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1.  INTRODUCTION

As climate has changed in the last century, and as the
cause of this change has been clearly identified (IPCC
2007), robust indices of these changes have been devel-
oped, both for observations and for expectations from
numerical model scenarios. The easiest to understand
and, therefore, the most widespread is the time aver-
age. However, human society and natural ecosystems
are more sensitive to changes to certain extremes,
which act as limiting factors. For example, Sun et al.
(2007) showed that an increase in greenhouse gas
(GHG) concentrations would lead to an intensification
of extreme precipitation in many parts of the globe.

A probability density function (PDF) is a function that
describes the probability of a continuous random vari-

able, such as precipitation, occurring at a given point in
time. The term ‘PDF’ encompasses 2 different con-
cepts—(1) a statistical description of a variable: a cli-
mate change in the tail of the distribution may be differ-
ent from a change in the mean; (2) the uncertainty
about the climate change itself: different climate mod-
els produce different expectations of the future climate,
and there is no way to decide which model tells the
truth. Frei et al. (2003) evaluated the capacity of a few
European models to simulate the PDF of precipitation,
according to the former meaning of this term. More re-
cently, the PRUDENCE project (Christensen et al. 2002)
offered a database of regional projections over Europe
which was exploited by Boberg et al. (2009) to derive
climate projections for the PDF of precipitation. How-
ever, the PDF described in this study did not introduce
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the uncertainty about the choice of a model within a
population of available experiments. Buser et al. (2009)
used a Bayesian approach to derive a multi-model PDF
from PRUDENCE data, according to Concept (2),
above. In the domain of seasonal prediction, it is usual
to build a PDF from several model results (e.g. Doblas-
Reyes et al. 2000). In the present study, our use of ‘PDF’
is based on the assumptions in Concept (2) (above), be-
cause the predictand is most often a deterministic
quantity, i.e. the observed seasonal mean of a particular
year. In addition, we have the possibility to calibrate
and validate a probability approach in seasonal fore-
casting, because we have about 50 independent past
cases for verification, which is not the case for a proba-
bility approach in climate change.

One of the new features of the ENSEMBLES project
(Hewitt & Griggs 2004) with respect to the PRUDENCE
project is the ability to construct probability distribu-
tions based on a non-uniform weighting of the models,
using the quality of their reproduction of the present
climate. To this purpose, a simulation of 1961–2000
was added to the traditional reference/scenario pair.
This simulation is not exploited here, but is used in
the other papers of this Special to rate the different
regional climate models (RCMs). In the present study
we used only the weights from this validation experi-
ment. The weighting approach offers an alternative
approach to the traditional Bayesian one (e.g. Tebaldi
et al. 2005), and has been introduced in climate change
studies by Giorgi & Mearns (2002). The aim of the pre-
sent study was not to compare the 2 approaches, but to
focus on the sensitivity of the combined distributions to
the choice of the weights.

Specifically, we calculated a distribution for daily
temperature and precipitation of the reference simula-
tion and compared it to the observed one. This compar-
ison was extended to the case of distributions based on
a single model. We then compared the distributions of
daily values in the reference and scenario simulations,
and calculated a bivariate frequency distribution for
the temperature/precipitation climate change.

2.  AVAILABLE DATA

We used 3 kinds of data from the ENSEMBLES pro-
ject: the weights from the ERA40-driven RCM simula-
tions, the gridded observations (Haylock et al. 2008)
and the general circulation model (GCM)-driven RCM
simulations. We used 14 RCMs referred to by the name
of their institutes:
• C4I (Jones et al. 2004), Community Climate Consor-

tium for Ireland
• CNRM (Radu et al. 2008), Météo-France Research

Center

• DMI (Christensen et al. 1996), Danish Meteorological
Institute

• ETHZ (Böhm et al. 2006), Swiss Federal Institute of
Technology in Zurich

• HadC (Collins et al. 2006), Met Office Hadley Centre,
UK

• ICTP (Giorgi & Mearns 1999), International Center
for Theoretical Physics in Trieste, Italy

• KNMI (Lenderink et al. 2003), Dutch Meteorological
Service

• METN (Haugen & Haakensatd 2006), Norwegian
Meteorological Service

• MPI (Jacob 2001), Max Planck Institute for Meteoro-
logy in Hamburg, Germany

• OURA (Plummer et al. 2006), Ouranos Consortium in
Montreal, Canada

• SMHI (Kjellström et al. 2005), Swedish Meteorolog-
ical and Hydrological Institute

• UCLM (Sanchez et al. 2004), University of Toledo,
Spain
The total number of RCMs is not 12 but 14, because

HadC corresponds to 3 versions: HC-lo, HC-med and
HC-hi. These 3 models share the same dynamics and a
very similar description of the sub-grid processes.
They have been produced by arbitrary perturbations of
a large set of model parameters which lead to very dif-
ferent responses to GHG concentration in their GCM
version (Murphy et al. 2007).

The RCMs all have approximately the same inte-
gration domain widely covering Europe (from Iceland
to Cyprus, and more to avoid the lateral boundary
undesirable numerical effects) and the same horizon-
tal resolution of 25 km. The ERA40-driven RCMs
have been run from 1961 to 2000 (some of them
longer). The GCM-driven RCMs have been run from
1950 to 2050 (some of them to 2100). The driving
GCMs, referred to by the name of their institutes,
are:
• BCM (Furevik et al. 2003), University of Bergen, Nor-

way
• CGCM (Scinocca et al. 2008), Canadian Meteoro-

logical Service
• CNRM (Gibelin & Déqué 2003), the global version of

CNRM RCM with variable resolution; this atmos-
pheric GCM takes its sea surface temperature data
from CNRM-CM3 (Salas-Mélia 2002)

• HadC (Gordon et al. 2000), the global version of
HadC RCM; 3 driving runs are available (HC-lo,
HC-med and HC-hi)

• MPI (Roeckner et al. 2003), the global version of MPI
RCM
As for the RCMs, we considered the 3 versions of the

HadC model (HC-lo, HC-med and HC-hi) as 3 dif-
ferent GCMs because their climate responses are very
different by construction. Table 1 indicates for each



RCM which GCM has been used. There are a total of
17 GCM-driven simulations.

If we consider that the modelling uncertainties of the
RCMs are fairly represented by 12 models coming
from most European countries, this is not the case with
GCMs. Five GCMs (of which BCM and CNRM share
the same atmospheric component) is much less than
the 23 GCMs used in the IPCC Fourth Assessment
Report (AR4); however, there are more degrees of free-
dom in a GCM than in an RCM. In addition, the
anthropogenic radiative forcing is based on IPCC Spe-
cial Report on Emissions Scenarios A1B concentrations
for all models, neglecting the carbon cycle feedback.
We must keep this point in mind when building a prob-
abilistic framework below.

In the present study we have limited our analyses to
winter (DJF) and summer (JJA) screen level tempera-
ture and precipitation. In the case of daily distribution
of precipitation, it is important to avoid spatial aver-
ages. It is impossible to display or analyze the approx-
imately 50 000 grid points of each model. Therefore,
we have restricted the analysis to 3 locations—Dublin,
Lisbon and Budapest—on the basis of the nearest grid
point. There is indeed in Europe a north–south gradi-
ent in precipitation and JJA temperature and a west–
east gradient in DSF temperature in the typical
response to anthropogenic climate change (e.g. Jacob
et al. 2007 for PRUDENCE). By choosing these loca-
tions, which also have rather different climates (oceanic,
Mediterranean and continental, respectively) we hope
to show a panel of European situations. In practice, we
have taken the nearest grid point for each RCM and
for the 0.25° observation grid. In Déqué (2009), the

ENSEMBLES-based local climate changes
are displayed for 34 European capitals and
4 seasons.

3.  AN ENSEMBLES-BASED
PROBABILITY DISTRIBUTION FOR THE

PRESENT CLIMATE

If we keep in mind that the GCM sam-
pling includes only part of the uncertain-
ties about modelling and that the weights
have not been calculated in a rigorous
probabilistic framework as proposed by
Rougier (2007), we can build a simple
probabilistic model which represents the
spread of the results in pooled ENSEM-
BLES simulations.

For each of the 17 models and each sea-
son (DJF and JJA), a PDF based on bin
counting was calculated for temperature
(resolution = 0.5°C) and precipitation (res-

olution = 0.25 mm d–1) using the daily values of the
reference period 1961–1990 in the GCM-driven ex-
periment. For precipitation, we calculated the prob-
ability of a dry day (precipitation < 1 mm d–1) and
the conditional probability of heavy rain (precipitation
> 20 mm d–1). This separation avoids giving too much
importance to the weak precipitation values (which
represent more than 90% of the data set in JJA in
Lisbon). The temperature and precipitation PDFs rep-
resent the probability law of this quantity for a day
drawn at random in the series produced by a given
model. If we consider now the ENSEMBLES multi-
model by pooling the different results, the probability
of obtaining a value x for temperature or precipitation
is given by the density:

(1)

where PDFi(x) is the PDF of the variable x for model i,
and pi is the probability of this model. The simplest
probability is to consider that the ENSEMBLES models
are equiprobable, then pi = 1/17. A more complex sys-
tem consists of using the weights calculated with
ERA40-driven RCM data (see the other papers in this
Special). These weights are given in last column of
Table 1. Although the ENSEMBLES project did not
produce an official weighting system for the GCMs, it
seems necessary to introduce one here in our sensitiv-
ity study. Indeed, SMHI and DMI RCMs appear several
times with different GCMs, whereas the other RCMs
appear only once in our multi-model. This means that a
comparison with equal weights would cause bias. The
choice of the GCM weights here was dictated by the
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i =1
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Table 1. Regional climate model (RCM) × general circulation model (GCM)
matrix. An X indicates that the corresponding RCM × GCM pair was avail-
able in ENSEMBLES at the time of the study. The last column indicates the
weight attributed to each RCM and the last row the weight attributed to 

each GCM. See Section 2 for RCM and GCM details

GCM
RCM BCM CGCM CNRM HC-lo HC-med HC-hi MPI Weight

C4I X 0.069
CNRM X 0.062
DMI X X 0.063
ETHZ X 0.067
HC-lo X 0.045
HC-med X 0.062
HC-hi X 0.069
ICTP X 0.076
KNMI X 0.093
METN X 0.061
MPI X 0.072
OURA X 0.060
SMHI X X X 0.079
UCLM X 0.059
Weight 0.069 0.093 0.069 0.045 0.063 0.081 0.081
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wish to favor the GCMs which propose the best large-
scale patterns over the RCM common domain. The
GCM weights do not include any information on model
performance derived from outside the study region
(e.g. the skill of their simulations of the El Niño South-
ern Oscillation or the Indian monsoon). The method is
the same as used for the evaluation of RCMs in
ENSEMBLES ERA40-driven simulations by Sanchez-
Gomez et al. (2009). For each calendar season, a clus-
ter analysis is applied to ERA40 500 hPa height daily
data over the Europe-Atlantic domain. Four patterns
(weather regimes) are identified. Then, each day of
each simulation was attributed to a regime by a spatial
distance criterion. For each calendar season of each
model we have thus 4 frequencies which are compared
with the corresponding 4 ERA40 frequencies. A score
based on the mean square differences (Brier score) is
calculated. Finally, the scores are transformed into
weights by a linear decreasing function, so that we get
the same range of weights for the GCMs as for the
RCMs (last line of Table 1). Hereafter, ENSEMBLES
weights will refer to the product of the GCM weights
by the RCM weights.

Fig. 1 shows the temperature multi-model PDF (thick
dashed line) for Budapest, Dublin and Lisbon in DJF
and JJA, as well as the 17 individual models (thin
lines). To improve readability, the pooled PDF curves
have been smoothed by Gaussian kernels (see Déqué
2009). The standard deviation of the kernels is 0.5°C
for temperature and 1 mm d–1 for precipitation. This
choice is an empirical compromise between graphics
where all individual models produce local density
maxima in the pooled PDF and graphics which appear
too bell-shaped.

In Budapest, the multi-model PDF has more spread
than the observation PDF, particularly in JJA. This
behavior is expected, because the multi-model ensem-
ble introduces different biases, some models being too
cold, some being too warm. The multi-model ensemble
is warmer than the observation. In Dublin, the multi-
model fits the observed PDF rather well. In JJA, the
multi-model underestimates the spread: most individ-
ual models underestimate variability and have a small
bias, contrary to Budapest. In Lisbon, the multi-model
again overestimates the spread, as in Budapest.

The PDF obtained with equal weights (data not
shown) is very close to the dashed curve of Fig. 1. In
addition to the ENSEMBLES and equal weight sys-
tems, one can imagine many other systems by drawing

the 17 weights at random with a positive constraint. In
the present study, the weights are generated by inde-
pendent uniform random numbers in the 0 to 1 range.
The weights are then normalized to yield the 17 prob-
abilities pi. The shaded area in Fig. 1 corresponds to a
95% envelope of the multi-model PDFs. It is con-
structed by taking, in each bin, the 25th and the 975th
temperature probabilities out of 1000 weightings. The
same kernel filter as above is applied.

As far as precipitation is concerned, Table 2 gives
the probability of dry days (i.e. precipitation < 1 mm).
The ENSEMBLES and equal weight systems are
almost equivalent. In Budapest, they invert the annual
cycle with respect to observation (more dry days in
JJA than in DJF with the multi-model). In Dublin, the
multi-model is too wet in JJA. In Lisbon it fits the
observation well. Except in Budapest in DJF and
Dublin in JJA, the observed probability is inside the
95% interval of random weights. This indicates that in
those 2 cases all models have a bias of the same sign,
and thus no positive combination can correct it.

Fig. 2 shows the PDF of precipitation for rainy days.
Here again, the 2 weight systems are almost equi-
valent and, therefore, equal weights are not shown.
The model agrees with observations in Budapest and
Dublin, but produces too much low precipitation (1 to
3 mm) and too little moderate precipitation (4 to 12 mm)
in Lisbon. This figure is not suitable for evaluating
extreme precipitations events, but Boberg et al. (in
press) showed that ENSEMBLES models are satisfac-
tory in this respect.

198

Fig. 1. Probability density functions (PDFs) of daily temperature for the 3 cities in winter (DJF) and summer (JJA) based on
ENSEMBLES weights (dashed line) and observation (thick solid line) in the reference period 1961–1990. Grey area: 95% range 

for the PDF when combining the models with random weights. Thin solid lines: the 17 individual models

Table 2. Daily probability of receiving <1 mm precipitation
(i.e. probability of dry day) for the reference 1961–1990 pe-
riod based on: ENSEMBLES weights (ENS), equal weights
(equal), 2.5% quantile of random weights (R2.5%), 97.5%
quantile of random weights (R97.5%) and observation (obs). 

DJF: December–February; JJA: June–August

Probability of dry day
City and season ENS Equal R2.5% R97.5% Obs

Budapest
DJF 0.657 0.664 0.645 0.684 0.754
JJA 0.725 0.726 0.697 0.754 0.708

Dublin
DJF 0.506 0.518 0.500 0.537 0.526
JJA 0.498 0.506 0.473 0.540 0.591

Lisbon
DJF 0.622 0.632 0.604 0.661 0.616
JJA 0.943 0.942 0.932 0.951 0.945
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Fig. 2. PDFs of daily precipitation for the 3 cities in winter (DJF) and summer (JJA). Other details as in Fig. 1



It is possible to go further in the evaluation of the
PDF by introducing a quantitative criterion of similar-
ity to the observation PDF. The most natural one would
be the quadratic difference (or Euclidean distance)
between the PDFs. However, this index has 2 draw-
backs: (1) if the distance is calculated on many inter-
vals, the PDF is poorly sampled and exhibits many
peaks which artificially increase the distance, unless
using a filter as in Figs. 1 & 2; (2) if the 2 PDFs have a
small dispersion and their means are different, the dis-
tance is almost independent of the difference between
the means, which is not desirable.

For these reasons, it is a common practice in long-
range probabilistic forecasting to use the ranked
probability score (RPS; Epstein 1969), which is the qua-
dratic distance between the cumulative density func-
tions (CDFs):

(2)

where m is model, ti are given thresholds, generally
quantiles of the observed distribution, o is observation,
and:

CDFm(x ) = Prob(model <x );

CDFo(x )  = Prob(observation <x )
(3)

where x is a dummy variable.
The continuous form of Eq. (2) can be written as an

integral, but with n = 100 and ti the centiles of observed
distribution, the RPS is close to its asymptote.

Table 3 shows the RPS for the temperature probabil-
ity distribution. The values are squared differences
between probabilities. They are of order 10–2 with
large variations. The calculation is done without
Gaussian kernel filtering because the CDF has—con-
trary to the PDF—smooth variations due to the con-
straint of being an increasing function bounded by 0
and 1. The results are in agreement with the visual
analysis of Fig. 1 with excellent scores for Dublin in DJF.

The 2.5 and 97.5% quantiles of the corresponding RPS
distribution provide a 95% interval for random weights.
These quantiles are estimated with the same 1000
Monte-Carlo drawings of the weights as for the quantiles
used in Figs. 1 & 2 (shaded area). As expected, the equal
weights provide an RPS inside this 95% interval. This is
also the case with the ENSEMBLES weights, which
shows that the ENSEMBLES weighting system is not
significantly better than a random choice of weights. In
addition, the median (50% quantile) of the RPS distribu-
tion is provided. Except for Dublin in DJF, this median is
close to the RPS with equal weights.

Since the RPS is a Euclidean distance, it is also possi-
ble to compute (linear regression with constraints) the
weights which minimize the RPS in each case. The 7th
column of Table 3 indicates that this minimum RPS
(Rmin) is very small, in fact much smaller than one can
expect from a standard random drawing of the
weights. This shows that a simple linear combination
of model data with positive numbers (the solution is
trivial with positive and negative numbers) can repro-
duce the statistical properties (mean, spread) of an
observed series. Of course, if all models were too cold
or too warm somewhere, it would not be possible to
correct this bias by any linear combination.

Table 4 shows the various RPSs of the precipitation
distribution, according to the various weight systems.
The score is particularly good in Dublin and in
Budapest (DJF only), but is poor in Lisbon in JJA. How-
ever, the ENSEMBLES weights do not perform better
than a random weight system. This suggests that using
more models is more efficient, in an RPS sense, than
discriminating the best models. However, the mini-
mum RPS amongst all possible random weights is
small in Budapest and Dublin. In Lisbon in JJA, no
linear combination of the models is able to produce a
PDF very close to the observed one, as all models
underestimate high precipitation.

RPS =
1
n

CDF CDFm o
2

=1

n

( ) ( )t ti i
i

−⎡⎣ ⎤⎦∑
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Table 3. Ranked probability score (RPS) between model and observation for daily temperature in the 1961–1990 reference period
with various weight systems: ENSEMBLES (ENS), equal and random (R). With random weights, the table proposes the quantiles
R2.5%, R50% and R97.5% as well as the absolute minimum (Rmin). When a single model is considered (last 3 columns), the
best, median and worst correspond to the minimum, 9th ranked and maximum RPS amongst the 17 climate change scenarios. 

DJF: December–February; JJA: June–August

City and Ranked probability score
season ENS Equal R2.5% R50% R97.5% Rmin Best Median Worst

Budapest
DJF 0.0034 0.0023 0.0008 0.0024 0.0065 0.0001 0.0001 0.0095 0.1272
JJA 0.0102 0.0128 0.0051 0.0128 0.0276 0.0002 0.0034 0.0477 0.1745

Dublin
DJF 0.0008 0.0008 0.0006 0.0019 0.0022 0.0001 0.0011 0.0054 0.0868
JJA 0.0036 0.0043 0.0019 0.0045 0.0084 0.0001 0.0005 0.0094 0.0510

Lisbon
DJF 0.0048 0.0052 0.0024 0.0052 0.0095 0.0001 0.0004 0.0053 0.0866
JJA 0.0050 0.0046 0.0026 0.0042 0.0092 0.0001 0.0004 0.0098 0.0893
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4.  ENTROPY OF THE WEIGHTING

In the previous section we compared the ENSEM-
BLES weights with equal weights, which is a natural
way to combine the models. The fact that a weighting
is even can be measured by the weighted average of
the logarithm of the weights, with opposite sign:

(4)

This quantity, named entropy, is maximum with
equal weights (the maximum is ln[n], here 2.83) and
minimum (0) when one weight is 1 and the others are
0. The ENSEMBLES distribution has a high entropy,
2.80, close to the maximum. In the random choice of
weights examined above, the 1000 weightings have an
entropy ranging between 2.18 and 2.83. The weights
which minimize the RPS have a lower entropy, ranging
between 0.30 and 1.59.

The fact that our random weightings are rather even
leads us to consider the most uneven weightings, which
are those based on a single model. To avoid multiplying
tables and to facilitate the comparisons, we have added
3 columns to Tables 3 & 4. The first of these corresponds
to the best model, i.e. the model for which the RPS of
the daily PDF of a given variable, at a given location and
for a given season, is the minimum of the 17 RPSs. The
second corresponds to the median model, i.e. the 9th
model when sorting the 17 RPSs. The third corresponds
to the worst model, i.e. the maximum RPS. The best and
worst models give a range for the RPS obtained when a
single model is considered to build the PDF. The median
model is more meaningful than the averaged RPS. In-
deed, the spread of the 17 RPSs is large, and the average
would be dominated by the 1 or 2 largest RPSs. This
median model gives a reasonable hint of what we could
get if we take a single model at random.

Table 3 shows that taking the best model is better
than a random weighting, except in Dublin in DJF. In
Budapest in DJF, the best model has an RPS close to
the absolute minimum. The worst model is far beyond
the interval of the random weights. The median model

is also beyond this interval, except in Lisbon: in DJF at
this location, the median model has the same RPS as
equal weights, but in JJA it is worse. So, considering
a single model is generally worse than using an en-
semble with weights, as far as the reproduction of the
observed PDF is concerned.

For precipitation (Table 4), the best model is always
close to the absolute minimum RPS, except in Lisbon in
DJF. The median model stays within the 95% interval
of random weightings in Budapest (JJA) and Lisbon
(DJF and JJA). In the other cases it is beyond this
range, but remains relatively small. So, if we exclude
the few bad models, considering a single model for
precipitation is less detrimental to the reproduction of
observed daily PDF than it is for temperature.

In order to further examine the relation between
entropy and RPS, we calculated the correlation be-
tween entropy and the RPS. We expanded the random
sample to 50 000 weightings to increase our confi-
dence. The correlation is always negative (Table 5),
albeit weak, a result confirmed in the other seasons
(data not shown). This indicates that an uneven distri-
bution of weights has less chance to fit the observed
PDF. This is a classical result in statistics: when one
ignores the exact solution, the mean square error is
minimized by predicting the mean than to predict one
particular case selected at random.

S = ln( )
=1

n

− ∑ p pi i
i
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Table 4. RPS between model and observation for daily precipitation in the 1961–1990 reference period. Other details as in Table 3

City and Ranked probability score
season ENS Equal R2.5% R50% R97.5% Rmin Best Median Worst

Budapest
DJF 0.0003 0.0003 0.0003 0.0004 0.0005 0.0001 0.0001 0.0013 0.0156
JJA 0.0041 0.0039 0.0024 0.0040 0.0058 0.0001 0.0004 0.0053 0.0221
Dublin
DJF 0.0002 0.0002 0.0001 0.0002 0.0003 0.0001 0.0001 0.0006 0.0039
JJA 0.0001 0.0001 0.0001 0.0002 0.0003 0.0001 0.0001 0.0011 0.0082
Lisbon
DJF 0.0050 0.0052 0.0032 0.0053 0.0079 0.0003 0.0014 0.0058 0.0321
JJA 0.0277 0.0261 0.0203 0.0275 0.0329 0.0043 0.0044 0.0249 0.1003

Table 5. Correlation between the entropy of the weights and
the ranked probability score of daily probability distribution
functions versus observation in the case of random weight-

ings (10 000 samples)

City and season Temperature Precipitation

Budapest
DJF –0.08 –0.25
JJA –0.06 –0.02

Dublin
DJF –0.23 –0.13
JJA –0.03 –0.20

Lisbon
DJF –0.04 –0.03
JJA –0.08 –0.01
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5.  DAILY PROBABILITY DISTRIBUTION FOR
REFERENCE AND SCENARIO

The main difference between the 2021–2050 and
1961–1990 periods is an increase in GHG concentra-
tions, resulting in an increase in temperature. Fig. 3
shows the PDF of daily temperature in the 3 locations
with ENSEMBLES weights (thick lines). At first glance,
the shape of the PDF is not largely deformed and the
climate change manifests itself as a shift of the PDF to-
wards warm values. If we use equal weights (data not
shown) instead of ENSEMBLES weights, the resulting
figure is identical to Fig. 3. A slight flattening of the
PDFs is seen in this scenario, except in DJF in Dublin
and Lisbon. If we consider the median model intro-
duced in Section 4 (thin lines), the same conclusions
hold, except in Budapest in JJA where the scenario
PDF becomes skewed. The single model PDF also has
less dispersion than the weighted PDF, except in Buda-
pest. Note that this model is not the same for the differ-
ent seasons and locations, and the features might have
been different with other choices of the model. The aim
of the thin lines is to illustrate, not to analyze.

In the case of precipitation, plotting the PDFs, as in
Fig. 2, does not allow us to capture the climate change,
since the curves are too close to each other. Table 6

provides numerical values that are easier to compare
(some data from Table 2 is repeated for comparison).
In Budapest and Dublin, the probability of dry days
decreases in DJF and increases in JJA. In Lisbon, this
probability increases in both seasons. The 2 weight
systems are in full agreement on this result. In the case
of heavy rain (>20 mm d–1) the probability increases in
all cases, except in Lisbon in JJA where both weight-
ings of the models lead to a decrease in probability.
Table 6 also includes the probability for the median
model. As far as dry days are concerned, there is an
agreement with the multi-model, except in Lisbon in
DJF. As far as heavy rains are concerned, there is also
an agreement except in Lisbon.

6.  WEIGHTED RESPONSE TO CLIMATE CHANGE

In the previous section we examined the reference
and scenario simulations separately. Here we will
address directly the differences between the scenario
and reference simulations, also known as the climate
response. At the daily scale, looking at the distribution
of the differences between data in the scenario run and
data in the control run is not relevant because the day-
to-day variability is much larger than the pure climate
change. At the seasonal scale, relevance is increased,
but the year-to-year variability still dominates. We will
work here at the climate scale, using the traditional
definition of climate: an average over 30 consecutive
years. To calculate the frequency distribution of the
difference between scenario and reference climates,
we use the same formula as in Eq. (1). Here PDFi(x ) is
replaced by the distribution for model i. Ideally, this
distribution should be calculated with an ensemble of
at least 10 simulations with the same model and
boundary conditions coming from the same coupled
GCM run 10 times with different initial conditions.
Another less expensive method consists of considering
that the climate response is an average of 30 differ-
ences, one per year. They are not strictly independent,
but if one plots the 30 differences for a given city and
season, one can see that this assumption is largely
valid. Thanks to Gauss’s central limit theorem, we can
consider that the 30 yr-based difference follows a
Gaussian law with the same mean as the 1 yr-based
differences. The variance is that of the 1 yr-based dif-
ferences divided by 30. Note that here the seasonal
mean precipitation is the actual mean, not the mean of
the rainy days as was used in the previous sections for
the daily values.

Rather than plotting one curve for temperature and
one for precipitation as we did in the last sections, we
will display 2D graphics. Indeed, there is a correlation
between temperature and precipitation responses due
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Table 6. Probability of a dry day (precipitation < 1 mm) and
heavy rain (precipitation > 20 mm) in winter (DJF) and sum-
mer (JJA) for reference (R, 1961–1990) and scenario (S,
2021–2050) periods with ENSEMBLES weights (ENS), equal
weights (equal) and a single model (median). DJF: Decem-

ber–February; JJA: June–August

City, season Dry day Heavy rain
and period ENS Equal Median ENS Equal Median

Budapest
DJF
R 0.657 0.664 0.745 0.015 0.015 0.016
S 0.657 0.663 0.734 0.018 0.019 0.033

JJA
R 0.725 0.726 0.890 0.029 0.029 0.010
S 0.738 0.742 0.894 0.036 0.036 0.024

Dublin
DJF
R 0.506 0.518 0.507 0.020 0.021 0.026
S 0.502 0.512 0.504 0.024 0.024 0.031

JJA
R 0.498 0.506 0.532 0.019 0.020 0.019
S 0.520 0.529 0.575 0.024 0.024 0.027

Lisbon
DJF
R 0.622 0.632 0.775 0.102 0.101 0.124
S 0.639 0.648 0.755 0.111 0.112 0.103

JJA
R 0.943 0.942 0.918 0.016 0.016 0.003
S 0.954 0.954 0.945 0.014 0.013 0.007
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Fig. 3. Probability density functions (PDFs) of daily temperature for the 3 cities in winter (DJF) and summer (JJA) for the
1961–1990 (solid lines) and 2021–2050 (dashed lines) periods based on ENSEMBLES weights (thick lines) and for a single model 

based on median RPS (thin lines)



to 2 factors: (1) for a given model, warm summers are
often dry summers in Europe, and (2) models which
have a stronger response in temperature may also
have a stronger response in precipitation.

The Gauss theorem applies also to 2D random vari-
ables like the temperature–precipitation pair, the
correlation being the same as the correlation of the

30 yr-based differences. Fig. 4 shows the bivariate
PDF calculated with the ENSEMBLES weights. As
each model has a narrow distribution for its re-
sponse (it might be a Dirac function if we neglect
the natural variability), we need to apply a Gaussian
kernel filter to the bivariate distribution for an easier
interpretation.
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Fig. 4. Bivariate probability density functions (PDF) of temperature (°C) and precipitation (mm d–1) 30 yr mean climate change
responses for the 3 cities in winter (DJF) and summer (JJA). The density contour interval is 0.2°C–1 mm–1 and the 0.05 

contour is added
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From a technical point of view the generalization
from 1D to 2D kernels is straightforward. We assume a
correlation r between temperature (T) and precipita-
tion (P) in the kernels. The filtered PDF (f2) reads:

(5)

The bin sizes ΔT and ΔP are smaller than in Section 3:
0.04°C and 0.04 mm d–1. Dummy variables T ’ and P ’
are summed up over (–2°C; 6°C) and (–2 mm d–1; 6 mm
d–1), respectively. The values of σT and σP have been
empirically tuned to remove the effect of individual
models, without affecting—as far as is possible—their
envelope (0.4°C and 0.1 mm d–1). Some anisotropy in
the filter is also introduced by the parameter r which is
the average of the 17 correlations of the individual dis-
tributions. The difference with the same plots calcu-
lated with equal weights (data not shown) is negli-
gible. Fig. 4 shows different interesting features. In
DJF, the correlation is positive (lower left to upper right
shape), which means that the warmest scenarios are
associated with the wettest ones. As expected, the
opposite is seen in JJA (upper left to lower right
shape). Except in Dublin in DJF, the PDF is centered
along the x-axis, which means that a positive or a neg-
ative precipitation response are almost equiprobable.
The case of Lisbon is different from the other 2 cities:
in DJF the precipitation distribution is very flat, whereas
in JJA it is very sharp.

As in Section 4, we can compare this frequency dis-
tribution with the distribution obtained from a single
model. We have ranked the 17 RPSs for each city and
season. Here the ranking is different from the ranking
in previous sections. Indeed, we are considering here
bivariate Gaussian laws for 30 yr seasonal means in
both reference and observed data sets. Fig. 5 shows
that the bivariate response of a single model is sharper
than with the weighted combination. If we exclude
Lisbon in DJF—for which precipitation spread is as
large as the multi-model—the sign of the precipitation
response is significant: positive in Budapest, positive
(DJF) and negative (JJA) in Dublin, and negative in
JJA in Lisbon. Also, the slope of the ellipses is the
same as in Fig. 4.

From the bivariate multi-model distributions, it is
easy to compute a marginal distribution for tempera-
ture and precipitation (data not shown). The distribu-
tion of precipitation has a rather Gaussian shape, but
the distribution of temperature is skewed toward warm
values (see Déqué 2009). One can then compute a
cumulative distribution and a confidence interval based

on quantiles. Table 7 shows the quantiles 0.5 and
99.5% which provide a 99% interval with the 2 weight
systems. As usual, the results with ENSEMBLES
weights and with equal weights are very similar. Note
that the sign of the precipitation response is uncertain
at this 99% level. At the 90% level (data not shown),
this sign becomes significant for Dublin (DJF increase)
and Lisbon (JJA decrease). As far as temperature is
concerned, the warming is significant in Lisbon in both
seasons, and in Budapest in DJF only. When the cli-
mate response is expressed only as an averaged value,
a part of the ENSEMBLES message about the climate
of the next 50 yr is missed. In Table 7, contrary to
Fig. 4, we did not apply a Gaussian kernel filtering,
because the tails of the distributions depend on its
standard deviation. In addition, we use here the CDF
and not the PDF (see Section 3 discussion about the
RPS). The stability of the results with respect to the
weighting method indicates that smoothing is not nec-
essary for this application. If we apply kernel filtering
anyway, the 99% intervals of Table 7 are broader: this
is an indication that we do not have enough models in
ENSEMBLES to sample the full uncertainty. As the
choice of σT and σP is empirical and as its impact on the
results is far from negligible (e.g. temperature interval
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Table 7. Lower (L) and upper (U) boundaries of a 99% confi-
dence interval for temperature (°C) and precipitation (mm
d–1). The probability law of the climate change is a weighted
average of 17 individual Gaussian laws with ENSEMBLES
(ENS) or equal weights (Equal), or the Gaussian law of the
model which has a ranked probability score of 9 with respect
to observation (Median). DJF: December–February; JJA: 

June–August

City, season Temperature Precipitation
and boundary ENS Equal Median ENS Equal Median

Budapest
DJF
L 0.30 0.32 1.62 –0.34 –0.34 –0.14
U 3.36 3.42 3.78 0.64 0.62 0.62

JJA
L –0.10 –0.10 0.82 –0.56 –0.58 –0.02
U 3.50 3.54 3.50 0.62 0.64 0.54

Dublin
DJF
L –0.06 –0.04 1.18 –0.22 –0.22 –0.02
U 2.30 2.34 2.42 0.80 0.82 0.90

JJA
L –0.16 –0.14 1.06 0.50 –0.52 –0.42
U 2.00 2.00 1.86 0.58 0.58 0.14

Lisbon
DJF
L 0.24 0.24 0.34 –1.32 –1.30 –1.26
U 2.45 2.42 1.32 1.50 1.50 1.50

JJA
L 0.40 0.40 1.46 –0.38 –0.38 –0.30
U 2.82 2.84 2.48 0.14 0.14 0.10
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in DJF in Lisbon goes from (0.2; 2.4) to (–0.3; 2.8) with
kernel filtering), we prefer to stay close to the strict
definition of spread in our 17 member ensemble.

Coming back to single model uncertainties, Table 7
yields the intervals for the median model. This is, for
each season and location, the same model as in Fig. 5.
We did not sort the model RPSs separately for temper-
ature and precipitation, in order to maintain consis-
tency with Fig. 5. As expected, the confidence interval
is narrower, but in some instances (e.g. DJF tempera-
ture in Budapest) the single model interval extends
outside the multi-model interval. So when restricting
to a single model, one can be at the same time more
confident (smaller spread) and more pessimistic (larger
mean).

7.  CONCLUSIONS

Assigning weights to models which generate a huge
bundle of diagnostics, and which are good for certain
aspects and poor for others, is a difficult exercise. The
present study is a fair evaluation of these weights,
because we did not use any of the material used to con-
struct them (ERA40-driven RCM data), but it does not
evaluate all aspects of a weighting system, just its
ability to simulate the observed temperature and pre-
cipitation distribution and evaluate the spread of their
response at a few locations. These 2 aspects are not
necessarily linked. Better simulation of the observed
climate is not proof that the climate response is more
reliable.
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Fig. 5. Bivariate PDFs as in Fig. 4 for the single model
with median ranked probability score (RPS). The names 

of the RCM and GCM are indicated in each panel
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On the basis of the reconstruction of the reference
climate PDF, the ENSEMBLES method is not better
or worse than the use of equal or random weights.
The reconstructed reference distribution is not
always close to the observed distribution, but here
the RCMs are driven by GCMs with their own errors.
As far as the response to climate change is con-
cerned, the results obtained with ENSEMBLES
weights are rather similar to those obtained with
equal weights.

These 2 results should not be interpreted in a pes-
simistic way, as far as the ENSEMBLES outcome is
concerned. These ENSEMBLES weights are based on
a physical and multi-purpose approach, so they are
more reliable than equal weights, even if, in the end,
the results are similar. In addition, these ENSEMBLES
weights are designed to be used with any combination
of model results, not only temperature and precipita-
tion frequencies.

As a certain number of impact studies are based on
a single model, we have compared our ensemble-
based spread with a single model-based spread. It is
tempting to consider the model which has the PDFs
closest to observation in the reference period as the
‘best model’. However, with 3 locations, 2 seasons
and 2 variables, the best model will change from one
case to another, and includes a component of chance.
Instead, we prefer to use the concept of a ‘median
model’, which is better than 50% of the other models
and represents the status of an ENSEMBLES re-
gional model in a more stable way. As far as the
reconstruction of the observed PDF is concerned, a
single model is worse in an RPS sense than a
weighted combination, in particular for temperature.
If we wanted to calculate a probability for climate
change, using a single model PDF would rely upon
the wrong hypothesis that this model is perfect.
Using several models introduces the concept of im-
perfection amongst the models. In PRUDENCE, most
RCMs were driven by the same GCM. Here in
ENSEMBLES, we used 5 GCMs. We must acknowl-
edge that, compared to IPCC AR4, this GCM sam-
pling is too poor to deliver a definite response to the
difficult question of a probabilistic prediction of the
next 50 yr, although the RCM sampling is the best
we can do. So our results must be interpreted as a
sensitivity study to the weighting system in a multi-
model context, not as a tool for decision makers.
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