [Pa K\(^{-1}\)], and \(\beta \) is an empirical constant of 20 W m\(^{-2}\). The value of \(\alpha \) was chosen depending on the vegetation type according to literature. Results from studies in the Arctic indicate that the value for \(\alpha \) in dry regions characterized by sedge tussocks, mosses, lichens, and shrubs is at or near 1.00 (Rouse & Stewart 1972, Stewart & Rouse 1976, Rouse et al. 1977). In wet areas characterized by wet sedge tundra and small ponds, a number of studies have indicated that appropriate \(\alpha \) values should be \(\geq 1.26 \) (Stewart & Rouse 1976, Roulet & Woo 1986, Bello & Smith 1990, Rovansek et al. 1996).

As already mentioned, \(G_0 \) is parameterized in 2 forms as

\[
G_0 = 0.15Q^* \]

(10a)

and

\[
G_0 = (-0.27 NDVI + 0.39)Q^* \]

(10b)

where NDVI is derived from the Landsat ETM scene. This set of equations is then solved for LST using an iterative approach. Depending on the spatial scale regarded, the set of equations is solved on an hourly basis for nano- and micro-scales and once a day for meso-scale. In this study, the performance of the model was tested at nano-, micro-, and meso-scales against measurements of LST. Consequently, the model was run at the specific grid resolutions (except at nano-scale) that corresponded with grid-based input data in order to enable a comparison of the results to grid based observations at the same spatial resolution.

2.2.4 Statistically-based LST modelling

Similar to the interpolation of air temperatures, we sought to adopt a physical basis for this modelling approach. Independent environmental variables were chosen with respect to their relevance for surface temperatures and comprised (1) \(K_i \), based on reference observations but spatially corrected for topography (Oke 2001), (2) albedo, (3) NDVI, and (4) the \(G_0/Q^* \) ratio as derived from remote sensing data. Furthermore, (5) the Priestley-Taylor coefficient \(\alpha \) based on vegetation types, and (6) the topographic wetness index (TWI) were treated as surrogates for soil moisture conditions. Finally, (7) the spatial wind field as described above, and (8) interpolated air temperatures (corrected for the actual height above sea-level) were considered.

A multiple linear regression model using stepwise selection routines was established at micro- and meso-scale, treating LST (derived from remote sensing data for August 10, 2004 and October 4, 2004) as the dependent variable. The dataset was split randomly to use 1/3 for model building and 2/3 for model validation. Moreover, the spatial transferability of these empirical models was tested by applying the model of the Geiranger area in Vågå and vice versa.
3. RESULTS

3.1. Geostatistical interpolation of T_{AMX} and T_{AMN}

Regarding the selection of the best guiding variables for interpolation of daily air temperatures, we detected a differentiation between maximum and minimum temperatures. (In the following, corresponding signs of correlation are given in brackets.) Maximum temperatures were best described using elevation ($-\cdot$), cloud cover ($-\cdot$) and terrain ruggedness in a 5×5 window ($+\cdot$) besides northing and easting. Minimum temperatures also showed a dependence on elevation ($-\cdot$), cloud cover ($+\cdot$), northing, and easting, but additionally on distance to coast ($-\cdot$) and height above local minimum at a 3×3 window ($+\cdot$). These variables were chosen as guiding variables for the further interpolation process based on partial thin-plate splines. Resulting temperature maps are exemplified for two high pressure situations in Fig. 2, with a typical wintery temperature inversion on January 17, 2004 and a clear sky summer condition on July 31, 2004. The oceanic–continental differentiation is clearly visible. The overall performance of the interpolation approach was tested using cross-validation estimates of error computed by jackknifing. These error estimates are visualized by the boxplots in Fig. 2. Interpolation of T_{AMN} yields in general slightly better results than the interpolation of T_{AMX}, for which, (in non-alpine areas in the majority of cases) the error falls in the range of -2.2 to 2.8 K. The error range of -3 to 3.6 K for the interpolation of T_{AMX} indicates a decrease in accuracy with regard to alpine areas.

3.2. Physically based LST modelling

The physically based modelling approach of surface temperatures was applied from nano- to meso-scale. The results were validated against independent mea-
measurements at nano-scale—i.e. measured LST by data loggers, and spatial information about LST by TIR aerial photographs at micro-scale as well as by TIR Landsat ETM data at meso-scale. A strong decline in accuracy and ability to predict LST while increasing the spatial extent is obvious from the correlation biplots given in Fig. 3. The model performs very well at nano-scale (RMSE = 1.124, $R^2 = 0.889$), but tends to overestimate low temperatures and to underestimate high temperatures at micro-scale, resulting in an RMSE that approaches 4 and a lower R^2 of 0.551. At meso-scale, the model mostly overestimates temperatures accompanied with a large scatter, resulting in poor values for RMSE and R^2 (7.812 and 0.304, respectively).

3.3. Statistically based LST modelling

Statistically based modelling has been applied from micro-scale to meso-scale. The independent variables chosen by the automatic stepwise selection routine are consistent throughout the different scales and comprise K_{\downarrow}, the $G_0:Q^*$ ratio, and TWI, with K_{\downarrow} showing the highest partial correlation coefficients ranging from 0.670 to 0.752. Consequently, the full models are able to explain between 51 and 68% of the spatial temperature variance with a RMSE ranging from 2.2 to 2.8 K. The performance of the model at micro- and meso-scale is shown as a correlation biplot in Fig. 4. However, the accuracy of the models diminished when transferred to another study area (Geiranger), as shown by the biplot to the far right in Fig. 4, indicating their limited validity.

4. DISCUSSION

The proper choice of environmental guiding variables for temperature interpolation is an important step assuring the quality of temperature fields produced; this step is essential for further representative climatological or ecological modelling (e.g. Jarvis & Stuart 2001, Monestiez et al. 2001, Lookingbill & Urban 2003). This is even more important when regarding interpolation of daily temperature maxima and minima instead of e.g. monthly means, since data at higher temporal resolution are expected to reflect more complex relationships that level off at greater.

Fig. 3. Correlation biplots of observed vs. predicted land-surface temperature (LST) at different spatial scales estimated by the physically based modelling approach. Solid line: $y = x$ function

Fig. 4. Correlation biplots of observed vs. statistically predicted land-surface temperature (LST) at micro- and meso-scale. The biplot to the far right shows the limited performance of the meso-scale model transferred from eastern to western Norway. Solid line: $y = x$ function
time scales (Lookingbill & Urban 2003, Chung & Yun 2004). However, it is very important to consider these extremes, as done in an increasing number of studies (e.g. Chung et al. 2006, Mostovoy et al. 2006), since they are important ecological measures (e.g. Körner 2003). We found a differentiation between variables important for temperature maxima and minima, in agreement with previous results (e.g. Jarvis & Stuart 2001). Topography proved to be less important for TAMX than for TAMN, reflecting the effect of cold air drainage on minimum temperatures. Distance to coast-7.8, probably resolving limitations of the parameterized data availability, the performance at nano-scale was very good (RMSE = 1.124, R² = 0.889). However, starting at micro-scale and continuing meso-scale, the performance declined drastically until the RMSE was 7.8, probably resolving limitations of the parameteriza-

Due to the complexity of physically based modelling approaches, we also tested the performance of a simpler approach based on statistics, following recent trends in research (e.g. Chung et al. 2006, Stahl et al. 2006, Joly & Brossard 2007). As a result, up to 68% of the spatial variance in surface temperature could be related to irradiance, G₀/Q*-ratio as a function of NDVI, and TWI. It is possible that we would have achieved even better results if we had used an alternative measure of soil moisture conditions to the TWI (which has been proven to reflect soil moisture better for wet than for dry or intermediate conditions; Sulebak et al. 2000). However, the approach we used per-
formed similarly across the different spatial scales, suggesting that statistical approaches are an adequate means of modelling temperature fields in high mountain environments, even if they fall down on their limited transferability to other regions.

The statistical approach revealed other important facts. Neither the Priestley-Taylor coefficient α, the wind-field, nor the interpolated air temperature at a height of 2 m above ground contributed statistically significantly to the variability of LST. The first 2 facts might be attributed to a wrong parameterization, also responsible for the limited performance of the physically based modelling approach. More interesting is the apparent non-significance of air temperature: this may be related to the already mentioned decoupling of air and surface temperatures, but it is even more likely that it reveals scaling issues, leading to questions of the extent to which modelling or interpolation approaches can be applied reasonably to other spatial scales. It is questionable as to whether air temperatures interpolated at macro-scale can be downscaled using only elevation as corrector (as done in the present study, and also by Wang et al. 2006), especially when regarding a meso-scale area of steep topography accompanied by a complex differentiation in irradiance and wind field. It is rather obvious that other or additional parameters gain importance at finer scales, while they tend to level off at coarse scales, as found by Xu et al. (2004). For instance, we conducted a series of hand-held measurements on air temperatures at an equally-spaced raster of 20 m at micro-scale (data not shown), that revealed a differentiation of temperatures dependent on wind exposure. As such, it might be wrong to use the macro-scale temperature field at finer scales, as it leads to erroneous results. Thus, an appropriate handling of scaling issues is necessary for temperature modelling, as already proposed by Chave & Levin (2003) for ecological issues. However, such appropriate handling is hampered by the lack of observations at finer spatial scales, a fact that leads us back to the starting point of the whole discussion about temperature interpolation and modelling: without climatological reference data from spatial scales important for ecological applications — i.e. the meso- and micro-scale — an appropriate estimation of temperature patterns remains difficult.

Acknowledgements. We appreciate the permission to conduct research given by the Norwegian authorities, locals and landowners in Stranda and Vågå communes. We thank B. Schmid for field assistance. We are grateful to Dr. K. Isaksen of the Norwegian Meteorological Service for providing the temperature data from the Geiranger area. Color Line AS, Oslo, kindly supported the study. A research grant to R.P. was provided by the German Academic Exchange Service (DAAD). Comments by 2 reviewers improved the manuscript significantly.

LITERATURE CITED

factors to temperature distribution at different resolution levels on the forefield of the Loven Glaciers, Svalbard. Polar Rec (Gr Brit) 43:353–359

Leser H (1997) Landschaftsökologie. UTB, Stuttgart

Editorial responsibility: Gerd Esser, Gießen, Germany

Proofs received from author(s): May 29, 2009

Submitted: April 7, 2008; Accepted: March 3, 2009