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1.  INTRODUCTION

In semi-arid regions of Africa, wildfires, which
occur frequently during the dry season, strongly con-
strain the structure, dynamics and distribution of
vegetation (Higgins et al. 2000, 2007, Sankaran et al.
2004, 2005, Bond et al. 2005) and emit large amounts
of black carbon (BC) to the atmosphere (Bond et al.
2004). Atmospheric BC can change the climatic sys-
tem by absorbing shortwave radiation and thereby
de  creasing downward shortwave radiation to the
land surface (Ramanathan & Carmichael 2008). Ka -

wa se et al. (2011) reported that the reduction in net
radiation to the land surface due to atmospheric BC,
by suppressing evapotranspiration, caused a de -
creasing trend in precipitation in tropical Africa in
the 20th century. The recycle ratio, defined as the
ratio of evapotranspiration from the land surface that
falls as local precipitation to the total precipitation, is
high in Africa. Van der Ent et al. (2010) estimated
that the recycle ratio is 0.49 in the global region
(37° N− 34° S, 17° W− 59° E) that includes the African
continent. Therefore, any decrease or increase in
atmospheric BC is likely to have a significant impact
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ABSTRACT: Frequent wildfires emit large amounts of black carbon (BC) into the atmosphere in
the semiarid regions of the African continent. This atmospheric BC efficiently absorbs shortwave
radiation and thus modifies the climate system on a regional scale. Therefore, it is essential to
understand how geographical distribution patterns of BC emissions are controlled by climate and
vegetation in these regions. We applied a principal component analysis (PCA) to the correlations
between dry season BC emissions observed by satellite and climate variables during the vegeta-
tion growing and dry seasons, and to correlations between BC and the leaf area index during the
growing season, as independent values. We analysed the burned fraction (BF) in the same way,
but its factor loadings did not differ significantly from those of BC in sign or magnitude. During the
growing season, the response pattern of vegetation productivity (an index of wildfire fuel loading)
to climate variables explained 57.5% of the regional variability in BC emissions. This vegetation
productivity was more closely correlated with the geographical distribution patterns of BC emis-
sion than climate variables such as temperature during the dry season. The response pattern of
vegetation productivity to climate during the vegetation growing season was roughly determined
by vegetation parameters such as biome type and tree cover, which are heterogeneously distrib-
uted in Africa. Therefore, regional BC emission patterns would differ even if climate change
occurred uniformly throughout semi-arid Africa.
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on precipitation over the African continent. Because
vegetation productivity determines the fuel produc-
tion rate (Lehsten et al. 2009), an investigation of the
relationships among fire, climate and vegetation
abundance is necessary to understand climate sys-
tem dynamics in Africa.

The geographical pattern of wildfire frequency and
intensity is primarily determined by climate, fuel
loading and the moisture content of the fuel (Cooke
et al. 1996, Bowman et al. 2009). The pattern is also
affected by the vegetation type (Dwyer et al. 2000),
lightning frequency, human population density (Kee-
ley et al. 1999), land use (Russell-Smith et al. 2007)
and tree cover (Archibald et al. 2009). However, the
integration of these factors to generate the observed
geographical pattern of wildfires has yet to be ade-
quately evaluated quantitatively.

Remote sensing studies of the Sahel have sug-
gested that interannual perturbations in indices of
vegetation greenness such as the normalised differ-
ence vegetation index (NDVI) and the leaf area index
(LAI) are primarily controlled by precipitation (An -
yam ba & Tucker 2005, Hickler et al. 2005). On the
African continent generally, field studies suggest that
precipitation is the primary determinant of plant spe-
cies composition and plant production (Gonzalez
2001, MacGregor & O’Connor 2002, Lwanga 2003).
Besides precipitation, air temperature and solar radi-
ation intensity also affect vegetation productivity
(Allen et al. 2010).

The aim of this study was to estimate the factors
that influence the occurrence of wildfires and the
geographical distribution pattern of BC emissions
(e.g. vegetation type, lightning frequency, human
population density, land use and tree cover) in semi-
arid Africa. However, we were unable to directly
analyse the correlations between the BC emission
and these factors because there are no long-term
time series data for, e.g. vegetation type and tree
cover. Thus, the significant differences in the geo-
graphical distribution pattern of the 6 correlation
coefficients, namely BC−precipitation (growing sea-
son), BC−temperature (growing, dry season), BC−
cloud cover (growing, dry season) and BC−LAI
(growing season) (i.e. variations in the 6 correlation
coefficients across semi-arid Africa), were estimated
by performing a principal component analysis (PCA).
Meaningful comparisons of the geographical distri-
bution patterns were analysed using the variations in
these 6 correlation coefficients across semi-arid
Africa (i.e. the principal component scores). Finally,
the factors that influence the occurrence of wildfires
and the BC emission geographical distribution pat-

tern were estimated by comparing the geographical
distribution of the factors estimated from previous
work and the analysed principal component (PC)
scores in this study.

2. DATA AND METHODS

We used existing data sets for our analysis
(Table 1). We converted the spatial resolution of the
LAI and tree cover data to a 0.5° × 0.5° grid resolution
to match the resolution of the other datasets by sim-
ple averaging over each grid cell domain. The BC is
related to the burned fraction (BF) — which was cal-
culated by dividing the yearly burned area in a grid
cell by the total area of that grid cell — and to incom-
plete fuel combustion (Schmidt et al. 2001). The fire
fuel comprises the hot volatile vapour-phase prod-
ucts of the thermal decomposition of vegetation.
These vapours and their cracking products undergo
flaming combustion. However, in competition with
this, they can also undergo condensation and char-
ring to powdery soot particles. These soot particles
may combust or be swept into the air away from the
fire to become aerosol BC. Thus, the distribution of
hot volatiles between flaming combustion and
thermo-condensation, and between aromatisation
and soot formation, determines the incomplete com-
bustion ratio, which is a different quantity from the
BF. Therefore, the determinants of BC are more com-
plicated than those of BF.

As the study area, we selected part of sub-Saharan
Africa (3−12° N, 12° W− 34° E and 15−5° S, 24° W−
 39° E) where a large amount of BC is emitted every
year. In this study, we define the dry season, which
corresponds to the fire season in Africa (Dwyer et al.
2000), as the months of December to February (DJF)
in the northern hemisphere and July to September
(JAS) in the southern hemisphere. We define the
growing season as the months of April to October in
the northern hemisphere and the months of Novem-
ber to May in the southern hemisphere. We excluded
from our analysis data for March and November
(northern hemisphere) and those for June and Octo-
ber (southern hemisphere), because in those months
the distinction between the growing and dry seasons
is unclear. The growing season was defined so as to
have no overlap with the dry season, and to include
the month in which the LAI reached its maximum
value in that hemisphere.

We divided our study area into 40 large (3.0° × 3.0°)
grid cells (Fig. 1). Each large grid cell was composed
of 36 small (0.5° × 0.5°) grid cells. A large grid cell
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was included in the analysis if more
than half of the contained small grid
cells had mean BC emissions (aver-
aged over the years 1997−2008; Fig. 1)
>0.05 g C m−2 during the dry season in
the region in which the large grid cell
was located. The selected grid cells
clustered in 3 regions, which are
referred to as Regions 1−3 hereafter
(Fig. 1).

We analysed the effect of climate
variables during both the growing and
dry seasons, and the effect of LAI dur-
ing the growing season on BC emis-
sions during the dry season and BF.
First, we averaged the BC, BF, air tem-
perature and cloud cover during the
dry season for each year and each
large grid cell. We did not average
precipitation during the dry season
because its quantity was negligible.
We used the normalised probability
density of annual BC emissions in the
large grid cells to calculate the corre-
lation coefficients between BC and
each climate variable. Wildfire con-
sumes its fuel load, and thus it rarely
occurs every year in the same small
grid cell (0.5° × 0.5°). As a result, the
probability density of annual BC emis-
sions in a single grid cell is unlikely to
have a normal distribution. The distri-
bution of the probability density of
annual BC emissions averaged in each
large grid cell (3.0° × 3.0°), however, is

223

Variable              Data product                   Data period       Product         Time         Reference
                                                                                                       resolution     interval

Temperature,     Climatic Research Unit           1997−2008      0.5° × 0.5°      Month        Mitchell & Jones (2005)
precipitation,      (CRU) TS3.1
cloud cover

LAI                       MODIS                                      2001−2008    0.25° × 0.25°    Month        MOD15A2 (Land Processes
Distributed Active Archive Center,
http://lpdaac.usgs.gov)

BC, BF                 Global Fire Emissions             1997−2008      0.5° × 0.5°      Month        Giglio et al. (2010)
                            Database version 3

Biome                  The International Satellite              −              0.5° × 0.5°           –             Turner et al. (2006)
                            Land Surface Climatology 
                            Project (ISLSCP) Initiative II 
                            Data Collection

Tree cover           AVHRR Continuous Fields             −          1/60° (= 1 min)       –             DeFries et al. (2000)
                            Tree Cover Product

Table 1. Datasets used for analysis. LAI: leaf area index; BC: black carbon; BF: burned fraction 

Black carbon emission  (g BC m–2) 
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Fig. 1. Black carbon (BC) emissions during the dry season in the northern and
southern hemispheres averaged over 1997−2008: (a) December to February and
(b) July to September. Data are from the Global Fire Emissions Database v. 3
(see Table 1). Red squares: large grid cells (3.0° × 3.0°) in the 3 analysis regions
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likely to be closer to a normal distribution. If an even
larger grid size were employed, the probability den-
sity distributions of BC would become even closer to
a normal distribution, but the heterogeneity of cli-
mate variables within a grid cell would be ob scured.
Therefore, we used trial and error to determine that a
grid size of 3.0° × 3.0° gave the best balance in this
trade-off.

We similarly averaged the climate variables, i.e.
precipitation (Fig. 2), temperature and cloud cover,
along with the LAI over the growing season of each
year in each large grid cell. We did not average the
BC emissions and BF during the growing season,
when wildfires rarely occurred.

Normally distributed variables can be represented
by their normalised deviations, which allow compar-
isons to be performed among regions. We calculated
the normalised deviation of variable A (A’) as follows:

(1)

where Aj,⎯Aj, and σj show the values
for both the dry and growing season
variable A in grid cell j, the value of Aj

averaged over the analysis period
and the standard deviation of Aj,
respectively; j = 1, 2 . . . n, where n is
the total number of large grid cells in
each region. We used Eq. (1) to obtain
the normalised deviations of air tem-
perature and cloud cover data during
the dry and growing seasons, precipi-
tation and LAI during the growing
season only, and BC and BF during
the dry season only.

We used the normalised deviations
of the variables to calculate the corre-
lation coefficients between BC and
climate variables during the dry sea-
son (i.e. temperature and cloud
cover), and between BC and climate
variables during the growing season
(i.e. precipitation, temperature, cloud
cover and LAI). In the same way, we
also calculated the correlation coeffi-
cients between BF and the climate
variables during each season. We
then used these correlation coeffi-
cients to perform PCA, which is a
technique for extracting informative
orthogonal linear combinations of
variables. By this analysis, we ex -
tracted ‘fire factors’ that expressed
the geographical distribution pattern

of BF in relation to precipitation, temperature, cloud
cover and LAI, and other factors that expressed the
geographical distribution pattern of BC emissions in
relation to those variables. We then compared the BF
and BC results.

For the PCA, we used data sets composed of the
independent variables Xj1 to Xj6 in each large grid
cell j, where X is the correlation coefficient between
BC emissions (or BF) during the dry season and 1 of 6
variables (LAI [growing], precipitation [growing],
temperature [growing], temperature [dry], cloud
cover [growing], cloud cover [dry]) (Fig. 3). The data
matrix X was 40 × 6 in size. The sample size (i.e. the
number of grid cells) was 40, and the number of inde-
pendent variables (i.e. the correlation coefficient)
was 6. In this way, we converted this multidimen-
sional data set to low-dimensional factors with the
least information loss. The p-dimensional data set Xjp
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Fig. 2. Precipitation integrated over the 7 mo vegetation growing season in the
northern and southern hemispheres, averaged over 1997−2008: (a) April to 

October and (b) November to May
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could be reduced to k dimensions (k ≤ p) by linear
combination with

(2)

where Wpk is a coefficient matrix (i.e. for the kth PC).
In PCA, the linear combination of variables that ex -
plains the maximum variance of a multidimensional
data set is called the first PC (PC1); the second PC
(PC2) is the linear combination of the variables ori-
ented orthogonally to PC1 that explains the maxi-
mum residual variance. This procedure solves the
equations (V − λk I)wk = 0 for λk (eigenvalues) and wk,
where V is the covariance matrix for Xjp and wk is the
vector of coefficients on the kth PC for each variable.
I is the unit matrix. The cross-covariance matrix (V)
of the correlation coefficient matrix of each region
Xjp (the independent variable, i.e. the correlation
coefficient, p = 1~6 in each grid cell j = 1~40) can be
calculated as follows:

where⎯Xp is the area-averaged value of Xp for all the
grid cells. Eigenvalues   λk are derived to diagonalise
this cross-covariance matrix (i.e. wk

T V wk, where wk
T

is transposed matrix of wk.). λk represents the vari-
ance explained by the kth PC, and its contribution
ratio Ck is calculated as:

(4)

where the total number for the kth PC is 6. The
cumulative contribution of the kth PC is defined as
the integrated contribution from PC1 to the kth PC.
Zjk is the score of the kth PC, which is calculated
using Eq. (2). This score is an expression of the spa-
tial variations of the correlations between BC (or BF)
and the climate variables, or between BC (or BF) and
LAI.

3.  RESULTS

The contribution ratios of PC1 to PC3 were 41.5,
18.7 and 13.6%, respectively, in the BF analysis, and
39.5, 18.0 and 14.1%, respectively, in the BC analy-

sis. The cumulative contribution of PC1 to PC3 was
73.8% for BF and 71.6% for BC. Therefore, the first 3
PCs explained >70% of the observed variations of
the correlations between BC (or BF) and the climate
variables, or between BC (or BF) and LAI.

The correlation coefficient between a PC and each
independent variable (i.e. Xj1−6) (Fig. 4), which is
referred to as the factor loading on that PC, can help
in the interpretation of each PC. We obtained similar
factor loading patterns for both BF (Fig. 4a) and BC
emissions (Fig. 4b). Here we focus on the BC results.

PC1 represents the most prominent geographical
distribution variation pattern. The 3 factor loadings
on PC1 with the largest absolute values were BC−
temperature (growing) (0.52), BC−temperature (dry)
(0.57), and BC−precipitation (growing) (−0.48). These
factor loadings indicated that the BC−temperature
(growing and dry) and BC−precipitation (growing)
 correlation coefficients differed considerably in sign
and magnitude among large grid cells (Fig. 3a,c,d).
Therefore, PC1 reflects a large-grid-cell-specific
response of BC emissions to variations in tempera-
ture during the growing and dry seasons and precip-
itation during the growing season.

The 3 factor loadings on PC2 with the largest
absolute values were BC−LAI (growing) (0.49), BC−
 precipitation (growing) (0.54) and BC−cloud cover
(growing) (−0.56). These factor loadings showed
that the correlation coefficients BC−precipitation
(growing), BC−LAI (growing) and BC−cloud cover
(growing) differed slightly in sign or magnitude
among large grid cells (Fig. 3c,e,f). Therefore, PC2
reflects a large-grid-cell-specific response of BC
emissions to variations in precipitation, cloud cover
and LAI during the growing season.

The factor loadings on PC3 with the 3 largest
absolute values were BC−LAI (growing) (0.67), BC−
temperature (dry) (−0.54) and BC−cloud cover (dry)
(0.39). These factor loadings showed that the correla-
tion coefficients for BC−LAI (growing), BC−cloud
cover (dry) and BC−temperature (dry) differed
slightly in sign or magnitude among large grid cells
(Fig. 3a,b,f). Therefore, PC3 reflects a large-grid-  cell-
specific response of BC emissions to variations in
temperature and cloud cover during the dry season
and LAI in the growing season.

The PCs were normalised to unit variance. The
spatial variations of the correlations between BC
and the climate variables, or between BC and LAI,
across the grid cells of PC2 and PC3 were small
compared with those of PC1 because these varia-
tions became small in turn compared with PC1.
There was a pattern of opposite correlations be -
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tween BC and climate among the grid cells with dif-
ferent signs and large scores. The PC2 and PC3
scores can be interpreted in the same way. How-
ever, the geographical patterns of contrary correla-
tions of BC with climate or the plant parameters of
PC2 and PC3 were smaller than those of PC1. It is
difficult to make meaningful comparisons with the
patterns of variation in the geographical distribution
of the correlation coefficients across the grid cells of
PC3 because the characteristic geographical distri-
bution pattern of the PC3 score is unclear. There-
fore, we focused on PC1 and PC2.

The average PC1 score in Region 1 was −0.43,
which indicates that the BC emission rate increased

as temperature decreased and precipitation in -
creased. In Regions 2 and 3, the average PC1 scores
were 0.26 and 0.27, respectively, indicating that the
BC emission rate increased with temperature and
decreased with precipitation (Fig. 5a).

The average PC2 score in Region 3 was 0.36, indi-
cating that the BC emission rate increased slightly
with precipitation and LAI, and decreased with cloud
cover. In contrast, in part of Region 1 (9−3° N, 16−
25° E), the average PC2 score was −0.47, and it was
−0.16 in part of Region 2 (8−15° S, 15−33° E). These
scores indicate that the BC emission rate in creased
slightly as the precipitation and LAI de creased, and
in creased with cloud cover in these areas (Fig. 5b).
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4.  DISCUSSION

The factor loadings on each PC
and the PC scores were similar for
BC emission and the BF (Fig. 4). In
the Global Fire Emission Database
(Table 1), BC emissions were esti-
mated from 3 variables: the BC emis-
sion factor, the burned area and the
dry matter mass (see the Appendix).
The burned area and dry matter mass
changed with time, but the BC emis-
sion factor did not. The interannual
differences in BC emission should de -
pend strongly on the burned area and
the available dry matter mass. The BF
is calculated from the burned area, so
it is not surprising that in our results,
the geographical distribution patterns
were similar between BC emissions
(i.e. the factor loadings and the PC
scores) and the BF.

Higher vegetation productivity would
result in a larger fuel load and a larger
burned area, and hence more BC emis-
sion. However, temperature and pre-
cipitation during the growing season
were negatively correlated in most
large grid cells (Fig. 6). This means that
the BC−precipitation and BC−tempera-
ture correlation coefficients had op po -
site signs in each large grid cell
(Fig. 3c,d). Therefore, the factor load-
ings of BC−temperature (growing and
dry) and BC−precipitation (growing)
on PC1 had opposite signs. The corre-
lation coefficient be tween growing-
and dry-season temperature was posi-
tive in nearly all large grid cells (Fig. 7)
because the tendency of the growth-
season temperature carried over to the
dry-season temperature. As a result,
the factor loading of BC−temperature
(dry) on PC1 was large.
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We interpreted PC1 as the response pattern of veg-
etation productivity to temperature and precipitation
during the growing season. The geographical distri-
bution pattern of PC1 depended greatly on the geo-
graphical distribution of biomes (Fig. 8). In Region 1,
the dominant biome is savannah throughout. The
northern part of Region 2 is dominated by tropical
deciduous forest, and the southern part is dominated
by savannah. Both tropical evergreen forest and
savannah are also found in Region 3. The PC1 scores
differed among these 3 biome types (Fig. 9). In the
savannah, 68% of the large grid cells had negative
PC1 scores, and 67% of the large grid cells in tropical
deciduous and evergreen forest had positive PC1
scores. This indicates that the BC emission rate in -
creased with the growing-season precipitation in the
savannah and the growing-season temperature in
tropical deciduous and evergreen forests. Hickler et
al. (2005) and Anyamba & Tucker (2005) showed that

in semi-arid regions with abundant
herbaceous species, NDVI and LAI
are sensitive to precipitation changes.
In contrast, in forested regions, Allen
et al. (2010) showed that vegetation
productivity is more affected by tem-
perature and solar radiation than by
precipitation. These differing depen -
dencies of vegetation production
among the biomes would explain the
differentiation in the sign of PC1.

PC2 can be more intuitively under-
stood if the  factor loading of BC−
cloud cover ( growing) on PC2 is com-
pared with that of BC−Sd ( growing),
where Sd indicates the intensity of
the downward shortwave radiation.

Sd is inversely correlated with cloud cover, so the
correlation coefficients for BC− cloud cover (growing)
and BC−Sd ( growing) should have opposite signs.

In large grid cells with positive PC2 scores, LAI
increased in years with more precipitation, and Sd
was higher during the growing season. This suggests
that both the BC emission rate and the burned area
in creased during years of higher vegetation produc-
tivity. We therefore interpret positive PC2 scores as
the re sponse patterns of vegetation productivity (i.e.
the fuel-loading re sponse pattern) to precipitation
and Sd during the growing season.

In contrast, in large grid cells with negative PC2
scores, the BC emission rate either increased or
showed no relation to decreases in precipitation, Sd
and LAI during the growing season. Archibald et al.
(2009) and Bond et al. (2003) ex plained the smaller
burned areas in regions with higher tree cover as fol-
lows. Higher tree cover re duces the intensity of sun-

light reaching the forest floor, thus
hindering the growth of grass. Fur-
thermore, the ignition frequency is
reduced because grass and litter on
the forest floor are prevented from
drying out, and wildfires do not
spread. Archibald et al. (2009) and
Scholes (2003) suggested that wild-
fires rarely occur when the tree cover
exceeds about 40%. We compared the
PC2 scores for tree cover and LAI with
PC2 scores in some subsets of large
grid cells (Fig. 10). The mean ± SD
tree cover was 42.4 ± 5.5%, and the
average LAI was 2.2 ± 0.5 m2 m−2 in
large grid cells with PC2 scores lower
than −0.2. Therefore, in large grid
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cells with negative scores, lower pre-
cipitation and Sd re duced the tree
cover and increased the burned area,
increasing BC emissions.

5.  CONCLUSION

We used PCA to extract factors
accounting for the spatial variations
of the correlations between BC and
the climate variables, or between BC
and LAI. We interpreted PC1 (contri-
bution ratio, 39.5%) as mainly reflect-

ing the response of vegetation productivity to tem-
perature and precipitation during the growing
season. This pattern is regulated primarily by biome
type. We interpreted PC2 (contribution ratio, 18.0%)
as a geographical distribution pattern primarily reg-
ulated by tree cover, which in turn regulates the
abundance of herbaceous vegetation. The cumula-
tive contribution ratio of the vegetation productivity
response (57.5%; PC1 and PC2) was much higher
than the contribution ratio of climate variables in the
dry season (14.1%; PC3). From these findings, we
concluded that the spatial variations of the correla-
tions between BC and the climate variables, or be -
tween BC and LAI, primarily reflect biome type and
tree cover, both of which differed considerably
among the 3 regions studied.

The geographical distribution patterns of BC emis-
sions may change if the distribution of vegetation
types changes under future climate change in Africa.
Therefore, future studies should examine the impact
of predicted changes in vegetation and biome distri-
butions on BC emission patterns and how, in turn, BC
emission pattern changes are likely to affect future
climate.
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In the Global Fire Emissions Database v. 3, BC emissions were estimated
by computing 3 variables: burned area, dry matter and the BC emission
factor, which depends on the biome type. First, the burned area A(i,t) in
each 0.5° × 0.5° grid cell was estimated using a non-linear function of the
number of active fires in a month, Nf(i,t), as

A(i,t) = α(i) Nf(i,t)β(i) (A1)

where i is the grid cell, t is the month, and α(i) ≥ 0 (Giglio et al. 2010). The
parameters α and β were estimated independently in each grid cell.
Second, the dry matter mass was estimated from the living biomass pool
size by use of the allocation scheme (Hui & Jackson 2006), which was de-
rived from the net primary productivity (NPP). NPP was derived from satel-
lite remote sensing data as

NPP(i,t) = fAPAR(i,t) × PAR(i,t) × ε(T,P) (A2)

where PAR(i,t) is the photosynthetically active radiation, fAPAR(i,t) is the
fraction of available PAR absorbed by vegetation, ε(T,P) is the maximum
light use efficiency, T is temperature, and P is moisture. Third, the BC
emission was computed by multiplying the dry matter mass burned, which
was derived from Eq. (A1) and the dry matter, by its emission factor (g BC
kg−1 dry matter mass burned), which depends on the biome (van der Werf
et al. 2010). The results of a Monte Carlo simulation indicated that globally,
uncertainties were around 20% (1σ) for annual BC estimates during
2001−2009. The uncertainties for Africa (both northern and southern hemi-
sphere regions) were of the same magnitude (van der Werf et al. 2010).
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