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1.  INTRODUCTION

Climate projections and associated applications in
impact studies have become an important topic of sci-
entific and public interest during the last decades. In-
creasingly, they are based on large multi-model ensem-
bles. For instance, the fourth Intergovernmental Panel
on Climate Change (IPCC) assessment report summa-
rizes data from 21 different coupled atmosphere–ocean
global climate models (GCMs; Meehl et al. 2007). Simi-
larly, regional projections are increasingly based on en-
sembles of high-resolution regional climate model
(RCM) simulations. Over Europe, this approach has

been pioneered in the PRUDENCE and ENSEMBLES
projects (Hewitt & Griggs 2004, Christensen & Chris-
tensen 2007, see also http://ensembles-eu.metoffice.
com). Typically, ensemble mean and ensemble spread
are used to visualize and present the consensus and the
uncertainty of the models.

The ensemble approach was originally derived in
probabilistic medium-range weather forecasting, and
is now broadly used in numerical weather prediction,
seasonal forecasting, and climate research on a wide
range of time scales. Recent developments include the
exploitation of multi-model ensembles and the investi-
gation of single-model perturbed-physics ensembles,
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as well as the use of stochastic forcings in promoting
ensemble spread. Applications geared towards climate
projections are usually based on a heterogeneous en-
semble (with sometimes only a handful of ensemble
members, stemming from different models in an only
partly coordinated framework).

An important issue in ensemble approaches for cli-
mate research is the inability to rigorously quantify cli-
mate model biases. While biases of climate models are
monitored for the control period, the lack of long-term
comprehensive observations (on the centennial time
scales considered) implies that it is difficult to decide
how the model biases will change with the climate
state. As a result of these difficulties, it is more chal-
lenging to provide an estimate in the form of a proba-
bility density function (PDF) from climate ensembles.
Ideally, one would like to employ an objective method-
ology that takes into consideration the individual
model results as well as their performance under cur-
rent climatic conditions.

The Bayesian framework is particularly attractive for
combining several models. Tebaldi et al. (2005) were
among the first to use the Bayesian framework to ana-
lyze multi-model climate predictions. They derived
PDFs for the mean temperature changes in 22 regions
covering global land mass and 4 seasons by combining
30 yr regional climate averages from observations and
from output of several GCMs. Their approach can be
viewed as a weighted average of the individual GCM
results, with weights similar to those used by the re-
liability ensemble average (REA) of Giorgi & Mearns
(2002). The framework of Tebaldi et al. (2005) has been
generalized in many directions. Furrer et al. (2007) and
Smith et al. (2009) developed methods to study several
regions simultaneously. Jun et al. (2008) analyzed the
spatial variability of the additive biases in detail for the
control climate. Tebaldi & Sanso (2008) and Buser et al.
(2010) introduced multivariate generalizations for ana-
lyzing temperature and precipitation simultaneously.
Tebaldi & Knutti (2007) reviewed multi-model climate
projections and different types of uncertainty. They
also discussed the problems of model dependence,
tuning, and evaluation.

This paper continues the recent study of Buser et al.
(2009), which extended the previous methodologies in
2 important respects. First, we considered not only
changes in mean temperature, but also changes in
interannual variability. Second, we explicitly consid-
ered changes of climate model biases, i.e. the biases
were assumed to depend upon the climate state and
were thus allowed to change between control and sce-
nario periods. More specifically, we considered both
additive and multiplicative biases, which relate to the
climate model’s ability to represent the mean climate
and its interannual variations, respectively.

Two plausible assumptions about the extrapolation of
additive biases into the future are introduced, referred
to as the ‘constant bias’ and ‘constant relation’ assump-
tions. The former is used implicitly in most studies of cli-
mate change. The latter asserts that over-/underestima-
tion of the interannual variability in the control period
also leads to over-/underestimation of climate change,
and this assumption is closely related to the statistical
post-processing of seasonal climate predictions. Buser
et al. (2009) explicitly allowed the additive and multi-
plicative model biases to change between control and
scenario periods and used the Bayesian methodology to
estimate the bias changes. The resulting lack of identi-
fiability was resolved by using informative priors.

The results of Buser et al. (2009) showed that bias
assumptions may critically affect the results. For
instance, the application of the methodology to Alpine
summer temperatures using PRUDENCE simulations
for the periods 1961–1990 and 2071–2100, yielded dif-
ferent mean warmings, i.e. 5.4 K and 3.4 K for the ‘con-
stant bias’ and ‘constant relation’ assumption, respec-
tively. These significant differences demonstrate that
bias changes should explicitly be considered as an
additional source of uncertainty in climate projections.

The main contribution of the present study is an exten-
sion of Buser et al.’s (2009) approach using a method that
includes the 2 bias assumptions as special cases. The
generalization yields a single probabilistic projection,
instead of 2 different projections that depend upon the
underlying bias assumptions. Nevertheless, uncertain-
ties due to bias assumptions are implicitly taken into ac-
count. For instance, if there is a disagreement between
the different bias assumptions, the generalized approach
increases the uncertainty of the resulting projections.

We applied the new Bayesian methodology to
the recent set of GCM/RCM simulations from the
ENSEMBLES project, http://ensembles-eu.metoffice.
com, which used transient simulations from 1950–2050
with observed forcings for the past and an SRES A1B
emission scenario for the future. In our study, we
restricted attention to the 1961–1990 control and
2021–2050 scenario periods.

The paper is structured as follows. In Section 2, the
data and the aggregation procedure are described. In
Section 3, the methods and the Bayesian model setup
are explained. In Section 4, results for the 8 regions
and 4 seasons are shown, and in Section 5, we draw
our conclusions.

2.  DATA

In this paper, both observational data and output of
RCMs are summarized by the term ‘data.’ We distin-
guish between ‘known data’, namely the observations
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for the control period and the model output for both the
control and the scenario period, and ‘unknown data’,
namely the observations for the scenario period. The
variable of interest is the 2 m temperature (above
ground). The control period is 1961–1990 (CTL) and
the scenario period is 2021–2051 (SCEN). The aim was
to predict changes in mean temperature and inter-
annual temperature variability between the 2 periods.

2.1.  RCM data

For the statistical analysis, we used the output of 7
RCMs which are all part of the ENSEMBLES project
(Hewitt & Griggs 2004, see also http://ensembles-eu.
metoffice.com). All models considered were driven by
transient GCM runs for the 1951–2051 period, as
forced by observed greenhouse gas, aerosol, solar and
volcanic forcings for the past (1951–2000) and an A1B
emission scenario for the future (Nakicenovic et al.
2000). As our methodology required independent sim-
ulations, we used a subset of ENSEMBLES simulations
whose members were driven by different atmospheric
GCM simulations. The 7 simulations considered are
listed in Table 1. Further information on the individual
GCM and RCM simulations is available in Niehörster
et al. (2008), Déqué (2009), and from the ENSEMBLES
website. The 3 HadCM3 simulations used were based
on the same model but with different parameter set-
tings, in order to yield a small perturbed-physics
ensemble with different climate sensitivities (see Mur-
phy et al. 2007). For the purpose of the current paper,
these simulations can be considered as independent.

The integration area of the RCM models varied, but
in all cases covered the majority of Europe. The focus

of our analysis was on 8 standard regions (PRUDENCE
regions) within Europe (Christensen & Christensen
2007). Table 2 provides the corresponding coordinates
of the regions. The spatial resolution of the models was
around 0.22° (~25 km). Model output was interpolated
on a regular latitude–longitude grid (see Section 2.2)
so that it could easily be compared to observations
from the control period.

2.2.  Observational data

We use the observed surface temperature data
(E-OBS) from the ENSEMBLES project. The data were
located on a regular 0.22° × 0.22° latitude–longitude
grid and covered the period 1950–2006. Haylock et
al. (2008) provided a detailed description of the data
set. The data can be accessed via http://eca.knmi.nl/
download/ensembles/download.php. In the analysis,
we assumed that the observations represent the true
climate.
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Area Latitude Longitude

1 British Isles (BI) 50° N–59° N 10° W–2° E
2 Iberian Peninsula (IP) 36° N–44° N 10° W–3° E
3 France (Fr) 44° N–50° N 5° W–5° E
4 Middle-Europe (ME) 48° N–55° N 2° E–16° E
5 Scandinavia (Sc) 55° N–70° N 5° E–30° E
6 Alps (Al) 44° N–48° N 5° E–15° E
7 Mediterranean (Md) 36° N–44° N 3° E–25° E
8 Eastern Europe (EE) 44° N–55° N 16° E–30° E

Table 2. Coordinates (degrees) of analysis regions, based on 
Christensen & Christensen (2007)

Institute and location Model (source)
RCM GCM

C41, Dublin, Ireland RCA3 (Kjellström et al. 2005) HadCM3 high sensitivity (Collins et al. 2006)

Centre National de Recherches ALADIN (Radu et al. 2008) Arpege (Gibelin & Déqué 2003)
Météorologiques (CNRM), Toulouse, France

Eidgenössische Technische Hochschule (ETH), CLM (Jaeger et al. 2008) HadCM3 standard sensitivity (Collins et al. 
Zurich, Switzerland 2006)

Hadley Centre, Exeter, UK HadRM HadCM3 low sensitivity (Collins et al. 2006)

Koninklijk Nederlands Meteorologisch RACMO (Lenderink et al. 2003) ECHAM5 (Roeckner et al. 2003)
Instituut (KNMI), Amsterdam, Netherlands

Ouranos, Montreal, Canada CRCM (Plummer et al. 2006) CGCM3 (Scinocca et al. 2008)

Sveriges Meteorologiska och Hydrologiska RCA (Kjellström et al. 2005) BCM (Furevik et al. 2003)
Institut (Swedish Meteorological and 
Hydrological Institute, SMHI), 
Norrköping, Sweden

Table 1. ENSEMBLES data overview. We used a subset of models driven by different atmospheric global climate model (GCM) runs. 
The 3 HadCM3 simulations are members of a perturbed-physics ensemble. RCM: regional climate model
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2.3.  Aggregation

We averaged the data both temporally over the 3
months of each season (spring: MAM, summer: JJA, au-
tumn: SON, winter: DJF) and spatially over all land grid
points within the region. For the spatial average, a grid
point was considered a land point if at least 50% of the
corresponding area was landmass. Water grid points
were excluded from all models and the E-OBS data set
to avoid a mixing of the sea and land temperatures.

The statistical analysis was done separately for each
season and each region. We thus ignored correlations
between neighboring seasons and regions. We did not
average over the years, but rather retained the infor-
mation about interannual variability. A potential diffi-
culty of this is that trends during the 2 periods become
confounded with the interannual variability. In order to
avoid this, we included linear trends in our statistical
model.

3.  METHODS

3.1.  Bayesian formalism

Our main goal was the estimation of the a priori
unknown parameters that represent changes in mean
and variance of the temperature, given the known
(simulated and observed) data as described in the pre-
vious section. In the Bayesian formalism, uncertainty
about these and other parameters is represented in the
form of probability distributions. It starts with prior
probability distributions, i.e. probability distributions
representing the a priori knowledge, and converts
these by Bayes formula into posterior distributions
which also contain the information from the data.

Whenever possible, we used uninformative priors,
but for parameters representing bias changes, we had
to use informative priors in order to resolve a lack of
identifiability. This is discussed in more detail in Sec-
tion 3.3 when we specify our prior distributions.

According to Bayes formula, the posterior density of
the parameters given the known data is obtained as

p (parameters | known data) ∝
p (known data | parameters) × p (parameters)

Here p (parameters) is the prior density and p (data |
parameters) is the so-called likelihood. Its specification
is discussed in Section 3.2.

Often, one is interested not only in parameters, but
also in the distribution of unknown data, for instance
the distribution of the temperature in the scenario
period. Since this distribution depends on the un-
known parameters, we computed the so-called poste-
rior predictive density by integrating

p (unknown data | parameters) ×
p (parameters | known data)

over the parameters. It represents the combined uncer-
tainty due to random variability of the unknown data
and due to unknown parameters.

Although these formulas look simple, the resulting
densities are typically not of a standard form, and explicit
results require high dimensional integration. Common
practice in modern statistics is to rely on Markov chain
Monte Carlo methods instead. Monte Carlo methods re-
place analytical calculations with empirical estimates,
computed with an artificially generated sample from
the posterior distribution. For complicated, high-dimen-
sional distributions, it is not feasible to generate an inde-
pendent sample, but it is possible to generate a depen-
dent sample with a suitable Markov chain. This means
that each member of the sample is constructed recur-
sively from its predecessor (see e.g. Gilks et al. 1996).

3.2.  Distribution of data

All variables are mean temperatures for a specific re-
gion and season. X0,t denotes the observations in year
1960+ t, Xi,t the control output of model i in year 1960+ t,
and Yi,t the scenario output of model i in year 2020+ t
where t = 1, 2, …, 30 and i = 1, 2, …, 7. These are the
known data. The unknown data are the observations in
year 2020+t, which we denote by Y0,t (t = 1, …, 30). No
indices are needed for season and region since the ana-
lysis is done individually for each region and season.

We assumed that all data were normally distributed
and independent. The assumption of normal distribu-
tions is reasonable due to the aggregation over a season
and a region. In addition, quantile plots of observations
and model data against the theoretical normal distribu-
tion did not show strong discrepancies. ‘Independent’
means that we ignored, on the one hand possible corre-
lations between years, and on the other hand possible
correlations between models or between models and ob-
servations. The autocorrelation plots of the series con-
firmed that the first part is reasonable. The absence of
correlations between models and observations was jus-
tified because the models were supposed to reproduce
only the climate and not the interannual variations of a
specific year. We justify the independence between
models by the fact that there was no explicit dependence
between the models used in our analysis. Still, all of our
models were based on the same scientific knowledge
and thus may have contained the same systematic errors.
This could have led to an underestimate of the uncer-
tainty, which we are unable to assess and quantify.

Because we assumed independent normal distribu-
tions, we only had to specify the means (E) and vari-
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ances (Var). We begin with the variables X0,t, Xi,t, and
Y0,t where the specification is rather straightforward:

E (X0,t) = μ + γ(t – T0), Var (X0,t) = σ2 (1)

E(Xi,t) = μ + βi + (γ + γi) (t – T0), Var(Xi,t) = bi
2 σ2 (2)

E(Y0,t) = μ + Δμ + (γ + Δγ) (t – T0), Var(Y0,t) = q2 σ2 (3)

Here T0 = 15.5, so that μ is the expected temperature in
the middle of the control period. The trend parameter γ
is the yearly increase of the mean temperature in the
control period, and σ is the interannual variation in the
control period. For model i, the parameters βi and γi are
additive and bi multiplicative biases, respectively. Δμ is
the change in mean temperature, Δγ is the change in
trend, and q is the change in interannual variability
between the control and the scenario period.

Finally, the means and variances of the model out-
puts in the scenario period are

E(Yi,t) = μ + Δμ + βi + Δβi + κ(bi – 1)Δμ + 

[γ + Δγ + γi + Δγi + κ(bi –1)Δγ] × (t – T0),

Var(Yi,t) = σ2 q2 (4)

With the parameters Δβi, Δγi, and qbi
, we allowed

changes in the additive and multiplicative biases
between the control and scenario periods. The addi-
tional bias change terms κ(bi –1)Δμ and κ(bi – 1)Δγ are
not standard. The parameter κ is supposed to be be-
tween 0 and 1. If κ = 0, we have the ‘constant bias’
assumption of Buser et al. (2009): the biases βi and γi

cancel if we take the difference Yi,t – Xi,t. Hence, up to
additive bias changes, all models were assumed to pre-
dict the climate shift between control and scenario
period correctly for κ = 0. This assumption is used
implicitly in most climate change studies. The value
κ = 1 corresponds to the ‘constant relation’ assumption
of Buser et al. (2009), which says that if model i over- or
underestimates the difference between a warm and a
cold year in the control period by the factor bi, then the
mean climate change will be also over- or underesti-
mated by the same factor. In other words, the expected
value of the difference Yi,t – Xi,t is biΔμ + Δβi + (biΔγ +
Δγi) (t – T0). A value of κ between 0 and 1 corresponds
to a compromise between the ‘constant bias’ and the
‘constant relation’ assumptions: the over- or underesti-
mation is attenuated by the factor κ.

We refer to Buser et al. (2009) for a more detailed dis-
cussion of the 2 assumptions ‘constant bias’ and ‘con-
stant relation’ and their influence on the outcome of
the prediction. Note that the ‘constant relation’ as-
sumption implies that the models with larger inter-
annual variability should also predict larger climate
changes whereas under the ‘constant bias’ assumption,
no relation between these 2 quantities exists. We can

therefore look at the correlation coefficient between
projected climate change and estimated interannual
variability. Although an estimated correlation coeffi-
cient based on 7 data pairs is highly variable, we can
combine the evidence from 32 such correlations (1 for
each region and season). The Wilcoxon test gives
strong evidence against a symmetric distribution around
0 (p value = 0.0063 for a one-sided alternative shifted
towards positive values). Because the independence of
the 32 correlations is doubtful, we should not interpret
this p value as proof that the constant bias assumption
is violated; rather, it is an indication that the constant
relation assumption cannot be discarded. Since this is
an exploratory analysis, we also computed the correla-
tion coefficients with all 16 available GCM/RCM
chains from the ENSEMBLES database, leading to a
1-sided p value of 0.0018 in the Wilcoxon test. Since
a decision between the 2 assumptions is difficult, we
find the approach in Eq. (4) with a continuum of inter-
mediate assumptions represented by the parameter κ
attractive.

The presence of systematic bias changes in climate
simulations was also detected by Christensen et al.
(2008). They investigated the relationship between
monthly biases of RCMs in reanalysis-driven simula-
tions and found that temperature biases in southern
European regions increase with temperature, thus re-
jecting the hypothesis of climate-state-independent bi-
ases. Their result is qualitatively consistent with our
analysis, although it merely considers the RCM compo-
nent, rather than the whole GCM/RCM model chain.

The introduction of bias changes leads to identifia-
bility problems since the observations Y0,t are un-
known. The climate shift and bias changes are con-
founded. Only the sums

Δμ + Δβi + κ (bi – 1)Δμ, Δγ + Δγi + κ (bi – 1)Δγ (5)

and the products qqbi
are determined. A large value of

Δμ can be compensated by opposite model bias
changes Δβi for each model, and the same is true for q
and qbi

. To solve this problem, we restricted the values
of Δβi to be small and the values qbi

to be close to 1. In
the Bayesian approach, this can be done by choosing
informative prior distributions for these parameters.
With the introduction of the parameter κ, an additional
identifiability problem arises if all bi are similar, be-
cause then larger values for Δμ can be compensated
with small values for κ. In general, if the multiplicative
biases bi are different, this problem disappears.

3.3.  Prior distributions

We assumed that all parameters are a priori indepen-
dent so that only the marginal prior distributions are

qbi
2bi

2
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needed. There are 2 classes of parameters: the first
class consists of μ, Δμ, βi, Δβi, γ, Δγ, γi and Δγi, which are
related to the mean values of the assumed normal dis-
tributions of the data. It is common to take normal pri-
ors for these parameters since this simplifies the com-
putations. The other class of parameters consists of σ2,
q2, and , which are variances or multiplicative
changes of the variances. It is a common procedure
(Gelman et al. 2003) to work with the precision, which
is defined as the inverse of the variance, and to choose
a gamma distribution for the prior of the precision. The
same procedure is used for the multiplicative change
factors.

In order to fully specify the priors, we had to choose
the so-called hyperparameters, i.e. the mean and vari-
ance in case of a normal prior and the shape and scale
in case of a gamma prior. In Table 3, the prior distribu-
tions and their hyperparameters are shown for all para-
meters.

For the parameters μ, Δμ, βi, γ, Δγ, γi, σ–2, q–2 and ,
the hyperparameters are such that the priors are flat
and thus carry little information. For the parameters
Δβi, Δγi and , we took informative priors with small
variances that are concentrated around 0 and 1,
respectively, to solve the identifiability problem. The
sensitivity of the results to the choice of the prior distri-
butions and the hyperparameters was studied by Buser
et al. (2009). The choice of the informative priors influ-
ences the results; for instance, the less informative the
prior for Δβi is, the wider the posterior distribution of Δμ
becomes. We defend our choice with the following

arguments: if we use the constraint ΣiΔβi = 0, we can
estimate the parameter Δβi without any prior by a
method of moments (see Buser et al. 2010). Since under
this constraint ΣiΔβi

2 is minimal, a prior variance that is
much smaller than the empirical variance of these esti-
mates would be in conflict with the data. On the other
hand, we believe it is reasonable to assume a priori
that the bias change is smaller than both the bias and
the climate change.

A special role is played by the additional parameter
κ, that in essence selects a weighted average between
the ‘constant bias’ assumption (κ = 0) and the ‘constant
relation’ assumption (κ = 1). In a fully Bayesian frame-
work, we assign a prior distribution to it, in our case the
uniform distribution on [0,1], and compute the poste-
rior distribution of κ and the other parameters. If the
posterior for κ is concentrated on values close to 0, it
means that the data favor the ‘constant bias’ assump-
tion. Similarly, a posterior concentrated near 1 indi-
cates that the ‘constant relation’ is more plausible
given the information in the data. Finally, a posterior
distribution that is close to uniform indicates that the
data alone do not allow a decision between the 2 as-
sumptions.

If κ is considered unknown and treated in a fully
Bayesian approach, it also affects the posterior distrib-
utions of the other parameters, e.g. the climate change
Δμ: The posterior of Δμ for any fixed value of κ is aver-
aged with respect to the posterior for κ:

(6)p p p( ( (Δ Δμ μ κ κ κ| | |∫data) = data, ) data) d
0

1

qbi
−2

bi
−2

qbi
2bi

2
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Parameter Unit Distribution Hyper-parameter 1 Hyper-parameter 2 95% confidence interval
(μ0, shape) (σ 2

0, rate)

μ °C Normal 0 (Winter) 25 –9.8, 9.8
15 (Summer) 5.2, 24.8
10 (Spring) 0.2, 19.8

10 (Autumn) 0.2, 19.8
Δμ °C Normal 0 16 –7.8, 7.8
βi °C Normal 0 16 –7.8, 7.8
Δβi °C Normal 0 0.5 –1.4, 1.4
γ °C yr–1 Normal 0 0.1 –0.6, 0.6
Δγ °C yr–1 Normal 0 0.1 –0.6, 0.6
γi °C yr–1 Normal 0 0.1 –0.6,0.6
Δγi °C yr–1 Normal 0 0.0005 –0.045, 0.045
σ–2 °C–2 Gamma 0.1 0.1 0, 9.8
q–2 Gamma 0.1 0.1 0, 9.8

Gamma 0.1 0.1 0, 9.8
Gamma 3 3 0.2, 2.4qbi

−2

bi
−2

Table 3. Hyperparameters for the prior distributions. For normal distributions, the hyperparameters are the expectation (μ0) and
the variance (σ 2

0). For gamma distributions, the first hyperparameter is the shape parameter and the second hyperparameter is the
rate. The mean is shape × rate–1, the variance is shape × rate–2. The 95% confidence intervals show the range of values that were
a priori decided to be physically plausible. The intervals are quite large for the non-informative priors. For the 3 parameters Δβi,
Δγi, and , we chose informative priors to solve the identifiability problem. Their confidence intervals are therefore smallerqbi

−2
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(and the same formula holds for any other parameter).
Hence the effect of the extended approach with an
unknown κ is a widening of the posterior distribution,
when projections using the 2 bias assumptions yield
differing results and the data cannot decide between
the 2 assumptions.

However, assuming prior independence of the value
of κ for different seasons and regions can be criticized,
since values of κ should be similar in consecutive sea-
sons and neighboring regions. On the other hand,
assuming that the value of κ is the same for all seasons
and regions would presumably not be adequate either.
Moreover, when testing different approaches we
found that the posterior of κ is concentrated at values
near 1 if a single model projects a substantially higher
climate change, see Section 3.4 of Buser (2009). This is
due to the fact that the ‘constant relation’ assumption
can explain such an outlier more easily by increasing
the value of bi. For these reasons, we also show results
for a more conservative approach where the posterior
for other parameters is averaged with respect to the
uniform distribution for κ, i.e. the prior instead of the
posterior. This leads to an even bigger uncertainty
when projections using the 2 bias assumptions yield
differing results.

4.  RESULTS

4.1.  Weighting of bias assumptions

We first compared the 2 different ways of handling
the parameter κ, as explained in the previous section.
We show the posterior distributions of the climate shift
Δμ for the Alps in Fig. 1 and for Scandinavia in Fig. 2
since in these 2 regions the differences between the 2
assumptions are most pronounced. In the first 2 rows of
these figures, the posterior distributions of Δμ are given
for the ‘constant bias’ (gray dashed line) and the ‘con-
stant relation’ (light gray dotted line) assumption. In
the first row, the solid black line is the uniform average
of the posterior densities of Δμ for fixed κ (we took a
discrete average over κ = 0, 0.1, 0.2, ..., 0.9, 1), whereas
in the second row the solid black line is the posterior
distribution of Δμ in the fully Bayesian approach. In the
second row we therefore have a weighted average
with weights given by the posterior of κ, which is shown
in the last row of the 2 figures, along with the uniform
distribution which is also used as a prior. Because this
posterior is rather close to the prior, the black curves in
the 2 rows are very similar. The posterior is in particu-
lar not sufficiently concentrated near 0 or near 1 to
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clearly favor the ‘constant bias’ or the ‘constant rela-
tion’ assumption. Since the same is also true for the
other regions, in the next subsection we only show the
results of the fully Bayesian approach.

4.2.  Results for all PRUDENCE domains

Fig. 3 shows the posterior distribution of the climate
shift Δμ in a fully Bayesian analysis (black solid line) for
all seasons and all regions. For comparison, the poste-
rior distributions for the 2 extreme cases ‘constant bias’
(κ = 0) and ‘constant relation’ (κ = 1) are given as gray
dashed and light gray dotted lines, respectively.
Results are calculated for each season and each region
separately.

For seasons and regions with a good agreement be-
tween the ‘constant bias’ and ‘constant relation’ assump-
tions (e.g. spring in France), also the approach with
unknown κ resulted in a similar prediction. In such a
situation, the interpretation is easy.

On the other hand, there were several regions and
seasons where the posteriors under the ‘constant bias’
and ‘constant relation’ assumptions disagreed. Hence
the finding of Buser et al. (2009) is not limited to the
summer in the Alpine region, although the difference
was largest there. The differences between the light

gray and the gray densities were most often a combi-
nation of different centers (as measured by the mean,
median, or mode) and of different spreads (e.g. as mea-
sured by the standard deviation). Note that a larger
spread in the posterior means a larger uncertainty
about the climate shift. The black curve is in general a
good compromise between the light gray and the gray
curves, sometimes with a slight preference for the gray
curve. When the difference between the 2 curves
is mainly a shift, the black curve is wider than both
the gray and the light gray curves, representing an
increased uncertainty, whereas in other cases it also
represents a compromise in the uncertainty.

The most pronounced differences between the 2 bias
assumptions occurred as follows. In summer, the ‘con-
stant relation’ assumption (light gray dotted lines) pre-
dicted a significantly weaker warming in the Alps (Al),
eastern Europe (EE), and the Mediterranean (Md), and
to a lesser extent also in France (Fr) and middle Europe
(ME). The same pattern, but with weaker differences,
was also evident for autumn. In contrast, in winter the
‘constant relation’ assumption predicted a significantly
stronger warming in Scandinavia (Sc) and France, and
to a lesser extent also in eastern and middle Europe. In
spring, the differences were smallest in all regions.
The largest difference in the posterior median warm-
ing of the ‘constant bias’ and ‘constant relation’ as-
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sumptions occurred in the Alpine summer (+1.9°C ver-
sus +1.0°C), while the biggest difference in the poste-
rior 90% quantile occurred for the Scandinavian win-
ter (+2.5°C versus +3.5°C). These large differences
demonstrate that bias assumptions matter.

The differences between the 2 assumptions can be
traced back to a considerable over- or underestimation
of the observed interannual variability during the con-
trol period. For the Scandinavian winter, all GCM/
RCM chains underestimated the interannual variabil-
ity during the control period. The ‘constant relation’ as-
sumption as well as the generalization introduced here
thus yielded a significantly stronger warming than the
multi-model mean. In summer, the opposite was true
for most regions. Because the majority of models over-
estimated the interannual variability, our method pro-
jected a weaker warming than the multi-model mean.
This shows the necessity of a good representation of
the true interannual variability by the models. For a
detailed discussion of the influence of an inaccurate
estimate of the interannual variability on the projected
mean warming, we refer to Buser et al. (2009).

In Fig. 4, we show the analogue figure to Fig. 3 for q,
the expected change of the interannual variability.
There is a reduction of the interannual variability for
most regions and seasons. This is in contrast to other
publications that predicted an increase of the interan-
nual variability (e.g. Schär et al. 2004, Vidale et al.
2007). However, these other studies addressed a later
period (2071–2100), used a stronger greenhouse gas
scenario (SRES A2 rather than A1B), and were based
on a different simulation strategy than that used in the
PRUDENCE project. We note that some of the RCMs in
our analysis predicted an increase of the interannual
variability, but this was not supported by the multi-
model majority. For the later scenario period 2071–
2100, a larger fraction of available ENSEMBLES mod-
els predicts some increase of the summer interannual
variability in continental Europe, but the signal is not
as pronounced as in the previous PRUDENCE scenar-
ios. Also, most ENSEMBLES models show a significant
increase in total daily temperature variability (Fischer
& Schär 2010).

Further work is needed to reconcile the PRUDENCE
and ENSEMBLES results. One potentially important
factor relates to the different simulation strategies for
the 2 sets of scenarios. The previous PRUDENCE sce-
narios were based on large-scale sea surface tempera-
ture (SST) distributions that prescribed the SST vari-
ability to be identical in control and scenario periods
(see Christensen & Christensen 2007). In contrast, the
ENSEMBLES scenarios are based on transient coupled
GCM simulations, driven by observed forcings for the
past and greenhouse gas and aerosol scenarios for the
future. There is some intrinsic difficulty with the latter

approach. If the past forcing includes decadal and
interannual variations in volcanic, solar, and aerosol
forcing, this simplifies the comparison against ob-
served climate variations. On the other hand, if the
future forcing uses smooth volcanic, solar, and anthro-
pogenic aerosol forcings, this leads to an artificial
reduction of variability between the control and the
scenario periods. As we used the period 1961–1990 as
the control, this artificial reduction might be particu-
larly important, as this period coincides with unusually
strong volcanic activity.

In Fig. 5, the posterior distributions for the scenario
trend γ + Δγ are given. These distributions show that a
substantial trend over the scenario period is likely. For
the trend, the differences between the ‘constant bias’
and ‘constant relation’ assumption were so small that
we could neglect them.

An important measure for a user is the posterior pre-
dictive density. It estimates the distribution of the sce-
nario seasonal temperatures given all available data. It
accounts for interannual variability and for all uncer-
tainties considered, including those due to the bias
assumptions. In Table 4, the 10, 50, and 90% quantiles
of the posterior predictive distribution (with Bayesian
estimates of κ) are calculated for each region and sea-
son. For each region, the top row presents the proba-
bility distribution of mean seasonal temperatures, in
terms of the 10, 50, and 90% quantiles. The second row
presents the distribution of the seasonal temperatures
(including interannual variability) in the same format,
with the 10 and 90% quantiles representing the 1 in
10 yr seasonal mean temperature (hot and cold) for the
scenario climate. Since the trends are not included,
these distributions represent snapshots for 1975 and
2035, respectively. When comparing the control and
scenario period, we note that for some regions (Alps,
Mediterranean, and Spain), a cold summer (10%
quantile) of the scenario period 2021–2050 corresponds
to a hot summer (90% quantile) of the control climate
(1961–1990).

5.  CONCLUSIONS AND OUTLOOK

We generalized the Bayesian methodology of Buser
et al. (2009) by combining the 2 different but equally
plausible bias assumptions. The main conclusions on
the methodological level are:

• The generalized Bayes methodology offers a sin-
gle probabilistic projection for seasonal temperature
distributions that includes the uncertainty of the differ-
ent GCM/RCM chains, but also the uncertainty about
the extrapolation of the biases into the scenario period.

• The posterior for κ tells us how well we can decide
between the ‘constant bias’ and the ‘constant relation’
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bias assumptions, based on the fit of the GCMs/RCMs
to the observational data and to each other. However,
because artefacts in the data may favor the ‘constant
relation assumption’, some care is necessary. Because
of this, we also investigated, in addition to a fully
Bayesian approach, a more conservative approach
which considers all values of κ as equally likely, so that
the 2 bias assumptions obtain the same weights. In our
application, the posteriors for κ were flat and not very
different from the prior. This means that we could
not decide between the 2 assumptions, and the 2 ap-
proaches gave very similar results.

• The methodology does not make any a priori as-
sumptions about climate change. The respective prior
distribution is uninformative. Prior assumptions about
the bias changes are necessary to solve an identifiabil-
ity problem which occurs in any kind of climate projec-
tion. This approach may be criticized, but accounting
for bias changes using informative priors is certainly

more conservative than assuming that biases do not
change between scenario and control period, as is
implicitly done in most climate change studies.

• Estimating bias changes to correct scenario runs of
climate models may be seen as an alternative to the
use of model weights in the evaluation of multi-model
ensembles. Our approach does not use any explicit
weights, but it may implicitly assign large bias changes
to certain models, implying that the respective projec-
tions are not taken at face value. More specifically, this
occurs if models are in strong disagreement with the
majority of the other models, or if they exhibit large
biases (in mean and/or variance) during the control
period. In essence, such models are implicitly down-
weighted in the determination of the multi-model
Bayesian probabilistic projection.

Application of the Bayesian methodology to temper-
ature scenarios of 7 ENSEMBLES GCM/RCM chains
for 8 European regions demonstrated that the afore-
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Region Spring Summer Autumn Winter
10% 50% 90% 10% 50% 90% 10 % 50% 90% 10% 50% 90%

Al
Scenario mean 7.5 8 8.4 17 17.5 17.9 9.8 10.2 10.7 0.8 1.2 1.8 
Scenario temperature 6.7 8 9.3 16.6 17.5 18.4 9.3 10.2 11.3 –0.4 1.2 2.9 
Control 5.5 6.8 8 15 15.9 16.7 7.6 8.7 9.7 –2.2 –0.4 1.3

BI
Scenario mean 7.8 8.1 8.5 14.7 15.1 15.5 10.1 10.5 10.9 4.4 4.9 5.4 
Scenario temperature 7.3 8.1 8.9 14 15.1 16.1 9.8 10.5 11.3 3.5 4.9 6.4 
Control 6.5 7.3 8.2 13 13.9 14.9 8.6 9.3 10 2.1 3.7 5.2 

EE
Scenario mean 8.8 9.3 9.8 19 19.4 19.9 10.2 10.6 11.1 –0.9 –0.3 0.4 
Scenario temperature 7.8 9.3 10.9 18.4 19.4 20.5 9.4 10.6 11.8 –2.6 –0.3 2.1 
Control 6.6 8.2 9.9 17 17.9 18.8 7.7 8.9 10 –4.9 –2.3 0.4 

Fr
Scenario mean 10.2 10.6 11 18.5 18.9 19.4 12.6 13 13.4 5.2 5.8 6.4 
Scenario temperature 9.5 10.6 11.7 17.8 18.9 20 12 12.9 13.9 4.1 5.8 7.5 
Control 8.5 9.6 10.7 16.4 17.6 18.7 10.7 11.6 12.5 2.3 4.2 6.1 

IP
Scenario mean 12.1 12.6 13 21.9 22.4 22.8 15.6 16.1 16.6 7.4 7.8 8.3 
Scenario temperature 11.5 12.6 13.7 21.3 22.3 23.4 14.9 16.1 17.3 6.7 7.8 9 
Control 10.2 11.3 12.4 19.5 20.6 21.7 13 14.2 15.3 5.3 6.4 7.6 

Md
Scenario mean 11.9 12.3 12.8 22.2 22.7 23.1 15 15.4 15.8 5.3 5.7 6.1 
Scenario temperature 11.1 12.3 13.5 21.7 22.6 23.6 14.3 15.4 16.5 4.7 5.7 6.8 
Control 9.9 11 12.2 19.8 20.6 21.5 12.5 13.6 14.6 3.3 4.4 5.5 

ME
Scenario mean 8.5 8.9 9.3 17.4 17.8 18.2 10.4 10.8 11.3 2 2.6 3.3 
Scenario temperature 7.7 8.9 10.1 16.7 17.8 19 9.9 10.8 11.9 0.4 2.6 4.9 
Control 6.9 8.1 9.3 15.5 16.6 17.7 8.3 9.3 10.4 –1.8 0.8 3.3 

Sc
Scenario mean 1.8 2.3 2.8 13.8 14.2 14.7 4.3 4.8 5.4 –7 –6.3 –0.4 
Scenario temperature 0.8 2.3 3.8 13.1 14.2 15.5 3.4 4.8 6.3 –9.4 –6.3 –3 
Control –0.4 1 2.4 11.8 12.9 14 1.3 2.7 4.1 –12.1 –8.6 –5

Table 4. Estimates of the 10, 50 and 90% quantiles for the 2035 scenario climate. Scenario mean: posterior quantiles of the sce-
nario climate mean μ + Δμ; scenario temperature: quantiles of posterior predictive distributions of seasonal temperatures, which
also includes the interannual variability of the scenario climate; control: quantiles of the posterior predictive distribution of the 

control climate in 1975. See Table 2 for abbreviations
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mentioned issues are not academic, but relevant to cli-
mate change projections. In particular, we found sev-
eral regions and seasons where assumptions about
bias changes were crucial. In comparison to the multi-
model mean, the generalized Bayes method projected
a considerably weaker warming during summer and
autumn in much of continental Europe, a stronger
winter warming in Scandinavia, France, eastern and
central Europe, and a weaker warming in both sum-
mer and winter in the Mediterranean.

The generalized Bayesian methodology is able to
deal with such discrepancies. If the 2 bias assumptions
disagree, the methodology responds with a widening
of the probability distribution, thereby forwarding the
evident uncertainty to the user of the projections.

The current methodology could be generalized and
made more versatile in a number of respects. This in-
cludes the use of multivariate approaches to yield joint
precipitation and temperature scenarios (see Buser et
al. 2010), the consideration of a hierarchical model
(distinguishing biases at the GCM and RCM levels),
and the application of the methodology at higher spa-
tial resolution and to other multi-model data sets.
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